

Enhancing of legumes growing in Europe through sustainable cropping for protein supply for food and feed

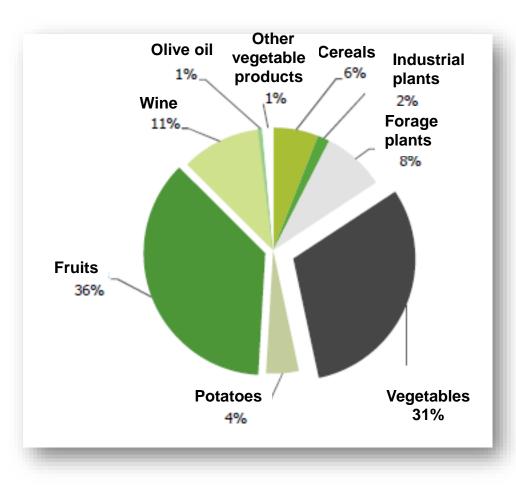
FP7 Research Project Nº 61378

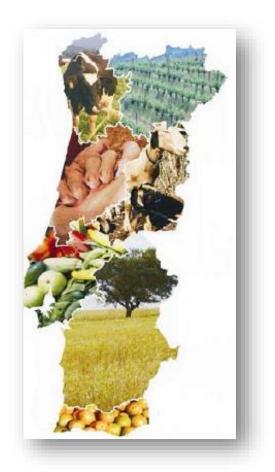
How to make protein crops profitable in the EU EUROLEGUME Project contribution

EIP-AGRI Workshop 'How to make protein crops profitable in the EU'

26-27th SEPTEMBER 2014

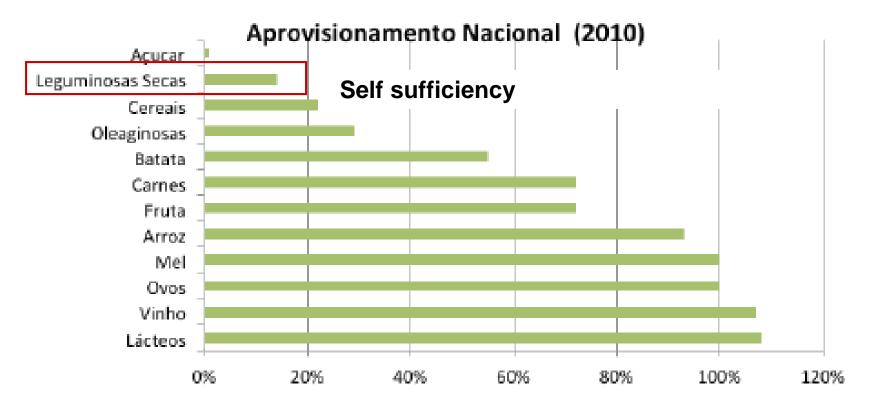
BUDAPEST




www.eurolegume.eu

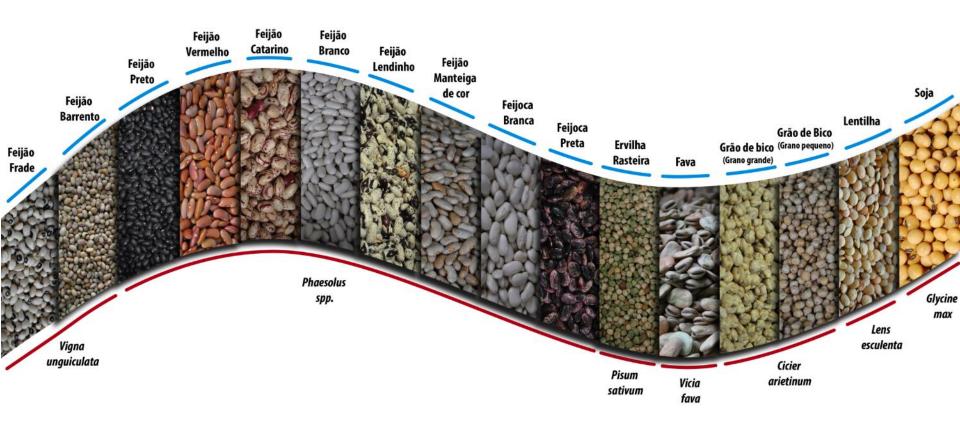
Agriculture Production (10 ⁶ E) (2010-2012)						
2010 2011 2012						
Vegetable production	3 448	3 278	3 243			
Animal production						
Meat	1 914	1 998	2 053			
Milk	675	720	745			

PORTUGUESE CROP PRODUCTION


E Major crops production						
Crons		Area (ha)		Production (t)		
Crops	2010	2011	2012	2010	2011	2012
ANNUAL CROPS						
CEREALES						
Wheat	48610	39628	51081	66962	47096	54722
Wheat (durum)	9117	2868	3712	15615	3907	4268
Maize	90371	99983	102196	626222	810267	848665
Rye	20441	19719	19508	17553	18388	14784
Triticale	24487	20485	20807	25871	23492	17019
Rice	29120	31436	31174	170216	184087	187028
Oat	61748	52351	41122	66145	48255	30506
Barley	20224	16627	18342	30620	21000	21151
LEGUMES (GRAIN)						
Beans	3509	3511	3402	2042	2058	1932
Chick-peas	1074	1010	1159	605	680	634
Green beans			2509			54974

PORTUGUESE CROP PRODUCTION

Major crops production							
Crons		Area (ha)		F	Production ((t)	
Crops	2010	2011	2012	2010	2011	2012	
Ротато							
Potato	25531	26501	25052	383835	289800	44564	
CULTURES FOR INDUSTRY							
Tomato	16640	15359	13895	1406084	1150827	129890	
Sunflower	14003	22418	18030	7611	12572	962	
OTHER CROPS							
Oranges	16303	16374	16544	193885	228101	20898	
Apples	12450	12539	12902	212902	247229	22076	
Pears	10954	10971	11226	176764	230447	11628	
Peaches	3711	3711	3783	33000	34520	3015	
Wine	177661	176988	176985	6961	5479	616	
			Ро				
Olive/oil	335586	338048	338562	435009	510733	40462	



INE inAgroCluster do Ribatejo, Levantamento dos fatores diferenciadores do setor na região e de posicionamento do Cluster, 2012.

Source: Research and Innovation National Strategy for a Smart Specializations 2014-2020, Working document nº 2, 2014.

Portugal a centre of biodiversity for legumes

Species	Number of accessions
Beans	1542
Lupinus	743
Chickpea	384
Broad bean	313
Реа	191
Lathyrus	119
Black-eyed bean	56

Top 10 trends for 2013

1- THE RESPONSIBLE CONSUMER

2- THE FOCUS ON HEALTH

3- HEALTHIER SENIOURS

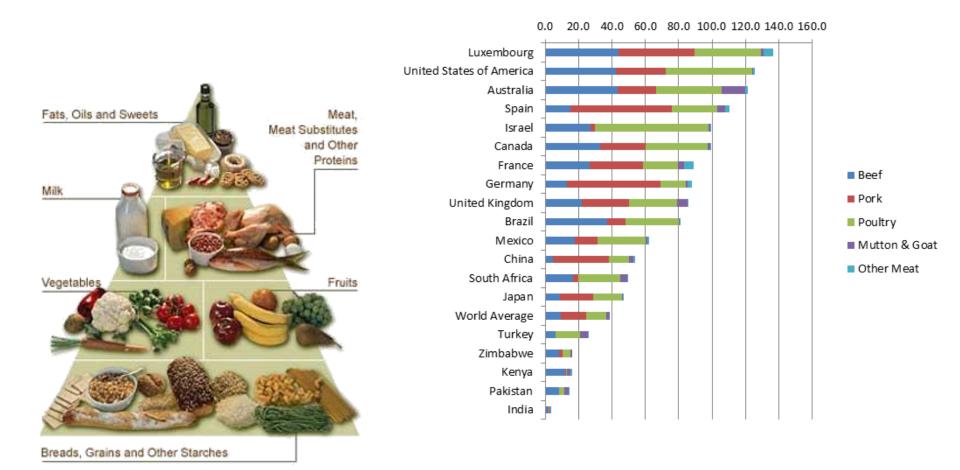
4- "FREE FROM" FORMULATIONS

5- NATURAL "ALLEGATIONS"

6- HIGHER PROTEIN CONTENT

7- FIGHTING THE "DEVIL" OF SUGAR

8- SENSORIAL EXPERIENCES


9- MORE WITH LESS

10- INTEREST IN THE EXTREMES

Top 10 trends for 2014

- 1. Waste not want not
- 2. You can trust us
- 3. Simpler pleasures
- 4. Look out for the small guy
- 5. Health is more holistic
- 6. "New" superfoods
- 7. Rise of the hybrid
- 8. The protein horizon
- 9. New stealth strategies
- 10. Alternative alternatives

http://globalfoodpolitics.wordpress.com/2013/04/14/speculative-investment-the-missing-factor-in-global-food-price-increases/

Legumes- a drive to change our diet

Food consumption of meat							
	1964/66	1974/76	1984/86	1994/96	1997/99	2015	2030
		Kg	per capita, c	arcass weigh	nt equivaler	nt	
World	24.2	27.4	30.7	34.6	36.4	41.3	45.3
Developing countries	10.2	11.4	15.5	22.7	25.5	31.6	36.7
excl. China	11.0	12.1	14.5	17.5	18.2	22.7	28.0
excl. China and Brazil	10.1	11.0	13.1	14.9	15.5	19.8	25.1
Sub-Saharan Africa	9.9	9.6	10.2	9.3	9.4	10.9	13.4
Near East/North Africa	11.9	13.8	20.4	19.7	21.2	28.6	35.0
Latin America and the Caribbean	31.7	35.6	39.7	50.1	53.8	65.3	76.6
excl. Brazil	34.1	37.5	39.6	42.4	45.4	56.4	67.7
South Asia	3.9	3.9	4.4	5.4	5.3	7.6	11.7
East Asia	8.7	10.0	16.9	31.7	37.7	50.0	58.5
excl. China	9.4	10.9	14.7	21.9	22.7	31.0	40.9
Industrial countries	61.5	73.5	80.7	86.2	88.2	95.7	100.1
Transition countries	42.5	60.0	65.8	50.5	46.2	53.8	60.7

Food consumption of meat							
	1964/66	1974/76	1984/86	1994/96	1997/99	2015	2030
		Kg p	er capita, c	arcass weig	ht equivale	nt	
Memo item							
World excl. China	28.5	32.6	34.3	34.1	34.2	36.9	40.3
World excl. China and transition countries	26.5	29.0	30.6	32.4	33.0	35.6	39.1
	Meat consu	mption by t	type (kg per	r capita, car	cass weight	equivalen	t)
World							
Bovine meat	10.0	11	10.5	9.8	9.8	10.1	10.6
Ovine and caprine meat	1.8	1.6	1.7	1.8	1.8	2.1	2.4
Pig meat	9.1	10.2	12.1	13.7	14.6	15.3	15.1
excl. China	9.7	10.8	11.3	10.4	10.3	9.9	9.7
Poultry meat	3.2	4.6	6.4	9.3	10.2	13.8	17.2

Glycemic Indices of various beans

	GI White Bread *	GI _{Glucose} *				
Pinto beans	55	39				
Kidney beans	42	27				
Baked beans, canned	57	40				
Dried beans	40	29				
Black-eyed peas	59	42				
Butter beans	44	31				
Chick peas 47 33						
* Calculated glycemic index when either white bread or glucose were used as the						
reference food. Expressed as a	reference food. Expressed as a percentage of the reference food.					

Human consumption of pulses ¹ in the EU, 2004-2008, in 1,000 tonnes					
	2004	2006	2008	Average anual change	
Spain	235	n.a.	n.a.	n.a.	
United Kingdom	210	n.a.	n.a.	n.a.	
Italy	163	162	n.a.	n.a.	
Poland	109	116	103	-1,4%	
Romania	122	93	81	-9,6%	
Greece	75	81	n.a.	n.a.	
Bulgaria	81	78	n.a.	n.a.	
The Netherlands	53	52	53	0%	
France	111	47	37	-24%	
Germany	n.a.	n.a.	36	n.a.	
Hungary	33	35	36	1,9%	
Lithuania	20	16	17	-4,1%	
Slovakia	15	n.a.	n.a.	n.a.	
Latvia	4,0	9,9	7,6	17%	
Ireland	6,0	6,0	n.a.	n.a.	
Austria	5,0	3,2	5,9	4,2%	
Estonia	2,6	2,2	3,6	8,5%	
Malta	n.a.	3,4	1,8	n.a.	
Luxemburg	0,2	0,3	n.a.	n.a.	

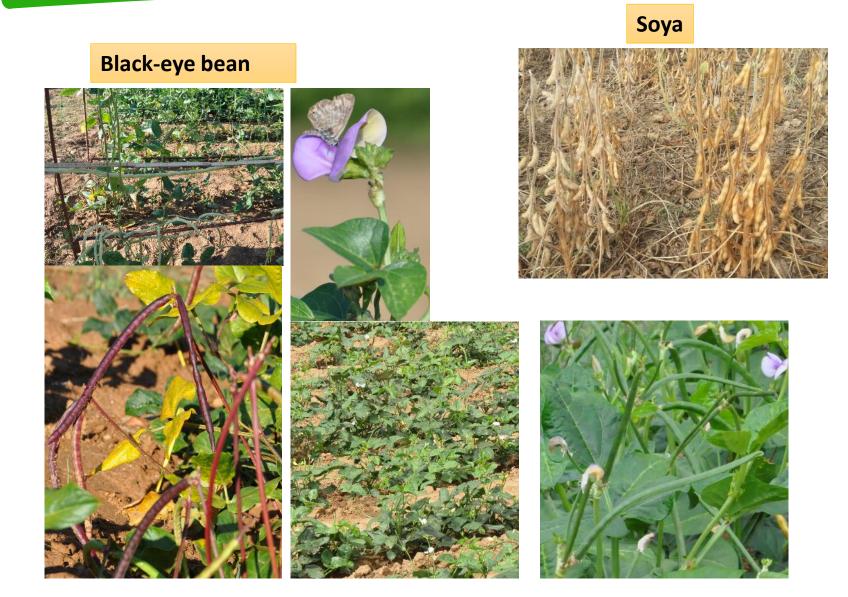
Source: Eurostat (2009) ¹ Data include: dried pulses, peas (incl. Chickpeas), broad and horse beans ² Data for Belgium, Cyprus, Czech Republic, Denmark, Finland, Portugal, Sweden and Slovenia were unavailable

. Plasticity (climate changes)- climate and soil adaptations

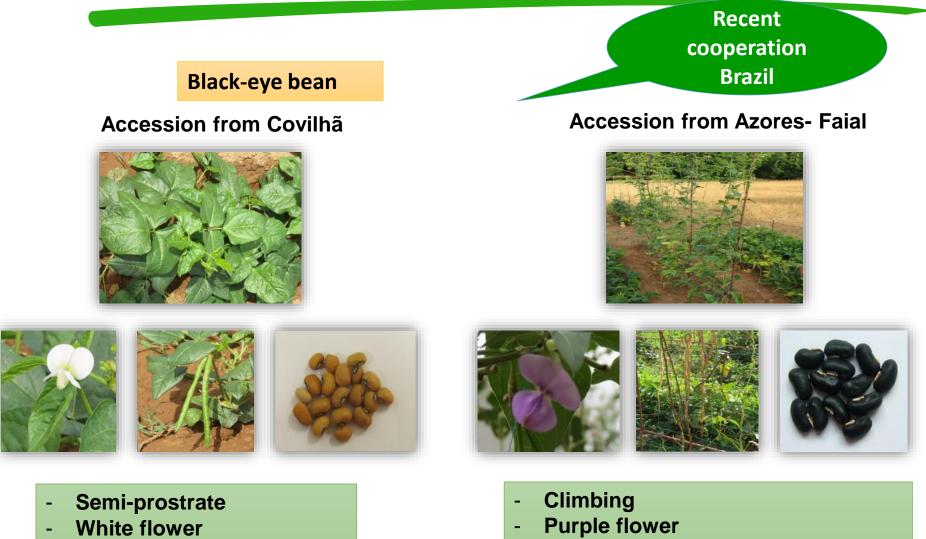
. Biodiversity- still to be explored

. Biotechnology

- Genes regulating yield
- Identify genes to disease & pest resistance
- . Abiotic stress resistance- drought and heat
- . NBF- Rhyzobium + Mycorrhiza (inoculation)
- . Product quality and health effects
 - Protein
 - Glycemic index


. New foods and feeds (also from co-products)

The legumes value chain


Turn biodiversity into business

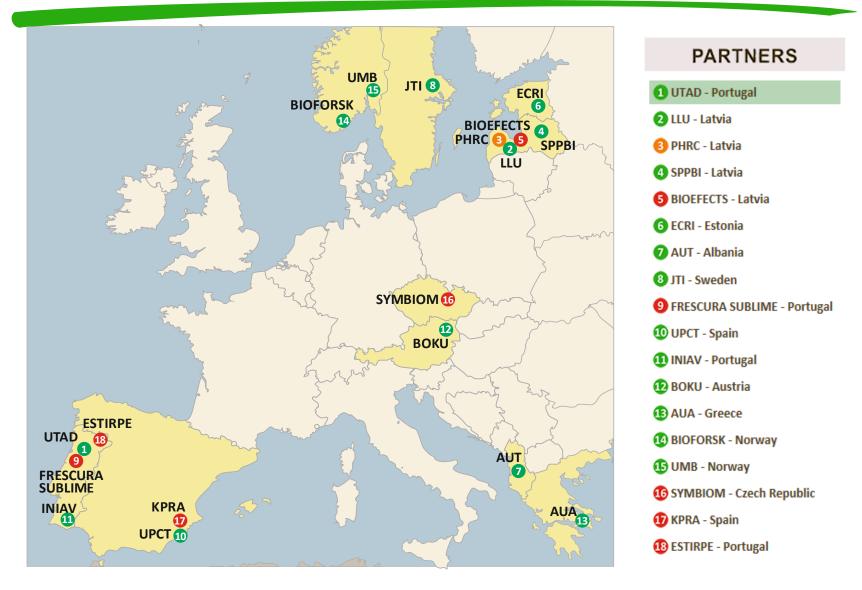
The legumes value chain- Turn biodiversity into business

- Green medium pod
- Beige grain colour

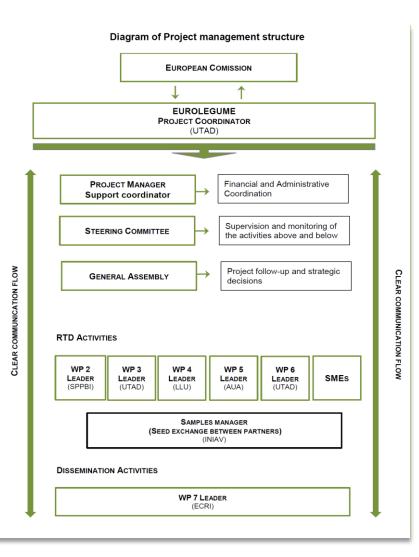
1m pod of purple colour Black grain colour

The legumes value chain- Turn biodiversity into business

Black-eye bean



Growth and isolation of rhyzobium



1. PROJECT PARTNERS

2.PROJECT MANAGEMENT & ADMINISTRATION

Governance structure

The **General Assembly** has representatives of all partners and is the main decision-making forum for the project.

The **WP Leaders** (and team) are responsible for managing the research work as planned.

The **Steering Committee** has a major role to supervise and monitor the planned activities, assuring the implementation of the provisions contained in the Consortium Agreement .

The **Project coordinator** assures linkage between the General Assembly and the Steering Committee, reports to EC and will respond to the duties as described in the Grant Agreement. He is assisted by the **Project Manager**, that is responsible for the administrative and financial management.

General objective

IMPROVE THE SUSTAINABLE PRODUCTION OF LEGUME CROPS, ENSURING NEW VARIETIES AND INNOVATIVE FOODS AND FEEDS, AND TURNING EU MORE COMPETITIVE/SUSTAINABLE.

Specific objectives

- Description of Biochemical/morphological features of pea, faba bean, and cowpea/black-eye-bean genotypes to develop varieties for food/feed and use in breeding (WP2);
- Develop foods and feeds based on the nutritive value from European varieties of pea, faba bean, and cowpea (WP4);

- Selection of the most appropriate *Rhizobium* and arbuscular *mycorrhizae fungi* to support nitrogen fixation. Development of new commercial inoculants (WP3);
- Introduce pea, faba bean, and cowpea in production schemes to enhance the sustainability of agricultural systems and improve the yield and economical benefit (WP5, WP6);
- Give an added-value (as feeds) to products from legume grain production residues (WP6).

GENETIC RESOURCES AND BREEDING

State-of-art	Limitations	Progress within EUROLEGUME	WORK PACKAGES INVOLVED
Significant number of accessions of European pea, faba bean and cowpea germplasm	 Incomplete geno- phenotyping Availability of local genotypes not included in breeding programmes 	Sourcing and characterization of genetic and phenotypic diversity of local genetic resources	WP2 (Leader: A. Kronberga) WP5 (Leader: D. Savvas)
Root system architecture/development has received an increased attention due to advances in phenotyping capabilities	Low focus on belowground characteristics of legumes in plant breeding	Evaluation of currently available genotypes and their environmental constraints adaptive plasticity	WP2 (Leader: A. Kronberga)

PROGRESS BEYOND THE STATE-OF-ART REGARDING EVALUATION OF

GENETIC RESOURCES AND BREEDING

State-of-art	Limitations	Progress within EUROLEGUME	WORK PACKAGES INVOLVED
Developed modern and traditional cultivars of narrow genetic diversity	Limited number of cultivars with resistance to abiotic/biotic stresses	Diversified gene-pool for further pre-breeding and breeding activities towards cultivars of plasticity/multipurpose use	WP2 (A. Kronberga) WP5 (D. Savvas)
Broad spectrum of phenotypical, yielding and nutritional parameters of legumes	Long breeding process	Acceleration of genotypes selection by NIR and genotyping by SSR	WP2 (A. Kronberga)

PROGRESS BEYOND THE STATE-OF-ART REGARDING NUTRITIONAL

VALUE AND INNOVATIVE FOOD AND FEED

State-of-art	Limitations	Progress within EUROLEGUME	WORK PACKAGES INVOLVED
Lack of information on nutritional value of local legumes	Deficit of high value protein and healthy compounds from local genotypes	The local genotypes and varieties with high nutritional value for food/feed processing	WP2 (A. Kronberga)
Pea and faba bean produced in broad scale in Europe	Lack of food and feed legume products of local origin	Inovative food and feed products from local legumes Development of processing packaging technologies and materials	WP2 WP4 (R. Galoburda)

PROGRESS BEYOND THE STATE-OF-ART REGARDING NITROGEN

FIXATION AND DEVELOPMENT OF INOCULANTS

State-of-art	Limitations	Progress within EUROLEGUME	WORK PACKAGES INVOLVED
	Lack of evaluation of BNF efficiency in diverse agro- ecological conditions	New rhizobial strains/arbuscular mycorhizal fungi for BNF in different agro-ecological conditions	WP3 (G. Marques)
Broad diversity of Rhizobia and AMF in the nature and collections is referred	Minor evaluation/genotypic	Rhizobium leguminosarum and Bradyrrhizobium spp. strains described	WP3
	characterization of diversity within Europe	Development of commercial products with rhizobial strains and arbuscular mycorrhizal fungi	WP3

PROGRESS BEYOND THE STATE-OF-ART REGARDING CULTIVATION AND BIOLOGICAL N FIXATION

State-of-art	Limitations	Progress within EUROLEGUME	WORK PACKAGES INVOLVED
Soy and common pea variants has focused research for use in food/feed.	 Not all European local genotypes have been available for testing Limited information on faba bean and cowpeas 	High valuable genotypes for utilization in food/feed will be detected	WP2 (A. Kronberga)
Limited number of legume		Evaluation of leguminous plants influence on soil properties in growing systems	WP5 (D. Savvas)
varieties/cropping systems researched on influence on soil properties.	High cost of long researches on cropping systems and rotations	Improvement of atmospheric N fixation, reducing chemical inputs and increasing competitiveness of EU agriculture	WP6

Enhancing of legumes growing in Europe through sustainable cropping for protein supply for food and feed

FP7 Research Project Nº 61378

WP4 Nutritional value and innovative food and feed

WP4 leader: Ruta Galoburda (LLU – Latvia)

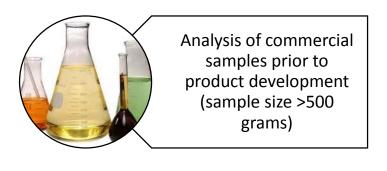
Nutritional value and innovative food and feed

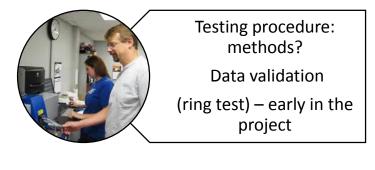
Task 4.1. - Evaluation of the quality of new feed and food (month 7-46)

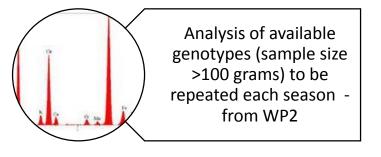
Task 4.2. - Multiuse of all three species in development of innovative foods/feeds (month 3-48)

Task 4.3. - Development of new processing and packaging techniques (month 3-48)

Task 4.4. - Economic assessment of new products (month 13-48)




Task 4.1


- 4.1.1 Physical, biochemical and sensory characterisation of legume genotypes (as soon as samples are available from WP2)
- 4.1.2 Digestibility and fermentation (in the first year establishment of testing procedure; experiments in second – fourth year, when feed products are developed)
- 4.1.3 New feed products metabolism, productivity and product quality (in the first year establishment of testing procedure; feeding trials in second – fourth year)
- 4.1.4 Microbiological safety of food/feed (connected to feeding trials and food storage experiments)

Task 4.1.1 Analysis (chemical, biochemical and sensory)

- dry matter
- organic matter
- crude protein
- amino acids
- fiber
- vitamins
- minerals
- phenolic compounds
- antioxidant activity
- anti-nutritional compounds

- Digestibility and fermentation analysis for animal feed
- In vitro digestibility evaluation for food
- Rumen degradation studies

Ruminant Feed

- Protein
- Fiber (NDF)
- Starch
- Ash
- Fat
- Soluble carbohydrates

• Rumen degradation

Task 4.2 Multiuse of all three species in development of innovative foods/feeds

- In the first year, the experiments will be made with commercial genotypes and in the following years with the selected varieties (from WP2)
- Evaluation of key attributes from raw material to final product, in order to assess effect of processing

Task 4.2 Multiuse of all three species in development of innovative foods/feeds

In the first year available genotypes will be used for technology development

- Cowpeas: pods and beans (freezing) Portugal
- Broad beans and peas: new products sweet and salty snacks (extruded), legume pate – Latvia
- Cowpea seeds and pods and immature seeds and pods of pea: postharvest and storage Greece

Enhancing of legumes growing in Europe through sustainable cropping for protein supply for food and feed

FP7 Research Project Nº 61378

Thank you very much

Contact: Eduardo Rosa

E-mail: erosa@utad.pt

Funded by the 7th Research Framework Programme of the European Union

www.eurolegume.eu