Results of the protein crops FG

26/27 November 2014 – Budapest, Hunagry

Content

- The challenge
- Task of the focus group
- The route to the end report
- The results
- The conclusion

The challenge: EU balance of protein rich feed

72% of feed stuff is EU produced

Raw material	EU produc	tion	•		self- sufficiency
	products	proteins	products	proteins	%
Soyabeans / meal	1.189	452	34.134	15.904	2,8%
Rapeseed and sunflower seed / meals	27.481	5.213	19.721	6.329	82,4%
Pulses	3.045	670	2.800	616	108,8%
Dried forage	4.056	771	3.900	741	104,0%
Miscellaneous	2.877	654	5.859	1.260	51,9%
sub-total	38.648	7.760	66.414	24.850	31,2%
fish-meal	398	275	599	433	63,5%
total	39.046	8.035	67.013	25.283	31,8%

Source: FEFAC/PROLEA, 2012 data

Value of soya

- High protein content
- High (ileal) digestibility of lysine
- Low competitiveness of European alternatives

Availability of large and reliable volumes to

the industry

Quality of protein crops

Crop	Amino ac	id content of	Protein content of		
					co-product (%, DM
	Lysine	Methionine	Cysteine	(M+C)/L	basis
Soya	6.3	1.4	1.6	48	53%
Rapeseed	5.5	2.1	2.2	79	40%
Sunflower	3.9	2.0	1.8	97	33%
Lupin	4.5	0.6	1.2	40	42%
Pea	7.2	1.0	1.4	33	49%
Faba bean	6.3	0.8	1.2	32	52%
Maize	3.1	2.1	2.0	132	34%
Wheat	2.9	1.6	2.0	124	41%

EU soya imports and CBOT prices

Worldwide soybean production

Ratio digestibility/price level

Source: Kamp et al, 2008

Task of the focus group

- Analysing the demand for protein crops in Europe
- Assessing the potential of relevant crops and forage which are rich in protein.
- Looking into the value of protein crops in the crop rotation
- Suggesting how to increase productivity and protein content of protein crops

The route to the end report

- Experts from 11 EU countries
- Workshop Oss September 2013 (Agrifirm)
 - Constraints and opportunities
- Housework:
 - Elaboration on constraints
- Workshop Valladolid January 2014 (CARTIF)
 - Innovation challenges
- Reporting

The results

Constraints and opportunities

- Breeding chain and genomics
- Yield improvement and stability
- Transition: developing or adapting a value chain
- Crop diversity
- Mixed cropping
- Extension and farmer's unfamiliarity with protein crops
- Diversification of the livestock chain
- Sustainability and transparency demands.

Diversity in Europe

Scale level and value chain

Indication of yield gap: crop competetiveness

crop	actual	increased yield (t/ha)		
	yield	benchmark		
	(t/ha)	wheat	maize	
Soya	2,7	3,4	4,3	
Rape	3,1	3,1	3,9	
Sunflower	2,2	2,7	3,4	
Lupin	1,0	4,1	5,1	
Pea	2,7	4,8	6,0	
Field bean	2,7	4,5	5,7	
Alfalfa	40,2	43,6	54,5	

Remarks:

- Rough indications
- Large variety from region to region

Considerations from the group

• Breeding:

- Commercial breeding and market: chicken and egg
- Public breeding to fill the gap
- Agronomy
 - Mixed cropping
 - Protein crops and rotations
 - Nitrogen and soil management
- Extension
 - Adoption depending on financial returns
 - Learning curve support through exchange of information

Consumers and sustainability

- Non-GM could be supporting the transition
- Indirect land-use change effects to be considered
- Integral sustainability on inputs (water, nutrients, surface, energy)
- GHG emission reduction?

Status in research on PC

- Large number of EU or country funded research projects identified
- Competitiveness and yield seldom the primary issue
- What is the cohesive strategy behind these projects?

Fail factors of innovation systems

- Knowledge infrastructure;
- Physical infrastructure;
- Legislation and regulation;
- Values, norms and symbols;
- Interaction;
- Market structure

Knowledge infrastructure

- Knowledge needed on:
 - Breeding and genetic diversity
 - Agronomy on crop and farm level
 - Potential of improvements in processing
- Distinguish between monogastrics and ruminants
- Combining knowledge: institutes, companies, farmers

Physical infrastructure

- Farm machinery
- Processing capacity installed
- Storage capacity
- Scaling up production and processing
- On-farm production of protein crops
- Leap in development: from local to industrial

Values and beliefs

- Non-GM: no issue from the viewpoint of breeding
- Non-GM: valuable as stepping stone in the development
- Protein crops could support sustainability of intensive farming systems
- European protein crops can be competitive

Co-operation and interaction

- Coherent R&D program required to tackle the challenge
- All chain partners and stakeholders to be involved
- Making use of knowledge throughout the value chain
- Exchange information, experience and knowledge

Market structure

- European future price level for protein crops
- Different scale levels depending on markets
 - How will consumer prerence develop?
- EU: low home-grown volumes and large demand
 - How to gradually match supply and demand?

Conclusion: integral approach

