

Subgroup on Innovation Tuesday 17 November 2015

interactive session 1 **Introductory presentation Biodiversity, ecosystem services,** soil functionality and sustainable water management

European Commission

Meeting Subgroup on Innovation Brussels, 17 November 2015

SOLMACC: Organic farmers countering climate change

Bram Moeskops IFOAM EU

CONTEXT OF THE PROJECT

Farming is a main contributor of climate change:

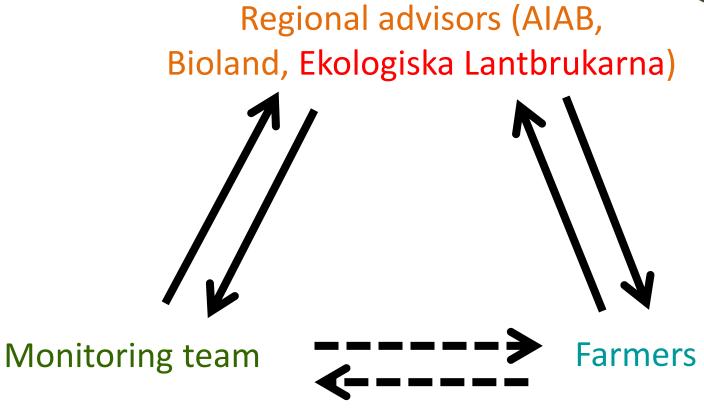
- Greenhouse gas emissions from agriculture in the EU account for about 10% of total GHG emissions (2009)
- At the same time agriculture is extremely vulnerable to the consequences of climate change

 \rightarrow Agriculture faces serious challenges both in terms of climate change mitigation and adaptation

MAIN ACTIVITIES

hs naturbru

Monreale Aziende Biologiche Famburello


wmnasium

Vidinge örslätts Gård

- Setting up a demonstration farm network with 12 organic farms in DE, IT and SE
- Training the farmers to integrate 4 climate-friendly practices into their farming system:
 - optimised on-farm nutrient recycling
 - optimised crop rotations with legume-grass level
 - optimised tillage system
 - Agroforestry
- Demonstrating the practices to local farmers and stakeholders
- Monitoring the impact of the new practices on climate change mitigation and adaptation, economic viability technical feasibility

Continuous interaction for successful implementation

Practices on different farms: Germany

Farm	Kreppold (south)	Pfänder GbR (south)	Gut Krauscha (east)	Kornkammer (west)
Improved on-farm nutrient management	Forage-manure cooperation and composting of on- farm residues		Composting of on-	Anaerobic treatment (biogas) of on-farm residues
Optimised crop rotations with legumes	Introduction of grain legumes and maintenance of existing forage legumes	Maintenance of existing grain legumes as well as summer and winter green manure lay with legume grasses	existing grain and forage legumes	Maintenance of existing grain and forage legumes
Optimised tillage systems	Reduced tillage and undersown crops	Reduced tillage and undersown crops	Reduced tillage	Reduced tillage
Agroforestry	Hedgerows and tree strips along agricultural fields	strips along		Hedgerows and tree strips along agricultural fields

Composting of farmyard manure (Kreppold)

GHG emissions from solid manure handling	kg CO ₂ eq./t DM fresh manure	kg CO ₂ eq./LU and year	kg CO ₂ eq./kg N
Manure compost («new practice»)			
Cover fleece	1.4	2.2	
Fuel consumption turning	2.7	4.4	
CH ₄ emissions composting	69.3	110.3	
direct N ₂ O emissions composting	253.8	403.9	
indirect N ₂ O emissions composting	166.7	265.3	
Compost loading and field application	5.4	8.6	
Direct post application N ₂ O emissions	150.9	240.2	
Indirect post application N ₂ O emissions	21.6	34.4	
Total	672.0	1069.3	20.9
Stacked manure («old practice»)			
CH ₄ emissions storage	239.0	380.3	
direct N ₂ O emissions storage	507.6	807.8	
indirect N ₂ O emissions storage	71.2	113.2	
Manure loading and field application	10.1	16.1	
Direct post application N ₂ O emissions	120.8	192.3	
Indirect post application N ₂ O emissions	57.9	92.2	
Total	1006.7	1601.9	39.0
Difference (Manure compost – stacked manure)	-334.7	-532.6	-18.1

Negative Values are savings of GHG emissions; LU = livestock unit, calaculations are based on Gattinger et al. in prep. and Pardo et al. 2014; C sequestration is not considered. In the case of anaerobic digestion for biogas (Farm 2 and 3 in Sweden) the savings are even higher!

PROJECT DATA

- DURATION: Start: 01/09/2013 End: 30/09/2018
- BUDGET: €2.140.121 (50% paid by DG ENVI/LIFE)

PARTNERS

- Ekologiska Lantbrukarna, SE
- IFOAM EU Group (Day-to-day Coordinator),
- AIAB, IT
- Bioland Beratung GmbH, DE
- FiBL, DE

About SOLMACC

SOLMACC Is a LIFE-co-funded project that runs from 2013 to 2018.

Its ambition is to demonstrate that by applying optimised farming practices organic farming can be climate-friendly.

12 demonstration farms are therefore adjusting their farming techniques under the close supervision and monitoring of agricultural scientists.

Read more about the SOLMACC objectives

Recent news

SOLMACC newsletter #1 The first newsletter, sent out to recipients all over Europe, is now *Read More...* Posted on 08/26/2014

Project website: <u>www.solmacc.eu</u> in four languages