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1. Introduction 

 

In the last decade, the world awakened to the problem of plastics contamination primarily in the oceans, thanks 

to unequivocal evidence of marine mammals, birds and fish entrapped on macroplastics or found dead with 
their guts clogged by plastic debris. It took some time to link the contamination of oceans with their sources on 

land. 

Global production of plastics increased twenty fold since the 1960s, reaching 322 million tonnes in 2015. It is 
forecast to double over the next 20 years. Reuse and recycling of end-of-life plastics is very low, particularly in 

comparison with other materials such as paper, glass or metals (EC, 2018a). Thus, the increase of plastic wastes 
in the different environmental compartments is forecast to continue. In Europe, packaging was the segment 

with the greatest demand of plastics (39.9%) from a total production of about 51.2 million tonnes 

(PlasticsEurope, 2019) a tendency that was likely kept and reinforced in 2020. Although the demand for plastics 

in agriculture has been more than 10 times less than this (3.4%) its use in the sector is expected to increase. 

The use of plastics in agriculture serves different purposes (e.g. greenhouse covers, tunnels and solarisation 
and mulch films, silage wraps and polymer coated fertilizers, seeds or pesticides). The recognized benefits vary, 

including increased crop yield, elimination of weeds, improved efficiency of water and nutrient use, and reduced 
soil erosion (Gao et al., 2019; Rodríguez-Seijo and Pereira, 2019). However, situations where an intimate contact 

between the polymers and soil is developed (such as when using mulching films, controlled-release fertilisers 

(CRFs), plant protection products using capsule suspension (CSPs) and coated seeds) have come under 
increasing scrutiny. Use of these plastics may in some cases lead to the release of micro- and nanoplastics in 

the underlying soil (Accinelli et al., 2019; ECHA, 2019; Huang et al., 2020). Further, it has been realized, in the 
last few years, that policies encouraging the use of sewage sludge and municipal compost to fertilize soils (with 

some exceptions depending on the crops), as well to reduce their accumulation in landfills has also contributed 

to the addition of meaningful amounts of microplastics, carried over from contaminated feedstocks, (Corradini 
et al., 2019; Nizzetto et al., 2016b). Compost, often used in organic farming may similarly lead to microplastics 

accumulation in soils (Nizzetto et al., 2016b; Weithmann et al., 2018). The continuous input of plastics to soils 
combined with their persistence (half-life in soil >120 days (according to REACH annex XIII) (EC, 2006) leads 

to their accumulation in soils, and this is particularly true for agricultural soils. It was suggested the plastic mass 

in the world agriculture soils is higher than that found in oceanic surface waters given the estimated input of 

microplastics in European farmlands of 430 000 tons per year (Nizzetto et al., 2016b). 

Therefore, a more precise understanding of the scope of plastic pollution in soils and the potential damaging 
effects it might have to agricultural production is thus required to balance potential deleterious effects with the 

obvious benefits of using plastics and/or urban by-products. 

 

2. Main uses and benefits of using plastic in agriculture 

 

Plastics play an important role in ensuring the productivity and sustainability of agricultural production. These 

polymers are used in many forms in European agriculture. A major advantage of plastic materials is that they 

are light and cheap and can thus be used in the large quantities required for agriculture. Some agricultural 
applications of plastics have specific advantages: 

 

2.1. Mulch films 
 

Mulch films are mostly used for horticultural crops where they can increase crop yields, reduce weed growth 
and/or the need for fertilizer, and improve water retention (Gao et al., 2019; Kader et al., 2019; Rodríguez-Seijo 

and Pereira, 2019) (Figure 1). The main reasons for using mulch films by farmers depend on the climatic region. 
The amount of water saved by this soil cover is still unknown, as it depends on climate or microclimate factors, 

soil and plant species (Steinmetz et al., 2016). 
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About 83,000 tonnes of mulch films were sold in Europe in 20191. Single-use mulch films made from low density 
polyethylene (LDPE) are by far the most used currently. The disadvantage of these films is as they get very 

dirty with soil this restricts recycling options (Briassoulis et al., 2012; Valavanidis et al., 2008). Collected single-
use mulch films are thus predominantly landfilled or incinerated, imposing high costs on local authorities as well 

as great environmental challenges (Valavanidis et al., 2008). The films are often incompletely collected after 

harvest and fragments are ploughed into the soils where they may further fragment and ultimately release 
microplastics into the soil, as well as other contaminants such as phthalates and agrochemicals (Huang et al., 

2020). Mulch plastic debris may also promote soil degradation and water repellence (Steinmetz et al., 2016). 

 

Figure 1: Film-mulched ridge-furrow tillage combined with straw incorporation to increase the water use 

efficiency and the soil quality, experimental case for maize growing in the Semiarid Loess Plateau, China (Yang 

et al. 2020) 

Biodegradable mulch films are therefore increasingly used as an alternative. The generally higher purchasing 
cost of biodegradable films may be offset by minimal after harvest management requirements. However, despite 

having a clear definition of biodegradable and compostable materials (EN 13432:2000 for compostability and 

EN 17033:2018 for biodegradable mulch films2), there is still confusion with the terminology. Biodegradable 
mulch films are intended to fully biodegrade due to the effect of microorganisms, following hydrolysis into CO2, 

water and microbial biomass (Lucas et al., 2008). These materials generally perform well during standard 
ecotoxicological tests (Hayes and Flury, 2018) although very little data exists to allow inferences on soil 

microbiome, plants and other organisms (Serrano-Ruiz et al., 2021). Nevertheless, biodegradable mulch films 

have been shown to have a similar efficiency to increase crops growth, yield and water use efficiency as the 

conventional polyethylene (PE) plastic films (Deng et al., 2019). 

Oxo-biodegradable (more precisely named as oxo-fragmentable3) mulch films are conventional single-use PE 
plastic films containing additives intended to initiate degradation by oxidation. At present it was demonstrated 

that these materials would meet the standard for biodegradability or compostability (Deconinck and De Wilde, 

 
1 https://apeeurope.eu/statistics/.  
2 https://www.en-standard.eu/  
3 https://www.european-bioplastics.org/avada_faq/what-is-the-difference-between-oxo-fragmentable-
and-biodegradable-plastics  

https://apeeurope.eu/statistics/
https://www.en-standard.eu/)
https://www.european-bioplastics.org/avada_faq/what-is-the-difference-between-oxo-fragmentable-and-biodegradable-plastics
https://www.european-bioplastics.org/avada_faq/what-is-the-difference-between-oxo-fragmentable-and-biodegradable-plastics
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2013; Thomas et al., 2012)4. However, it is increasingly being claimed that these plastics only partially 
biodegrade thus generating microplastic residues in the soil (Deconinck and De Wilde, 2013). Under the EU 

Strategy for Plastics, a process to restrict the use of oxo-plastics via REACH5 in the EU is ongoing (EC, 2018a). 
Bioplastic mulch films have been produced from renewable biomass sources and have been promoted by the 

EU as a means to achieve a bio-based economy (EC, 2018b). 

 

2.2. Polymer-coated soil additives and seeds 

 

Conventional fertilizers and pesticides often dissolve/release too fast thus missing their targets and contributing 
to leaching to groundwater and/or nearby environmental compartments. Polymer coatings can contribute to a 

more controlled release and constant dose release of pesticides and fertilizers over a longer period of time, thus 
increasing both their efficiency and sustainability (Gil-Ortiz et al., 2020). Seed coatings with superabsorbent 

materials aid controlling the moisture to spark germination (Scudo, 2017; Su et al., 2017) and to provide 

associate growth promoting organisms. Moreover, the coatings can be completed with pesticides to maximize 
the viability of the seed and the survival of the seedlings (Accinelli et al., 2019). However, concerns persist in 

what regards the impact of coat fragments on soil quality and health. Although this later study from (Accinelli 
et al., 2019) showed that detached coating film fragments do not generally persist very long in soil, the 

degradation rate was variable, depending on the composition of the coating, thus more research is needed 

regarding the impacts of these polymeric coats in soil. 

 

2.3. Greenhouses and polytunnels 

 
Greenhouses appeared with the initial objective of growing heat-demanding crop species during the winter 

season in temperate countries, i.e. countries with a cold winter season (FAO, 2013). The main greenhouse 
cladding materials are glass, plastic sheets, and films, double or single glazing. Plastic is the preferential material, 

especially in the South of Europe (Figure 2), because it guarantees the ideal UV light transmission and have 

excellent heat retention capability and ideal transmission in the photosynthetically active radiation (PAR) 
bandwidth (Al-Mahdouri et al., 2014). In 2019, greenhouses were the structures that most account for the 

European sales of plastics (120.000 tonnes)6 and the recycling of greenhouse plastics is one of the main 
challenges to sustainability of this production system. The properties of plastics such as heat resistance, heat 

loss, droplet formation, and dust forming on the film can be even improved through the integration of several 

functional additives (Maraveas, 2019; Sangpradit, 2014). These additives contributed to increase plastics 
lifetime, that nowadays varies between 6–45 months, depending on the photostabilizers used, the geographic 

location, the pesticide applications, among other aspects (Espí et al., 2006). Polyethylene, ethylene vinyl acetate 
(EVA) and ethylene butyl acrylate (EBA) and polyvinyl carbonate (PVC) are the main polymers being used in 

greenhouses and polytunnels. The former plastic material is the cheapest, the most accessible and is easy to 

repair thus being the main cover material.  
  

 
4 (https://echa.europa.eu/-/echa-to-consider-restrictions-on-the-use-of-oxo-plastics-and-microplasti-1  
5 The REACH Regulation places responsibility on industry to manage the risks from chemicals and to provide 
safety information on the substances. Manufacturers and importers are required to gather information on the 

properties of their chemical substances, which will allow their safe handling, and to register the information in 

a central database in the European Chemicals Agency (ECHA) in Helsinki.  

6 https://apeeurope.eu/statistics/ 

https://ec.europa.eu/environment/chemicals/reach/reach_en.htm
https://echa.europa.eu/-/echa-to-consider-restrictions-on-the-use-of-oxo-plastics-and-microplasti-1
https://echa.europa.eu/
https://apeeurope.eu/statistics/
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Figure 2. Greenhouses near Almeria in south east Spain. This area is known as the “sea of plastic” for the 

intense use of plastic in agriculture. 

 

2.4. Silage 
 
Silage is the animal fodder that is preserved by fermentation within plastic films (Figure 3). As opposed to mulch 

films, the plastic films used for silage are not soiled as much and can thus be more easily collected and sent for 

recycling. Very successful collection and recycling schemes have been set up in several EU-Member States. 
National collection schemes have been adopted by several European countries (Ireland, Iceland, Sweden, 

France, Spain, Norway, UK and Germany) where the collection rate is between 75 and 95 %7. 
 

2.5. Packaging 
 
Containers used in agriculture consist of polymers, usually high-density polyethylene (HDPE) that, in principle 

could be re-used and/or recycled, but containers used to store chemical substances such as fertilizers and 
pesticides (Figure 3) require special attention to avoid environmental contamination and/or accumulation of 

these chemicals in the human food chain. The Food and Agriculture Organization and the World Health 

Organization published Guidelines on Management Options for Empty Pesticide Containers (FAO and WHO, 
2008) reinforcing that all the stakeholders from the supply chain of pesticides must be involved in the 

management of these containers. Many EU-Member States have therefore set up collection schemes sometimes 
complemented with eco-taxes with varying success specifically for the collection and storage of containers (EU, 

2017; Jones, 2014). 
 

 

Figure 3. Bale being wrapped in plastic for silage preparation (A), empty plastic containers stored on farm (B).  

 
7 https://apeeurope.eu/statistics/ 

https://apeeurope.eu/statistics/
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3. Main impacts of plastic residues in soil 

 

The analysis of the impacts of plastics in soils can follow two different approaches, either considering this 

contaminant as a physical or as a chemical stressor. Plastics may exert their effects depending on their size, on 
the leaching of additives such as plasticizers or of other chemicals that adsorb to their surface (Wang et al., 

2020; Yang et al., 2019). With regard to size, plastic residues can be classified as: macroplastics (> 25 mm), 

mesoplastics (5-25 mm), large microplastics (1-5 mm), small microplastics (1mm-1μm) and nanoplastics (< 

1μm) (Blettler et al., 2017; Gigault et al., 2018). Usually small microplastics tend to dominate in soils (Chen et 

al., 2020), as they become part of the complex mixture of soil components, migrating to deeper soil layers due 

to soil water movement or transport by animals and anthropogenic activities, such as soil ploughing (Guo et al., 
2020; Maaß et al., 2017). The presence of nanoplastics in soils was not yet characterized due to the lack of 

appropriate methodologies 

 

3.1. Soil physical and chemical properties  

 

Once in the soil, plastic residues may affect soil physical properties such as the bulk density, soil porosity, 
hydraulic conductivity, soil water repellence, water holding capacity (WHC), the vertical flow of water and water 

stable aggregates. These effects seemed to be more size rather than concentration dependent (De Souza 
MacHado et al., 2018; Höfer et al., 2015; Jiang et al., 2017; Vezzani and Mielniczuk, 2009). Plastic residues may 

also affect the distribution of organic carbon in soil aggregates, likely compromising the conservation of soil 

organic carbon. Zhang et al. (2019) observed that only 30% of PE macrofibers added to soils were incorporated 
in soil aggregates, however they were able to reduce the organic content of the larger aggregates > 2 mm. 

Boots et al. (2019) also observed that HDPE and PLA were able to reduce the proportion of large aggregate (> 
2mm) and increase the smaller ones (250-63 mm) in the soil. In fact, studies suggest that microplastics are 

able to reduce the cohesion between soil components, affecting water stable soil aggregates which are an 
indicator of soil health, more precisely of its resistance/vulnerability to erosion (Boots et al., 2019). Plastic 

residues (meso- and microplastics) are also able to create water channels, enhancing soil evaporation and thus 

changing soil water content (Wan et al., 2019). 

Microplastics may also change the availability of potential toxic elements, as metals, by offering surfaces for 

physical adsorption or by indirectly changing their speciation and affinity for stable organic forms (Yu et al., 
2020). Wang et al.(2019) demonstrated that microplastics were able to reduce the amount of hydrophobic 

organic contaminants (PCB and PAH) in soil pore water as well as their bioavailability through competitive 

adsorption on their hydrophobic surfaces.  

 

3.2. Soil microbial community 

 

The effects of microplastics on the soil microbial community will depend on many factors as the type of soil, the 
climatic conditions, the soil management practices, water availability, the chemical composition of plastics, their 

concentration, ageing, and many other factors. Plastic residues of different sizes (from nano- to mesoplastics) 
and chemical compositions (including biodegradable plastics) have shown to inhibit and/or reduce several 

microbial parameters as soil enzyme activity, microbial biomass and the structural and functional diversity of 
soil microbial communities (Awet et al., 2018; Bandopadhyay et al., 2018, 2020; Fei et al., 2020; Qian et al., 

2018; Wang et al., 2016). Such impairment may be caused by both changes on soil physical and chemical 

parameters, as mentioned above, as well as by the exposure of soil microorganisms to plastic components as 
lipophilic phthalates that have the ability to disrupt cell membranes (Wang et al., 2016). In contrast, plastic 

particles may offer physical surfaces to be colonized by a distinct and specific microbioma (e.g., plastic degrading 
and pathogenic bacteria and fungi such as Aspergillus flavus), thus changing the overall balance in the structure 

of the soil microbial community and possibly favouring the development of some concerning species regarding 

the food safety and human health risks (Accinelli et al., 2019; Huang et al., 2020). 
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3.3. Soil invertebrates 

 
The first reaction of invertebrates could be to avoid contaminated soils with microplastics as it was shown for 

earthworms, enchytraeids, springtails and nematodes (Ju et al., 2019; Kim et al., 2020a, 2020b; Pflugmacher 
et al., 2020; Rodríguez-seijo et al., 2017; Rodríguez-seijo, 2018; Wang et al., 2019). However, this behavioural 

response was not consistent in all the studies (Prendergast-miller et al., 2019), especially when microplastics of 

different types were added to soils previously amended with organic compost (Kim et al., 2020b). In fact other 
studies do not confirm the avoidance behaviour and in opposition demonstrated the role of earthworms in the 

transport of microplastics to soil depths lower than 10 cm (Rillig et al., 2017). In parallel with physical factors, 
such as those related with water movements, microplastics can be pushed down during the movement of the 

earthworms - they can be transported inside their guts and released in casts to a greater depth or be transported 

glued to the mucus that covers the body surface.  

The ingestion of small microplastics by soil invertebrates is obviously determined by physiological limitations to 

small microplastics and nanoplastics, although some species displayed selective feeding on microplastics (Rillig 
et al., 2017; Rodriguez-seijo et al., 2017). The form of the microplastics may also influence their ingestion, their 

gut retention and subsequently the effects reported. Through the analysis of microfibers found in casts of 
earthworms it was suggested that they may accumulate on their gut where they are retained (Prendergast-

miller et al., 2019). As a consequence of the exposures, different effects on soil invertebrates (including 

nematodes, earthworms, springtails and snails) were reported by different authors (Boots et al., 2019; Ju et al., 
2019; Lahive et al., 2019; Prendergast-miller et al., 2019; Rodríguez-seijo, 2018; Rodriguez-seijo et al., 2017; 

Selonen et al., 2020; Song et al., 2019). Further, some studies suggested that the effects may be more 
pronounced in geophagus species (those that live inside the soil and are more dependent of it), because they 

have a highest consumption and turnover of large quantities of soil, as they fed on soil organic matter rather 

than on organic matter enriched litter (Boots et al., 2019). 
 

3.4. Terrestrial plants  

 
The studies on the impacts of plastic residues in plants are still scarce (Du et al., 2020). However, it was already 

demonstrated that the effects of plastic residues are mainly governed by physical processes, both through direct 
interaction of residues with plant roots, or indirectly by changing soil properties. Changes in soil structure with 

impacts on water availability, bulk density and in soil aeration may affect plants performance and root 

development. However, these effects are not necessarily negative (De Souza Machado et al., 2019; Rillig et al., 
2019). The impacts of plastic residues in water cycling in soil may also affect the availability of nutrients through 

different processes, including changes in soil microbial activity. The effects on the roots’ colonization by 
symbionts seem to be dependent on the chemical nature of plastic and both positive and negative effects were 

already recorded (De Souza Machado et al., 2019; Lehmann et al., 2020). Zang et al., (2020) recorded 13 to 

53% reductions in wheat root and shoot biomass exposed to percentages of 1 to 5% of microplastics in soil 
(being more responsive to PVC), but no changes in the root-to-shoot ratio were recorded. The authors attributed 

these effects to changes in soil microbial activity and altered carbon flow between plant-soil system.  

Plastic residues (nano- and smaller microplastics) can also interact directly with plants blocking pores of seed 

coats and later persist on root hairs of seedlings. However, only transient effects on germination and on the 
growth of cress roots resulted from these interactions (Bosker et al., 2019). Other studies reporting disturbing 

physical interactions between plastic residues and plant roots were not conducted under real conditions, thus 

becoming difficult to infer similar effects in the environment (Jiang et al., 2019).  

It has been assumed that plastic residues are not able to enter plant cells, however very recently it was 

demonstrated that nano- and small microplastics may enter wheat and lettuce plant roots through cracks, 
between primary and secondary roots, being then transported to the shoots (Li, 2020). Other authors also 

confirmed the uptake of nanoplastics by plants (e.g. cucumber), with subsequent negative effects on seedlings 

development and plant growth or in other parameters such as the chlorophyll and sugar concentration in leaves 
(Li, 2020; Sun et al., 2020). However, nanoplastics are expected to strongly adsorb to the surfaces of soil 

components, being less available for being taken up by plants (Rillig et al., 2019).  
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The effects of plastic residues in plants may also vary depending on their chemical composition. The study of 
Pignattelli et al. (2020) showed that microplastic residues affected differently the physiological responses of 

garden cress, PVC being the most toxic. Biodegradable mulches also showed the ability to release compounds 

with inhibitory effects in the development shoots and roots of tomato and lettuce (Serrano-Ruiz et al., 2021). 

The uptake of nano- and microplastics by plants and soil invertebrates points for a new concern related with 

the possible transference of plastic residues through trophic chains. 

4. Plastics as carriers of contamination 

4.1. Release of additives 

 
Plastic products contain a wide variety of chemicals in addition to the polymers that are their main constituents. 

These include plasticisers, antioxidants and stabilisers (used to improve their physical characteristics and 
longevity), fillers (used to reduce the cost of raw material) and pigments (used to make the products more 

attractive or better suited to their intended purpose) (Hahladakis et al., 2018). As the plastics are degraded by 
either physical or biological action, these compounds can be released into the environment where they can 

potentially be more damaging than the remains of the polymers themselves. For example, the concentrations 

of a range of phthalate plasticisers were determined in soils, and in the plant growing in them, following the 
use of film mulches (Wang et al., 2015). Researchers are also gathering evidence of the harm to agroecosystems 

that such contamination can cause. Kim et al., (2020b) showed that additives caused toxic effects on nematodes. 
Bandopadhyay et al., (2018) drew attention to the fact that standard tests for plant toxicity have not been 

adapted to identify the effects of compounds released from degrading plastics as they are generally short term. 
 

4.2. Co-transport of agrochemicals and other organic contaminants 
 
Plastics and microplastic particles, once in soils, become exposed to a wide range of organic anthropogenic 

compounds such as persistent organic pollutants (POPs, such as pesticides or polycyclic aromatic hydrocarbons), 
antibiotics or antibodies (Figure 4). These can become adsorbed onto their surfaces, a process that can facilitate 

their dispersal and delay their degradation. Most studies have been done in the marine environment but some 

recent studies done in soils do give cause for concern (Wang et al., 2019). For example, Wang et al. (2020) 
studied the adsorption of five pesticides onto agricultural polyethylene films whilst; Fang et al. (2019) looked at 

the adsorption of fungicides onto polystyrene fragments, finding that smaller particle size contributed to 
increased adsorption capacity. Sunta et al. (2020) demonstrated that microplastics in soil can indeed act as 

carriers of pollutants in soil with their presence resulting in the retention of higher concentrations of a range of 

pesticides. 
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Figure 4. Infographic summarizing the interactions between microplastics, other contaminants and organisms 

by Whang et al 2019.  

 

5. Legislation on plastic waste in agriculture: What do we need more 

 

Despite disposal occupying a place at the bottom of the waste management hierarchy proposed by Directive 
2008/98/EC (EC, 2008), about 70% of plastic wastes in Europe are landfilled or incinerated8. Agriculture only 

accounts for 5% of European plastic waste, however the use of plastics in agriculture is putting a great pressure 

on farmers, as more evidence of the environmental impacts of plastic residues on soils and water resources is 
being compiled. This small contribution of agriculture resulted in legislation and strategies more specifically 

designed for packaging. An example is the Directive EU DIRECTIVE EU 2019/904 on the reduction of the impact 
of single-use plastic products and of products made from oxo-degradable plastic that does not address for 

example single-use mulch films. The lack of alternative solutions, the costs of cleaning the films after use, and 

the lack of appropriate collecting systems are some of the limitations that are preventing the application of more 
strict restrictions in the agriculture sector, at least for now. Regarding the oxo-plastics, in 2018, the European 

Chemicals Agency (ECHA) started the preparation of a restriction proposal, under the scope of REACH regulation, 

for these plastic materials (ECHA, 2019).  

The Roadmap to a Resource Efficient Europe, published in 2011, claimed for the need of converting wastes in 
resources to fuel for a total recycling economy (EC, 2011). Recycling of wastes was also envisaged as an 

opportunity to create new jobs, decrease dependence on imports of raw materials and reduction of impacts in 

the environment. China’s restrictions to imports of certain types of plastic wastes opened the door for European 
innovation on plastic wastes recycling, although it also brought additional difficulties for farmers, as collectors 

lost interest in these wastes.  

 
8 https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-brochure.pdf  

https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-brochure.pdf
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The European Strategy for Plastics in a Circular Economy launched in 2015 suggested the Extended Producer 
Responsibility (EPR) policy approach9 as a good tool to manage plastic wastes (mulch films and greenhouse 

plastics) in agriculture (EC, 2018a). Through EPR plastic producers become responsible for the treatment or 
disposal of used plastics, this being seen as an incentive for a targeted product design aimed in enhancing the 

re-use, the degradability or the recycling of plastics for regeneration of raw materials to be reintroduced in the 

production systems.  

EPR is being discussed and recommended at the European level; however, it depends on efficient dedicated 

sorting and collecting systems, incentives to support these operations without compromising the economic 
viability of farms, and funding to support innovation in chemical recycling processes. A payback mechanism 

could also be a good alternative to incentivize collection, sorting and returning of plastic wastes to producers 

(Pazienza and De Lucia, 2020). 

Labelling of agriculture plastic wastes is another difficulty that needs to be overcome for sustainable 

management. There is no legal basis for establishing labelling schemes for these wastes under the current 
version of the revised Waste Framework Directive 2008/98/EC, followed by simple and practical guidelines for 

the use and installation of new plastic materials and its removal, sorting and storing after use (Briassoulis et al., 

2010).  

Applying organic residues, such as Waste Water Treatment Plants (WWTP) sludge or compost, unintentionally 

exposes agricultural soils to secondary micro- and nanoplastics, which contributed to restrict the application of 
WWTP sludge on agricultural soils by some EU Member States (EC, 2014), and may also restrict the application 

of composts (EA, 2019). An evaluation of the Sludge Directive 86/278/EEC (EEC, 1986), demonstrated that 
rather the importance of it to manage this type of waste it is clearly outdated as does not take into account the 

impact of nano- and microplastics in sludge to be used for fertilization purposes (EC, 2014). Reusing urban 

carbon sources, however, serves the EU goal of becoming a bio-based economy by recycling carbon and nutrient 

sources back into the food chain (EC, 2020).  

 

6. Conclusions and future research and innovation needs 

 

Despite some evidence of the negative effects of plastics on soil quality and health, data were mainly gathered 

from laboratory studies and several were performed under soilless exposure, giving rise to relevant data to 
understand mechanistic aspects but with little ecological relevance. No studies addressed the impact on 

important soil functions, such as for example the organic matter decomposition, contaminant residuals 
degradation. Efforts also need to be made to characterize the abundance and composition of plastic residues in 

agricultural soils to allow testing at realistic concentrations. Furthermore, the great majority of studies have 
focused on direct effects on individual crop species, rather than on more complex species interactions in the 

overall agroecosystems and subsequently on highly relevant indirect effects that may compromise natural 

communities. Particular attention should be payed to nanoplastics as they have more potential for 
bioaccumulation in plants and for food web transferences. If confirmed, this could be a major reason to ban 

conventional plastics from agriculture, and a great driver for adopting agriculture practices able to reduce 
plastics use. 

The development of biodegradable plastics is being claimed to reduce the plastic footprint; however, it is 

important to understand if previous changes to soils’ microbial community did not compromise the degradability 
of certified materials. Clear labelling schemes need to be developed for agriculture plastic wastes, and 

biodegradability needs to be tested under diverse and environmental relevant conditions. The management of 
agriculture plastic wastes requires a specific legislation framework; however, a higher innovation capacity is 

needed before in eco-design, in recycling processes and in the development of collecting and sorting systems 

to reduce the plastic footprint in agriculture. 

 

 
9 https://www.oecd.org/env/tools-evaluation/extendedproducerresponsibility.htm 

https://www.oecd.org/env/tools-evaluation/extendedproducerresponsibility.htm


MINIPAPER A: THE ACTUAL USES OF PLASTICS IN AGRICULTURE ACROSS EU: AN OVERVIEW AND THE 
ENVIRONMENTAL PROBLEMS 

12 

7. References 

 
 Accinelli, C., Abbas, H.K., Shier, W.T., Vicari, A., Little, N.S., Aloise, M.R., Giacomini, S., 2019. Degradation of microplastic seed film-coating 

fragments in soil. Chemosphere 226, 645–650. doi:10.1016/j.chemosphere.2019.03.161 
Al-Mahdouri, A., Gonome, H., Okajima, J., Maruyama, S., 2014. Theoretical and experimental study of solar thermal performance of different 

greenhouse cladding materials. Sol. Energy 107, 314–327. doi:10.1016/j.solener.2014.05.006 
Awet, T.T., Kohl, Y., Meier, F., Straskraba, S., Grün, A.L., Ruf, T., Jost, C., Drexel, R., Tunc, E., Emmerling, C., 2018. Effects of polystyrene 

nanoparticles on the microbiota and functional diversity of enzymes in soil. Environ. Sci. Eur. doi:10.1186/s12302-018-0140-6 
Bandopadhyay, S., Martin-Closas, L., Pelacho, A.M., DeBruyn, J.M., 2018. Biodegradable plastic mulch films: Impacts on soil microbial 

communities and ecosystem functions. Front. Microbiol. 9, 1–7. doi:10.3389/fmicb.2018.00819 
Bandopadhyay, S., Sintim, H.Y., DeBruyn, J.M., 2020. Effects of biodegradable plastic film mulching on soil microbial communities in two 

agroecosystems. PeerJ 2020, 1–27. doi:10.7717/peerj.9015 
Blettler, M.C.M., Ulla, M.A., Rabuffetti, A.P., Garello, N., 2017. Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic 

debris in a floodplain lake. Environ. Monit. Assess. 189. doi:10.1007/s10661-017-6305-8 
Boots, B., Russell, C.W., Green, D.S., 2019. Effects of Microplastics in Soil Ecosystems: Above and below Ground. Environ. Sci. Technol. 53, 

11496–11506. doi:10.1021/acs.est.9b03304 
Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P., Vijver, M.G., 2019. Microplastics accumulate on pores in seed capsule and delay 

germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781. 
doi:10.1016/j.chemosphere.2019.03.163 

Briassoulis, D., Hiskakis, M., Babou, E., Antiohos, S.K., Papadi, C., 2012. Experimental investigation of the quality characteristics of 
agricultural plastic wastes regarding their recycling and energy recovery potential. Waste Manag. 32, 1075–1090. 
doi:10.1016/j.wasman.2012.01.018 

Briassoulis, D., Hiskakis, M., Scarascia, G., Picuno, P., Delgado, C., Dejean, C., 2010. Labeling scheme for agricultural plastic wastes in 
Europe. Qual. Assur. Saf. Crop. Foods 2, 93–104. doi:10.1111/j.1757-837X.2010.00061.x 

Chen, Y., Leng, Y., Liu, X., Wang, J., 2020. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 
257, 113449. doi:10.1016/j.envpol.2019.113449 

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 2019. Evidence of microplastic accumulation in agricultural 
soils from sewage sludge disposal. Sci. Total Environ. 671, 411–420. doi:10.1016/j.scitotenv.2019.03.368 

De Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R., Görlich, A.S., Rillig, M.C., 2019. 
Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 53, 6044–6052. 
doi:10.1021/acs.est.9b01339 

De Souza MacHado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., Rillig, M.C., 2018. Impacts of Microplastics on the Soil 
Biophysical Environment. Environ. Sci. Technol. 52, 9656–9665. doi:10.1021/acs.est.8b02212 

Deconinck, S., De Wilde, B., 2013. Benefits and challenges of Bio- and Oxo-Degradable plastics. Final Rep. Stydy DSL-1 118. 
Deng, L., Yu, Y., Zhang, H., Wang, Q., Yu, R., 2019. The Effects of Biodegradable Mulch Film on the Growth, Yield, and Water Use Efficiency 

of Cotton and Maize in an Arid Region. Sustain. 11, 1–15. doi:10.3390/su11247039 
Du, J., Zhou, Q., Li, H., Xu, S., Wang, C., Fu, L., Tang, J., 2020. Environmental distribution, transport and ecotoxicity of microplastics: A 

review. J. Appl. Toxicol. 1–13. doi:10.1002/jat.4034 
EA, 2019. Standard rules consultation no 20 : revision of standard rules sets for biowaste treatment. Bristol. 
EC, 2020. European Commission, Communication from the Commission to teh European Parliament, the Council, the European Economic 

and Social Committee and the Committee of the Regions. A new Circular Economy Action Plan. For a cleaner and more competitive 
Europe. COM(2020) 98 final. Brussels. 

EC, 2018a. Communication from the Community to the European Parliament, the Council, the European Economic and Social Committee, 
the Committee of the Regions. A European Strategy for Plastics in a Circular Economy. Brussels. 

EC, 2018b. A sustainable Bioeconomy for Europe: strengthening the connection between economy, society and the environment. Brussels. 
doi:10.2777/478385 

EC, 2014. COMMISSION STAFF WORKING DOCUMENT Ex-post evaluation of Five Waste Stream Directives. SWD(2014) 209 final. Brussels. 
EC, 2011. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND 

SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. Brussels. 
EC, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 Novemeber 2008 on waste and repealing certain 

Directives. Off. J. Eur. Union L312/3-L312/30. 
EC, 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Coucil. ANNEX XIII: CRITERIA FOR THE IDENTIFICATION 

OF PERSISTENT, BIOACCUMULATIVE AND TOXIC SUBSTANCES, AND VERY PERSISTENT AND VERY BIOACCUMULATIVE 
SUBSTANCES. Off. J. Eur. Union L 396, 1–530. 

ECHA, 2019. ANNEX to the ANNEX XV RESTRICTION REPORT – intentionally added microplastics. ECHA Propos. A Restrict. 1.2. Helsinki, 
Filand. 

Espí, E., Salmerón, A., Fontecha, A., García, Y., Real, A.I., 2006. Plastic films for agricultural applications. J. Plast. Film Sheeting 22, 85–
102. doi:10.1177/8756087906064220 

EU, 2019. Directive (Eu) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain 
plastic products on the environment. Off. J. Eur. Union L 155/1-L155/19. 

EU, 2017. Sustainable Use of Pesticides. Overview Report. DG Health an Food Safety., European Commision. Luxembourg. 
doi:10.2875/604951 

Fang, S., Yu, W., Li, C., Liu, Y., Qiu, J., Kong, F., 2019. Science of the Total Environment Adsorption behavior of three triazole fungicides 
on polystyrene microplastics. Sci. Total Environ. 691, 1119–1126. doi:10.1016/j.scitotenv.2019.07.176 

FAO, 2013. Good Agricultural Practices for greenhouse vegetable crops, Plant Production and Protection Paper 217. Rome. 
doi:10.1201/b13737-8 

FAO, WHO, 2008. International Code of Conduct on the Distribution and Use of Pesticides: Guidelines on Management Options for Empty 



MINIPAPER A: THE ACTUAL USES OF PLASTICS IN AGRICULTURE ACROSS EU: AN OVERVIEW AND THE 
ENVIRONMENTAL PROBLEMS 

13 

Pesticide Containers. Rome, Italy. 
Fei, Y., Huang, S., Zhang, H., Tong, Y., Wen, D., Xia, X., Wang, H., Luo, Y., Barceló, D., 2020. Science of the Total Environment Response 

of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 
707, 135634. doi:10.1016/j.scitotenv.2019.135634 

Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B., Li, Z., 2019. Effects of plastic mulching and plastic residue on agricultural production: A meta-
analysis. Sci. Total Environ. 651, 484–492. doi:10.1016/j.scitotenv.2018.09.105 

Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P.Y., Gauffre, F., Phi, T.L., El Hadri, H., Grassl, B., Reynaud, S., 2018. Current opinion: 
What is a nanoplastic? Environ. Pollut. 235, 1030–1034. doi:10.1016/j.envpol.2018.01.024 

Gil-Ortiz, R., Naranjo, M.Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., Vicente, O., 2020. New eco-friendly polymeric-
coated urea fertilizers enhanced crop yield in wheat. Agronomy 10. doi:10.3390/agronomy10030438 

Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H., Wong, M.H., 2020. Source, migration and toxicology of 
microplastics in soil. Environ. Int. 137, 105263. doi:10.1016/j.envint.2019.105263 

Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P., 2018. An overview of chemical additives present in plastics : Migration , 
release , fate and environmental impact during their use , disposal and recycling. J. Hazard. Mater. 344, 179–199. 
doi:10.1016/j.jhazmat.2017.10.014 

Hayes, D.G., Flury, M., 2018. Summary and Assessment of EN 17033:2018 , a New Standard for Biodegradable Plastic Mulch Films. Rep. 
No. EXT-2018-01 1–7. 

Helmberger, M.S., Tiemann, L.K., Grieshop, M.J., 2020. Towards an ecology of soil microplastics 550–560. doi:10.1111/1365-2435.13495 
Höfer, H., Astrin, J., Holstein, J., Spelda, J., Meyer, F., Zarte, N., 2015. Propylene glycol – a useful capture preservative for spiders for DNA 

barcoding. Arachnol. Mitteilungen 50, 30–36. doi:10.5431/aramit5005 
Huang, Y., Liu, Q., Jia, W., Yan, C., Wang, J., 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. 

Environ. Pollut. 260, 114096. doi:10.1016/j.envpol.2020.114096 
Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., Klobučar, G., 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia 

faba. Environ. Pollut. 250, 831–838. doi:10.1016/j.envpol.2019.04.055 
Jiang, X.J., Liu, W., Wang, E., Zhou, T., Xin, P., 2017. Residual plastic mulch fragments effects on soil physical properties and water flow 

behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 166, 100–107. doi:10.1016/j.still.2016.10.011 
Jones, K.A., 2014. The Recycling of Empty Pesticide Containers: An Industry Example of Responsible Waste Management. Outlooks Pest 

Manag. 25, 183–186. doi:DOI: https://doi.org/10.1564/v25_apr_08 
Ju, H., Zhu, D., Qiao, M., 2019. Effects of polyethylene microplastics on the gut microbial community , reproduction and avoidance behaviors 

of the soil springtail , Folsomia. Environ. Pollut. 247, 890–897. doi:10.1016/j.envpol.2019.01.097 
Kader, M.A., Singha, A., Begum, M.A., Jewel, A., Khan, F.H., Khan, N.I., 2019. Mulching as water-saving technique in dryland agriculture: 

review article. Bull. Natl. Res. Cent. 43. doi:10.1186/s42269-019-0186-7 
Kim, S.W., Kim, D., Jeong, S., An, Y., 2020a. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans 

as related to soil physicochemical. Environ. Pollut. 258, 113740. doi:10.1016/j.envpol.2019.113740 
Kim, S.W., Waldman, W.R., Kim, T., Rillig, M.C., 2020b. E ff ects of Di ff erent Microplastics on Nematodes in the Soil Environment: Tracking 

the Extractable Additives Using an Ecotoxicological Approach. doi:10.1021/acs.est.0c04641 
Lahive, E., Walton, A., Horton, A.A., Spurgeon, D.J., Svendsen, C., 2019. Microplastic particles reduce reproduction in the terrestrial worm 

Enchytraeus crypticus in a soil exposure *. Environ. Pollut. 255, 113174. doi:10.1016/j.envpol.2019.113174 
Lehmann, A., Leifheit, E.F., Feng, L., Bergmann, J., Wulf, A., Rillig, M.C., 2020. Microplastic fiber and drought effects on plants and soil are 

only slightly modified by arbuscular mycorrhizal fungi. Soil Ecol. Lett. doi:10.1007/s42832-020-0060-4 
Li, Z., 2020. Physiological responses of lettuce ( Lactuca sativa L .) to microplastic pollution 30306–30314. 
Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., Nava-Saucedo, J.E., 2008. Polymer biodegradation: Mechanisms and 

estimation techniques - A review. Chemosphere 73, 429–442. doi:10.1016/j.chemosphere.2008.06.064 
Maaß, S., Daphi, D., Lehmann, A., Rillig, M.C., 2017. Transport of microplastics by two collembolan species. Environ. Pollut. 225, 456–459. 

doi:10.1016/j.envpol.2017.03.009 
Maraveas, C., 2019. Environmental sustainability of greenhouse covering materials. Sustain. 11. doi:10.3390/su11216129 
Nizzetto, L., Bussi, G., Futter, M.N., Butterfield, D., Whitehead, P.G., 2016a. A theoretical assessment of microplastic transport in river 

catchments and their retention by soils and river sediments. Environ. Sci. Process. Impacts 18, 1050–1059. doi:10.1039/c6em00206d 
Nizzetto, L., Futter, M., Langaas, S., 2016b. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 50, 10777–

10779. doi:10.1021/acs.est.6b04140 
Pazienza, P., De Lucia, C., 2020. The EU policy for a plastic economy: Reflections on a sectoral implementation strategy. Bus. Strateg. 

Environ. 29, 779–788. doi:10.1002/bse.2445 
Pflugmacher, S., Huttunen, J.H., Wol, M. Von, Penttinen, O., Kim, Y.J., Kim, S., Mitrovic, S.M., 2020. Enchytraeus crypticus Avoid Soil Spiked 

with Microplastic 1–10. 
Pignattelli, S., Broccoli, A., Renzi, M., 2020. Science of the Total Environment Physiological responses of garden cress ( L . sativum ) to 

different types of microplastics. Sci. Total Environ. 727, 138609. doi:10.1016/j.scitotenv.2020.138609 
PlasticsEurope, 2019. Plastics – the Facts 2019. 
Prendergast-miller, M.T., Katsiamides, A., Abbass, M., Sturzenbaum, S.R., Thorpe, K.L., Hodson, M.E., 2019. Polyester-derived micro fi bre 

impacts on the soil-dwelling earthworm. Environ. Pollut. 251, 453–459. doi:10.1016/j.envpol.2019.05.037 
Qian, H., Zhang, M., Liu, G., Lu, T., 2018. Effects of Soil Residual Plastic Film on Soil Microbial Community Structure and Fertility. 
Rillig, M.C., Ingraffia, R., Machado, A.A.D.S., 2017. Microplastic Incorporation into Soil in Agroecosystems 8, 8–11. 

doi:10.3389/fpls.2017.01805 
Rillig, M.C., Lehmann, A., de Souza Machado, A.A., Yang, G., 2019. Microplastic effects on plants. New Phytol. 223, 1066–1070. 

doi:10.1111/nph.15794 
Rodríguez-seijo, A., 2018. Oxidative stress , energy metabolism and molecular responses of earthworms ( Eisenia fetida ) exposed to low-

density polyethylene microplastics. 
Rodríguez-seijo, A., Cachada, A., Gavina, A., Duarte, A.C., Vega, F.A., Andrade, M.L., Pereira, R., 2017. Science of the Total Environment 

Lead and PAHs contamination of an old shooting range : A case study with a holistic approach. Sci. Total Environ. 575, 367–377. 
doi:10.1016/j.scitotenv.2016.10.018 



MINIPAPER A: THE ACTUAL USES OF PLASTICS IN AGRICULTURE ACROSS EU: AN OVERVIEW AND THE 
ENVIRONMENTAL PROBLEMS 

14 

Rodriguez-seijo, A., Lourenço, J., Rocha-santos, T.A.P., Costa, J., Duarte, A.C., Vala, H., Pereira, R., 2017. Histopathological and molecular 
effects of microplastics in Eisenia andrei Bouch e. Environ. Pollut. 220, 495–503. doi:10.1016/j.envpol.2016.09.092 

Rodríguez-Seijo, A., Pereira, R., 2019. Microplastics in Agricultural Soils. Are they a real Environmental Hazard?, in: Sanchez-Hernandez, 
J.C. (Ed.), Bioremediation of Agricultural Soils. CRC Press, Toledo, Sapin. doi:10.1201/9781315205137 

Sangpradit, K., 2014. Study of the solar transmissivity of plastic cladding materials and influence of dust and dirt on greenhouse cultivations. 
Energy Procedia 56, 566–573. doi:10.1016/j.egypro.2014.07.194 

Scudo, A., 2017. Intentionally added microplastics. Amec Foster Wheel. 
Selonen, S., Dolar, A., Kokalj, A.J., Skalar, T., Dolcet, L.P., Hurley, R., van Gestel, C.A.M., 2020. Exploring the impacts of plastics in soil – 

The effects of polyester textile fibers on soil invertebrates. Sci. Total Environ. 700, 134451. doi:10.1016/j.scitotenv.2019.134451 
Serrano-Ruiz, H., Martin-Closas, L., Pelacho, A.M., 2021. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. 

Total Environ. 750, 141228. doi:10.1016/j.scitotenv.2020.141228 
Song, Y., Cao, C., Qiu, R., Hu, J., Liu, M., Lu, S., Shi, H., Raley-susman, K.M., He, D., 2019. Uptake and adverse effects of polyethylene 

terephthalate microplastics fi bers on terrestrial snails ( Achatina fulica ) after soil. Environ. Pollut. 250, 447–455. 
doi:10.1016/j.envpol.2019.04.066 

Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., Schaumann, G.E., 2016. Plastic mulching 
in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 550, 690–705. 
doi:10.1016/j.scitotenv.2016.01.153 

Su, L. qiang, Li, J. guo, Xue, H., Wang, X. feng, 2017. Super absorbent polymer seed coatings promote seed germination and seedling 
growth of Caragana korshinskii in drought. J. Zhejiang Univ. Sci. B 18, 696–706. doi:10.1631/jzus.B1600350 

Sun, X., Yuan, X., Jia, Y., Feng, L., Zhu, F., Dong, S., Liu, J., Kong, X., Tian, H., Duan, J., Ding, Z., Wang, S., Xing, B., 2020. Differentially 
charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760. 
doi:10.1038/s41565-020-0707-4 

Sunta, U., Prosend, F., Trebse, P., Griessler, B., Kralj, M.B., 2020. Adsorption of acetamiprid , chlorantraniliprole and fl ubendiamide on 
different type of microplastics present in alluvial soil. Chemosphere 261, 127762. doi:10.1016/j.chemosphere.2020.127762 

Thomas, N.L., Clarke, J., McLauchlin, A.R., Patrick, S.G., 2012. Oxo-degradable plastics: Degradation, environmental impact and recycling. 
Proc. Inst. Civ. Eng. Waste Resour. Manag. 165, 133–140. doi:10.1680/warm.11.00014 

Valavanidis, A., Iliopoulos, N., Gotsis, G., Fiotakis, K., 2008. Persistent free radicals, heavy metals and PAHs generated in particulate soot 
emissions and residue ash from controlled combustion of common types of plastic. J. Hazard. Mater. 156, 277–284. 
doi:10.1016/j.jhazmat.2007.12.019 

Vezzani, F.M., Mielniczuk, J., 2009. Uma vis??o sobre qualidade do solo. Rev. Bras. Cienc. do Solo 33, 743–755. doi:10.1590/S0100-
06832009000400001 

Wan, Y., Wu, C., Xue, Q., Hui, X., 2019. Science of the Total Environment Effects of plastic contamination on water evaporation and 
desiccation cracking in soil. Sci. Total Environ. 654, 576–582. doi:10.1016/j.scitotenv.2018.11.123 

Wang, C., Sun, Z., Zheng, D., Liu, X., 2011. Function of mucilaginous secretions in the antibacterial immunity system of Eisenia fetida. 
Pedobiologia (Jena). 54, S57–S62. doi:10.1016/j.pedobi.2011.07.012 

Wang, F., Zhang, M., Sha, W., Wang, Y., Hao, H., Dou, Y., Li, Y., 2020. Sorption behavior and mechanisms of organic contaminants to nano 
and microplastics. Molecules 25. doi:10.3390/molecules25081827 

Wang, J., Chen, G., Christie, P., Zhang, M., Luo, Y., Teng, Y., 2015. Science of the Total Environment Occurrence and risk assessment of 
phthalate esters ( PAEs ) in vegetables and soils of suburban plastic fi lm greenhouses. Sci. Total Environ. 523, 129–137. 
doi:10.1016/j.scitotenv.2015.02.101 

Wang, J., Coffin, S., Sun, C., Schlenk, D., Gan, J., 2019. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in 
earthworm Eisenia fetida in soil. Environ. Pollut. 249, 776–784. doi:10.1016/j.envpol.2019.03.102 

Wang, J., Lv, S., Zhang, M., Chen, G., Zhu, T., Zhang, S., Teng, Y., Christie, P., Luo, Y., 2016. Chemosphere Effects of plastic fi lm residues 
on occurrence of phthalates and microbial activity in soils. Chemosphere 151, 171–177. doi:10.1016/j.chemosphere.2016.02.076 

Wang, T., Yu, C., Chu, Q., Wang, F., Lan, T., Wang, J., 2020. Adsorption behavior and mechanism of fi ve pesticides on microplastics from 
agricultural polyethylene films. Chemosphere 244. doi:10.1016/j.chemosphere.2019.125491 

Wang, W., Gao, H., Jin, S., Li, R., Na, G., 2019. The ecotoxicological effects of microplastics on aquatic food web, from primary producer 
to human: A review. Ecotoxicol. Environ. Saf. 173, 110–117. doi:10.1016/j.ecoenv.2019.01.113 

Weithmann, N., Möller, J.N., Löder, M.G.J., Piehl, S., Laforsch, C., Freitag, R., 2018. Organic fertilizer as a vehicle for the entry of microplastic 
into the environment. Sci. Adv. 4, 1–8. doi:10.1126/sciadv.aap8060 

Yang, J., Cang, L., Sun, Q., Dong, G., Ata-Ul-Karim, S.T., Zhou, D., 2019. Effects of soil environmental factors and UV aging on Cu2+ 
adsorption on microplastics. Environ. Sci. Pollut. Res. 26, 23027–23036. doi:10.1007/s11356-019-05643-8 

Yu, H., Fan, P., Hou, J., Dang, Q., Cui, D., Xi, B., Tan, W., 2020. Inhibitory effect of microplastics on soil extracellular enzymatic activities 
by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level. Environ. Pollut. 267, 115544. 
doi:10.1016/j.envpol.2020.115544 

Zang, H., Zhou, J., Marshall, M.R., Chadwick, D.R., Wen, Y., Jones, D.L., 2020. Microplastics in the agroecosystem: Are they an emerging 
threat to the plant-soil system? Soil Biol. Biochem. 148, 107926. doi:10.1016/j.soilbio.2020.107926 

Zhang, G.S., Zhang, F.X., Li, X.T., 2019. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot 
experiment. Sci. Total Environ. 670, 1–7. doi:10.1016/j.scitotenv.2019.03.149 

 

 
 

 

 
 

 
  

You can contact Focus Group members through the online EIP-AGRI Network.  
Only registered users can access this area. If you already have an account, you can log in here 

If you want to become part of the EIP-AGRI Network, please register to the website through this link 

https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/ecas


 

15 

 
 

The European Innovation Partnership 'Agricultural Productivity and 
Sustainability' (EIP-AGRI) is one of five EIPs launched by the European Commission 

in a bid to promote rapid modernisation by stepping up innovation efforts.  

The EIP-AGRI aims to catalyse the innovation process in the agricultural and 
forestry sectors by bringing research and practice closer together – in 
research and innovation projects as well as through the EIP-AGRI network. 

EIPs aim to streamline, simplify and better coordinate existing instruments and 
initiatives and complement them with actions where necessary. Two specific funding 

sources are particularly important for the EIP-AGRI:  

✓ the EU Research and Innovation framework, Horizon 2020,  

✓ the EU Rural Development Policy.  

An EIP AGRI Focus Group* is one of several different building blocks of the EIP-
AGRI network, which is funded under the EU Rural Development policy. Working on 
a narrowly defined issue, Focus Groups temporarily bring together around 20 
experts (such as farmers, advisers, researchers, up- and downstream businesses 

and NGOs) to map and develop solutions within their field. 

The concrete objectives of a Focus Group are:  

✓ to take stock of the state of art of practice and research in its field, listing 
problems and opportunities;  

✓ to identify needs from practice and propose directions for further 
research;  

✓ to propose priorities for innovative actions by suggesting potential 
projects for Operational Groups working under Rural Development or 
other project formats to test solutions and opportunities, including ways 
to disseminate the practical knowledge gathered.  

Results are normally published in a report within 12-18 months of the launch of a 
given Focus Group. 

Experts are selected based on an open call for interest. Each expert is appointed 
based on his or her personal knowledge and experience in the particular field and 
therefore does not represent an organisation or a Member State. 
 
*More details on EIP-AGRI Focus Group aims and process are given in its charter 
on:  
http://ec.europa.eu/agriculture/eip/focus-groups/charter_en.pdf 

 

 

https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/charter_en.pdf
https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/charter_en.pdf
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas
https://ec.europa.eu/eip/agriculture/en/user/register
https://ec.europa.eu/eip/agriculture/en/ecas

