

EIP-AGRI Focus Group Permanent Grassland

Differentiation of grass based products for higher market value: linking quality traits and management practices related to the ecosystem services

Working group: Giovanni Peratoner, Martin Elsässer, Sophie Hulin, Vibeke Lind, María Rosa Mosquera-Losada, Katrin Noorkõiv, Alain Peeters, Agnes van den Pol-van Dasselaar with the external cooperation of Mauro Coppa, Bruno Martin, Sophie Prache

Differentiation of grass based products for higher market value: linking quality traits and management practices related to the ecosystem services

Main question

How it is possible to provide a sound link between premium, grassland-based products and their quality in order to achieve/ensure a high market value for them?

Relevance of the topic in the context of the overall question of the Focus Group

In the last decades, consumers have increased their demand for food products with a perceived positive image concerning food safety, nutrition value, healthiness, production practices and the environment in which the production takes place. Grassland-based animal products, especially if pasture-based and of regional origin, are currently positively perceived by the consumers. They carry therefore a potential added value, which should be exploited in form of premium products. This can in turn contribute to sustain the income of farmers and/or counterbalance higher production costs due to management practices aiming to guarantee the sustainability of the production or being due to constraints (i.e. climatic or topographic) in less favoured areas.

In order to successfully establish premium products on the market, several elements should be given.

Product quality can be assessed from different point of views (a quality trait may belong to more than one category):

1. Nutritional composition: Depending on management and diet of the animals, the content of substances known to be relevant to human health is increased. Example: protein, fat (unsaturated, omega 3, ...), soluble carbohydrate, vitamin, minerals, antioxidants (polyphenols, carotenoids, vitamin A and E...).

2. Hygiene and food safety: Absence of chemical product residues, of pathogen germs, of dangerous prions, of all substances that have a negative effect on human health.

Technological characteristics: These traits relate to the aspect of hygiene and 3. chemical composition, which have direct implication on transformation process of animal products, ripening or on the shelf life of the product (Examples: casein content and composition in milk, *Listeria* and *Clostridium* in cheese, antioxidants content, fat composition)

European Commission

4. Sensory characteristics (Example: flavour, odour, taste, texture, juiciness, tenderness, colour, fat colour or proportion in meat, SEUROP classification of meat carcass.) which are a pivotal issue for the gastronomic valorisation of the products.

5. Ethical dimension: This kind of quality is only indirectly carried by the product. By buying the product, the consumer supports specific values: i.e. biodiversity, animal welfare, improvement of the agricultural landscape or of the image of cattle farming (i.e. by grazing animals), traditional management (maintenance of the cultural landscape). Products responding to principles of responsible consumption can be promoted by means of labels:

- 'green': biodiversity, environment (i.e. zero kilometre), animal welfare;

- 'social': fair remuneration of (South) producers;

- 'origin': support to regional economy, specifications including permanent grassland-based feeding.

Besides the knowledge of how quality can be obtained through suitable management practices, authentication and traceability of the products must be ensured, in order to guarantee the product's image. Authentication and traceability may also prevent false advertising resulting in unfair market advantages made by producers not complying with the quality standards or the production practices.

Product authentication is the process by which a food product is verified as complying with its label description¹ (i.e. verifying that the product really possesses certain characteristics ensuring its authenticity). Product traceability is defined as the ability to follow the movement of a food product from site of production, via processing to distribution to the consumer². This is particularly important if the quality of the product cannot be directly or easily assessed on the product itself (i.e. biodiversity of the grassland may not be reflected by i.e. nutritional composition or sensory traits). Analytical systems do not always perfectly discriminate the products ("grey zones"). Thus, decisions should be made in order to either include all products complying with the specification commitments or to exclude all products not complying with them. Both authentication and traceability require affordable monitoring tools in order to be implemented in practice.

For large-scale enterprises, the biggest challenge faced by farmers is to ensure uniform product quality over time (i.e. producing milk with uniform quality over the whole year using a grassland-based diet). However, especially in small-scale enterprises, the lack of a reproducible standard in seasonal productions could be considered a positive characteristic of uniqueness.

Further, the total offer of products with additional values has to be kept balanced with the market demand for these products at a regional scale; it should be possible to deliver as much products as the market demands in the same quality and the same area. For this reason, there is a need of further developing specific markets for these products. In the end, consumer's willingness-to-pay the products is necessary to ensure an adequate remuneration to the farmers.

European Commission

State of the art

An analysis of the state of the art concerning the assessment of the quality traits and the authentication methods of the products is pivotal to the identification of the constraints preventing a successful establishment of the products on the market. The following tables aim at summarising the current knowledge.

The assessment of the quality traits are given in Table 1: an overview of the recent literature reporting any difference in the quality traits according to different management practices together with the challenges to the farmers to ensure a constant product quality is presented. The authentication methods are given in Table 2: an overview of the recent literature reporting the use of quality traits or of other methods to distinguish, discriminate or authenticate milk, cheese or meat according to the management practice is presented. Some of the quality traits reported in Table 1 are still not tested for their authentication potential, thus they are missed in Table 2. Superscript numbers refers to literature providing the respective information.

Abbreviations used in Table 1 and Table 2

CLA Conjugated linoleic acid DHSME Dynamic head-space micro-extraction Fatty acids FA GC Gas chromatography HPLC High-performance liquid chromatography Infrared spectroscopy IR MS Mass-spectrometer PUFA Polyunsaturated fatty acids SPME Solid-phase micro-extraction UPLC Ultra- performance liquid chromatography VOC Volatile organic compounds

Table 1. Effect of some management practices on different quality traits, challenges to the farmers to ensure a constant product quality and methods to assess the quality trait. Only quality traits being significantly affected by the described management practices according to recent scientific literature have been taken into account.

Management practice	Quality trait	Quality aspects involved	Product the trait is relevant to	Effect on product	Main challenges for the farmers to keep a constant product quality	Available methods of analysis	Costs of analysis methods
Pasture-based diet (grazing, fresh forage) instead of diet based on	Oleic acids, PUFA, CLA, Omega-3 PUFA, odd and branched chain FA, vaccenic acid Omega-6/omega-3 PUFA ratio Oleic/palmitic fatty acid	Nutritional/ technological Nutritional Sensorv/	Milk, cheese, butter and all	Increase ^{4, 5, 6, 7, 8, 9} Decrease ^{4, 5, 7, 8}	Need to switch to a diet based on conserved forage or even on concentrates in	GC Prediction model of some FA on milk and cheese by IR	Expensive Cheap but reliable only for some FA at the
	ratio (spreadability index) Vitamin A and E	technological	dairy products	Increase ^{14, 15, 16, 17, 18, 19,}	winter, pasture shortage during summer, changes in the botanical composition (i.e. plant families) of pastures due to site		moment
	Carotenoids	Sensory/ nutritional/ technological	_	Increase of shelf life		HPLC/UPLC	Expensive
preserved forage and/or	Texture	Sensory	Butter and cheese	Increased softness and spreadability ^{22, 23, 12, 13} conditions, grazing management,	Sensory panel or dynamometers	Expensive	
concentrates	Colour	Sensory	Milk, cheese and butter	More yellow ^{14, 23, 12, 13,}	seasonal changes (phenology) during the growing season and fluctuations	IR or visible reflectance spectrum	Cheap Expensive
	Flavour/Odour/Taste	Sensory	Milk, cheese and butter	More grassy and flowery aroma, more intense notes ^{14, 23, 13}	between years, parasitism affecting growing rate and therefore age at	Sensory panel	Expensive
	Volatiles compounds	Sensory	Milk and cheese	Increase in odour active compounds ^{3, 24, 25, 26, 27, 28}	slaughter	VOCs extraction (steam distillation, SPME, DHSME, Purge and trap, etc.) coupled with GC-MS	Expensive

					eip-agri		
Management practice	Quality trait	Quality aspects involved	Product the trait is relevant to	Effect on product	Main challenges for the farmers to keep a constant product quality	Available methods of analysis	Costs of analysis methods
	Omega-3 PUFA, CLA	Nutritional/ technological		Increase 3, 29	Need to switch to a diet based on	GC	Expensive
Pasture-based diet (grazing, fresh forage) instead of diet based on preserved forage and/or concentrates Flavour/Odour, ste	Carotenoids	Sensory/ nutritional/ technological		Increase ^{14, 20, 30, 31, 32, 33} , increase of shelf life	conserved forage or even on concentrates in winter, pasture shortage during summer, changes in the botanical composition (i.e. plant families) of pastures due to site conditions, grazing management, seasonal changes (phenology) during the	HPLC/UPLC Reflectance spectrum of adipose tissue	Expensive Cheap
	Indoles, skatoles	Sensory	Meat	Increase ^{20, 34, 35, 36, 33}		VOCs coupled with GC- MS HPLC	Expensive Expensive
	Flavour/Odour/Ta ste	Sensory		More animal, more grassy, more intense ^{20,} ^{35, 36}	growing season and fluctuations between years, parasitism affecting growing rate and	Sensory panel	Expensive
	High standard of animal welfare*	Ethical	All		therefore age at slaughter		

*The achievement of a high standard of animal welfare requires an optimal pasture management and adequate animal nutrition. Animal welfare may be sometimes higher in the consumer perception than it really is.

eip-agri

Management practice	Quality trait	Quality aspects involved	Product the trait is	Effect on product	Main challenges for the farmers to keep a	Available methods of analysis	Costs of analysis
			relevant to		constant product quality	,	methods
	PUFA, CLA, Omega- 3 PUFA, odd and branched chain FA, vaccenic acid	Nutritional/ technological		Increase ^{4, 5, 7, 8, 37, 38, 39}		GC	Expensive
Increase of conserved grass proportion in the diet, reduction or renunciation to feeding maize	Omega-6 PUFA, Omega-6/omega-3 PUFA ratio	Nutritional	Milk,	Decrease ^{4, 5, 7, 8, 37, 39}		Prediction model of some FA on milk and cheese by	Cheap but reliable
	C18:1t10/C18:1t11	Nutritional/ animal welfare	cheese, butter and all fat- containing dairy products	Decrease ^{37, 40}	Changes in the botanical composition (i.e. plant families) of grassland due to site conditions, seasonal changes (phenology) during the growing	IR	only for some FA at
	Oleic/palmitic fatty acid ratio (spreadability index)	Sensory/ technological		Increase 37, 39			the moment
silage and concentrate,	Vitamin A and E	Nutritional/ technological		Increase ^{17, 18, 19, 21} , increase of shelf life		HPLC/UPLC	Expensive
including winter periods of pasture- based systems	Carotenoids	Sensory/ nutritional/ technological		Increase ^{17, 18, 19, 21} , increase of shelf life	season and fluctuations between years	HPLC/UPLC Reflectance spectrum of adipose tissue	Expensive Cheap
	Texture	Sensory	Butter and cheese	Less firm ^{14, 23}		Sensory panel or dynamometers	Expensive
	Volatiles compounds (including terpenes)	Sensory/none	Milk and cheese	Higher terpene content ^{3,} 27, 41		VOCs extraction coupled with GC-MS	Expensive

eip-agri

Management practice	Quality trait	Quality aspects involved	Product the trait is relevant to	Effect on product	Main challenges for the farmers to keep a constant product quality	Available methods of analysis	Costs of analysis methods
	Oleic acids, PUFA, CLA, Omega-3 PUFA, Odd and Branched chain FA, vaccenic acid	Nutritional/ technological		Increase ^{4, 5, 7, 8, 37, 38, 39}		GC	Expensive
	Omega-6/omega-3 PUFA ratio	Nutritional	Milk, cheese,	Decrease ^{4, 5, 7, 8, 37, 39}		FA on milk and cheese by IR ^{64, 65, 66}	reliable only for
	Oleic/palmitic fatty acid ratio (spreadability index)	Sensory/ technological	butter and all fat-containing dairy products	Increase ^{37, 39}			some FA at the moment
Feeding only hay,	Vitamin A and E	Nutritional/ technological		Decrease ^{15, 17, 42, 18, 43, 19, 21} , decrease of shelf life	Changes in the botanical		
renunciation to the use of silage in	Carotenoids	Sensory/ Nutritional/ technological		Decrease ^{15, 17, 42, 18, 43, 21} , decrease of shelf life	composition (i.e. plant families) of grassland due to site conditions, grazing management, seasonal changes (phenology) during	HPLC-UPLC	Expensive
based on	Texture	Sensory	Butter and cheese	More elastic ^{44, 14, 23, 45}		Sensory panel or dynamometers	Expensive
forage or in pasture-	Colour	Sensory	Milk, cheese and butter	Less yellow ^{44, 14, 23, 43}		Sensory panel IR or visible reflectance spectrum	Expensive Cheap
systems during winter	Flavour/Odour/Taste	Sensory	Milk, cheese and butter	Less intense, acid, bitter, pungent, persistent, yogurt, fermented cream ^{44, 14, 23, 45}	the growing season and fluctuations between years	Sensory panel	Expensive
penou	Volatiles compounds (including terpenes)	Sensory/ none	Milk and cheese	Increase 43		VOCs extraction (steam distillation, SPME, DHSME, Purge and trap, etc.) coupled with GC-MS	Expensive
	Listeria and Clostridium	Technological	Milk and cheese	Decrease of late swelling of ripened cheese (increase of safety) in comparison to diets including silage not correctly conserved or consumed		PCR and DNA microbial analyses	Expensive (in some cases not available)

eip-agri 🗖

Management	Quality trait	Quality	Product the	Effect on product	Main challenges for the	Available methods of analysis	Costs of
practice	-	aspects	trait is		farmers to keep a		analysis
		involved	relevant to		constant product quality		methods
Occurrence in a	Omega-3 PLIFA		Milk and	Increase ^{7, 8, 46}		GC	Expensive
of Plant Secondary Metabolites		Nutritional	cheese	moreade	Changes in share of	Prediction model of some FA on milk and cheese by IR	reliable only for some FA at the moment
(PSM)-rich plant species in the forage (chemical	Flavour/Odour/Taste	Sensory	Milk, cheese and butter	More intense and increase of stronger notes ^{23, 13}	PSM-rich plants over time (within and between seasons)	Sensory panel	Expensive
fingerprint of animal diet)	Volatiles compounds (including terpenes)	Sensory/ none	Milk and cheese	Increase ^{3, 24, 25, 26, 27, 28, 47, 20, 41, 43}		VOCs extraction (steam distillation, SPME, DHSME, Purge and trap, etc.) coupled with GC-MS	Expensive

Management practice	Quality trait	Quality aspects involved	Product the trait is relevant to	Effect on product	Main challenges for the farmers to keep a constant product quality	Available methods of analysis	Costs of analysis methods
	Texture, taste	Sensory	Meat, cheese	Specific sensory attributes of local breeds products ^{48, 49, 50}		Sensory panel	Expensive
	Milk fat content	Technological	Milk, cheese	Low milk fat content 49, 50	Maintain high	IR	Cheap
Use of local co	Fatty acid composition	Nutritional/ sensory	Milk and cheese	Specific fatty acids composition of local breeds ^{19, 21, 51}	performance or	GC	Expensive
breeds	Casein composition	Nutritional/tec hnological	Milk and cheese	Increased casein, different casein profile 39	costs with the lower performances of local breeds	IR for total caseins HPLC for casein profile description	Cheap Expensive
	Animal biodiversity	Ethical	All				

eip-agri

Management practice Quality trait Quality Product Effect on Main challenges for the Available methods product farmers to keep a constant aspects the trait of analysis Costs of analysis product quality involved is methods relevant to Costs depend on the Define minimum implementation and on Low management intensity of grassland, management intensity to Presence/absence logistic aspects, as All low stocking rate, use of suitable breeds Biodiversity Ethical conciliate production and expert persons and in of bioindicators flock type, see also PSM-rich grassland* conservation aims situ assessments are required

* please notice that PSM-rich may occur in high amount also in intensively managed or sown temporary grasslands

Management practice	Quality trait	Quality aspects involved	Product the trait is relevant to	Effect on product	Main challenges for the farmers to keep a constant product quality	Available methods of analysis	Costs of analysis methods
Local origin of products	Geographical origin (incl. zero kilometre-origin, mountain origin), preservation of local agriculture and thus of the cultural landscape	Ethical	All				

eip-agri

Table 2. Currently available authentication methods to distinguish, discriminate or authenticate milk, cheese or meat according to the management practice and constraints to their implementation in routine authentication.

Management practice	Quality trait	Product the trait is relevant to	Available authentication methods	Available methods of analysis	Costs of authenticati on methods	Tested in controlled conditions or validated on farm	Limits of the methods
	Fatty acid composition	Milk, cheese, butter and all fat-containing dairy products	Discrimination model on milk fatty acid profile ^{15, 53, 52, 10} , Prediction model of proportions of various feeds based on fatty acid profile ⁵⁴	GC	Expensive	On farm	Mixed diets Precision of the models
	Vitamin A and E	Milk	Discrimination model on vitamins content ^{15, 52}	HPLC/		On farm (small	Vitamin supplements in the diet
	Carotenoids	Milk	Discrimination model on carotenoids content ^{15, 52}	UPLC	Expensive	numbers)	Mixed diets. Light exposure
Pasture- based diet	Phenolic compounds	Milk	Discrimination model on phenolic compound content ⁵⁵				Mixed diets
(grazing, fresh forage) instead of	Colour	Milk, cheese, butter, meat	Discrimination model based on sensory attributes ^{52, 12, 13} Index based on reflectance spectrum	Sensory panel Visible or IR	Expensive	On farm (small area and	Mixed diets
diet based on		Milk choose	of milk, cheese and meat ^{15, 52, 17, 31, 32}	spectrum	Cheap	On form (small	Mixed diets.
forage and concentrates	Flavour/Odour/ Taste/ Texture	and butter	Discrimination model based on sensory attributes ^{23, 13}	Sensory Panel	Expensive	area and numbers)	Results depends on cheese type + ripening time
	Stable isotopes (δC, δN, δS, δO)	Milk, cheese, butter, meat	Discrimination model based on stable isotopes ratios ^{52, 56, 57}	MS coupled to a CNSO analyser	Expensive	On farm (small area and numbers)	Mixed diets, for meat: change in feeding regimes, differences between individuals
	Volatiles compounds (including terpenes)	Milk and cheese	Discrimination model based on VOC composition ^{28, 52, 33}	VOCs coupled with GC-MS	Expensive	Controlled conditions Terpenes on farm	Mixed diets, low analytical repeatability, for meat: change in feeding regimes, differences between individuals
	Infrared Spectroscopy	Milk and cheese	Discrimination models based on IR spectra ^{58, 61, 9, 30, 59}	IR	Cheap	On farm	Mixed diets, for meat: change in feeding regimes

= eip-agri 🗖

Management practice	Quality trait	Product the trait is relevant to	Available authentication methods	Available methods of analysis	Costs of authenticati on	Tested in controlled conditions or	Limits of the methods
					methods	validated on farm	
Pasture- based diet	Omega-3 PUFA	Meat	Discrimination model of muscle fatty acid profile ^{3, 29} , Functional genomics? ³	GC	Expensive		
(grazing, fresh forage) instead of	CLA	Meat	Discrimination model of muscle fatty acid profile ^{3, 29} , Functional genomics? ³	GC	Expensive		
diet based on preserved		Moat	Index based on reflectance spectrum	HPLC/UPLC	Expensive	Controlled conditions	Mixed diets
forage and concentrates	Carotenoids		of adipose tissue ^{14, 20, 60, 31, 32}	Spectrocolori metry	Cheap	On farm + on-line in the abattoir	Change in feeding regimes; differences between breeds and individuals

eip-agri 🗖

Management practice	Quality trait	Product the trait is relevant to	Available authentication methods	Available methods of analysis	Costs of authentication methods	Tested in controlled conditions or validated on farm	Limits of the methods
Increase of conserved grass proportion in the diet, reduction or renunciation to	Fatty acid composition	Milk, cheese, butter and all fat- containing dairy products	Discrimination model on milk fatty acid profile ^{15, 53, 52, 10} , Prediction model of proportions of various feeds based on fatty acid profile ⁵⁴	GC	Expensive	On farm	Mixed diets; precision of the models
	Vitamin A and E	Milk	Discrimination model on carotenoids contents and vitamins content ⁵²	HPLC/UPLC	Expensive	On farm (small area and numbers)	Vitamin supplements in the diet
feeding maize silage and	Carotenoids	Milk	Index based on reflectance spectrum of milk or cheese ⁵²	HPLC/UPLC	Cheap	On farm (small area and numbers)	Mixed diets. Light exposure
concentrate, including winter periods of	Colour	Milk, cheese and butter	Index based on reflectance spectrum of milk or cheese ⁵²	Visible or IR spectrum	Cheap	On farm (small area and numbers)	Mixed diets.
systems	Volatiles compounds (including terpenes)	Milk and cheese	Discrimination model based on Terpene composition ⁵²	VOCs coupled with GC-MS	Expensive	Terpenes on farm (small area and numbers)	Mixed diets, Low analytical repeatability
	Stable isotopes (δC, δN, δS, δΟ)	Milk, cheese and butter	Discrimination model based on stable isotopes ratios ^{52, 56}	MS coupled to a CNSO analyser	Expensive	Controlled conditions	Mixed diets
	Infrared Spectroscopy	Milk and cheese	Discrimination models based on IR spectra 58, 61, 9	IR	Cheap	On farm	Mixed diets

eip-agri 🗖

Management practice	Quality trait	Product the trait is relevant to	Available authentication methods	Available methods of analysis	Costs of authentication methods	Tested in controlled conditions or validated on farm	Limits of the methods
Feeding only hay, renunciation to the use of silage in	Fatty acid composition uciation use of e in ms		Discrimination model on milk fatty acid profile ^{15, 53, 52, 10} , Prediction model of proportions of various feeds based on fatty acid profile ⁵⁴	GC	Expensive	On farm	Mixed diets Precision of the models
based on	Vitamin A and E	Milk	Discrimination model on carotenoids contents and vitamins content ¹⁵	HPLC/ UPLC	Expensive	On farm (small area and numbers)	Vitamin supplements in the diet
forage or in	Carotenoids	Milk	Index based on reflectance spectrum of milk or cheese ¹⁵	HPLC/ UPLC	Cheap	On farm (small area and numbers)	Mixed diets. Light exposure
based systems during winter	Colour	Milk, cheese and butter	Index based on reflectance spectrum of milk or cheese ¹⁵	Visible or IR spectrum	Cheap	On farm (small area and numbers)	Mixed diets.
period	Stable isotopes (δC, δN, δS, δO)	Milk, cheese and butter	Discrimination model based on stable isotopes ratios ⁵⁶	MS coupled to a CNSO analyser	Expensive	Controlled conditions	Mixed diets
	Infrared Spectroscopy	Milk and cheese	Discrimination models based on IR spectra ^{58, 61, 9}	IR	Cheap	On farm	Mixed diets

Management practice	Quality trait	Product the	Available	Available	Costs of	Tested in controlled	Limits of the methods
		trait is	authentication	methods of	authentication	conditions or	
		relevant to	methods	analysis	methods	validated on farm	
Occurrence in a certain amount of Plant	Volatiles		Discrimination	VOCa		Controllod	
Secondary Metabolites (PSM)-rich plant	compounds	milk	model based on	vocs	Exponsivo	conditions	Mixed diets, Low
species in the forage (chemical	(including		VOCS composition		Expensive	conditions	analytical repeatability
fingerprint of animal diet)	terpenes)		28	00-1013			

eip-agri

Management Quality trait Product the Costs of Tested in controlled Limits of the methods Available authentication methods Available practice trait is relevant methods of authentication conditions or analysis methods validated on farm to Discrimination model based on stable isotopes ratios ^{62, 56, 67, 63} Milk Local origin Stable isotopes MS coupled Expensive On farm (small Close regions, to a CNSO of the product $(\delta C, \delta N, \delta S, \delta O)$ interaction with diet area and numbers) effects analyser

eip-agri

Research projects and innovative projects relevant to the topic

Research Projects

Eating Biodiversity: An Investigation of the Links between Quality Food Production and Biodiversity Protection (http://www.esrc.ac.uk/myesrc/grants/RES-224-25-0041/read). Modern food production systems have long been thought of as essentially detrimental to biodiversity. Although the last twenty or so years have seen an increasing number of policy measures and instruments to reduce biodiversity loss in agricultural areas biodiversity is largely conceived as an 'externality' to the process of food production, albeit a positive externality, which responds to societal demands. Increasingly, where food comes from is becoming important as a means of regaining consumer trust. Food that comes from identifiable natural areas is often perceived to be more trustworthy and of better quality than anonymous industrialised produce. In countries such as France and Italy, the specific natural qualities of individual 'terroirs' define not only the agronomic conditions of production but also, and crucially, the distinctive taste and consumption experience associated with the product. By examining selected examples of specific food production chains that fully integrate biodiversity as an explicit means of generating distinctiveness and adding value, this research offers an inter-disciplinary perspective by positioning biodiversity and environmental quality as an integral 'input' to, and component of, food quality. The research is investigating through the combining of social and natural science, the extent to which environmental distinctiveness and quality (specifically the biodiversity of grasslands) in UK food production sites can be actively 'valorised' through the food product chain to ensure the protection, maintenance and enhancement of that natural distinctiveness and quality but also to achieve similarly distinctive quality food products and the socio-economic benefits for producers and rural communities that might accrue from their production.

OriginAlp: quality and origin control of regional alpine food products (http://originalp.eu/en.html). OriginAlp is an Interreg IV project (2011-2014) involving a cross-border cooperation between Austria (North and East Tyrol) and Italy (South Tyrol) and aiming at establishing efficient and fast analytical methods for quality and origin control of regional alpine food products. Regional food samples (milk, meat, apples) are analysed by means of near infrared (NIR) analyses of the. NIR spectroscopy. Reference values necessary for calibrating the NIR method are obtained by high-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) measurements. Isotopic fingerprints of the samples for origin determination are supplied as well.

TRUEFOOD – Traditional United Europe Food (Contract number: FOOD -CT-2006-016264) (<u>http://www.truefood.eu/</u>) – is an Integrated Project (IP) financed by the European Commission under the 6th Framework Programme for RTD. The project started in 2006 and lasted 4 years. The overall aim of TRUEFOOD was to introduce suitable innovations into traditional food industry to maintain and increase the competitiveness of the industry in an increasingly global European market place. For milk and dairy products, Truefood showed it is possible to improve the nutritional quality of traditional products in line with consumer demand, using in particular pasture and fat-rich seeds in the diet of animals.

LowInputBreeds (<u>http://www.lowinputbreeds.org/</u>): Development of integrated livestock breeding and management strategies to improve animal health, product quality and performance in European organic and 'low input' milk, meat and egg production. Work programme topics addressed: KBBE-2007-1-3-07 : Improving animal health, product quality and performance of organic and 'low input' livestock systems through integration of breeding and innovative management techniques.

eip-agri

MultiSward (<u>www.multisward.eu</u>).

Implementation examples

Project	Region, Land	Quality aspects the project is related to	Quality traits the project is related to	Product	Obligatory practices for farms taking part in the project	Quality traits of the product expected because of production practices	Is the product quality being monitored?	If yes, by which method?	Is there a traceability system?	Is the prod uctio n syste m certifi ed?	Is the produc t protect ed by a registe red tradem ark?
Arctic lamb meat (Arktisk lammekjøtt) ^a	Norway	Sensory, nutritional	Consumer health, local origin of products	Meat	Pasture-fed or concentrate-fed lambs; lowland, mountain, concentrate	Concentrate higher Omega-6	no		no	no	no
PDO cheeses of Massif Central ^b	Massif Central, France	Sensory, nutritional, ethic	Consumer health, organolepti c qualities, local origin of products	Milk, cheese	The combination of obligatory practices depends on the cheese to be produced: pasture- feeding within fixed dates for Salers, requirements of pasture and hay by renunciation to the use of silage for Saint nectaire and Laguiole, requirements of pasture and limitation of the proportion of maize silage during winter for Cantal and Fourme d'ambert (max. 30% resp. max. 50%)	Healthier FA profile, higher sensory quality (but this is not communicate d to the consumer)	yes	Sensory panel	yes	yes	yes (but not only based on the grass diet)

						eiD-duit					
AOC Prés- Salés du Mont Saint- Michel ^c	France	Sensory, nutritional, ethic	Consumer health, organolepti c qualities	Meat	Pasture-fed lambs, not to finish the lambs indoors for longer than one month	Higher sensory quality, green product image	yes	Sensory panel	yes	yes	yes
Burgundy pasture beef ^d	Texas, USA	Nutritional	Consumer health	Beef	No hormones; exclusively pasture- raised beef.		no				
Omega Beef Direct ^e	Knockmeal down Mountains, South Tipperary, Ireland, UK	Sensory, nutritional, ethic	Consumer health, organolepti c qualities, traditional manageme nt	Beef	Grass-fed and grass- finished breed-specific (Galloway) beef applying transhumance methods to enable year- round grazing, including overwintering on preserved in situ grassland; organic farming.	Higher Omega-3 and Omega-6 fatty acids, distinctive taste	yes	Sensory panel	yes	yes	yes
Pastureland ^f	Minnesota, USA	Sensory	Organolepti c qualities	Butter, cheese	Pasture-fed cows; organic farming.	Improved taste	no				
ARGE Heumilch ^g	Vorarlberg/ Tirol/Salzb urg/Oberös terreich/ Steiermark, Austria	Nutritional, sensory	Consumer health	Milk, cheese, yoghurt, butter of cows, sheep and goats	No silage making on farm meadows; renunciation to feeding silage over the whole year; no additives and preservatives	Improved FA profile	no		yes	yes	yes

_							- eD-duit -					
	Biobeef ^h	South Tyrol, Italy	Sensory, nutritional, ethic	Consumer health, organolepti c qualities, animal welfare	Beef	Animals are exclusively feeding on pastures during the summer, on on-farm produced hay during the winter, no silage, no concentrates with the exception ; suckler cow husbandry: calves stay together with their mothers the whole time; organic farming.	Improved FA profile, improved taste, odour and juiciness	no		yes	yes	yes
	Kovieh ⁱ	South Tyrol, Italy	Ethic	Local origin of products, animal welfare	Beef					yes	yes	
	Gourmet pasture beef ^j	Tennessee , USA	Nutritional	Consumer health	Beef	No hormones, no antibiotics; exclusively pasture-raised beef.	Lower fat; higher Omega-3 fatty acids, CLA and Vitamin E	no				
	QRCheese ^k	Piedmont, Italy	Nutritional/ ethics	Consumer health, local origin of products, biodiversity	Milk, cheese	Correct pasture management, correct use of home-grown and purchased conserved forages. Max 20% of concentrates daily.	Healtier FA profile, improved sensory traits	yes	GC analyses of FA	yes: QR code on cheese giving a link to a report of FA composition and the description of the production chain	no	no

						elb-auti					
Laugenrind	South Tyrol, Italy	Ethic	Local origin of products, animal welfare	Beef	Grazing in upland pastures is obligatory during summer, prohibition of milk replacers (German: MIlchaustauscher)	Improved healthiness in general,	only SEUROP classificatio n of meat carcass		yes	yes	no
Green Grass Dairy ^m	Veneto, Italy	Ethic, Sensory, Nutritional	Maintenanc e of cultural landscape, consume health, organolepti c qualities	Cheese	Use of pasture grazing for dairy cows during the summer with limited energy supplements		only within the project framework	NIRS calibratio n for chemical, rheologic al and sensory traits	yes	no	yes
Weidemelk ⁿ	The Netherland s	Ethic	Animal welfare, landscape quality	Dairy products	Grazing of dairy cows for a period which is chosen by the farmer itself (a 5 cent-increase of the milk price is applied in this period)	Improvement of biodiversity and landscape quality, green image of dairy farming	no	no	yes (separate streams of milk collection)	yes (?)	no (?)
Slowfood ^o	Mainly Italy, but few productrs form several countries all around the world	Ethic	Historical heritage	Dairy and meat products, vegetables and fruits, etc. Potentially all local, traditional products	none	none	no		no	no	yes

Homepages of the mentioned projects:

^a<u>http://www.bioforsk.no/ikbViewer/page/prosjekt/hovedtema?p_dimension_id=19681&p_menu_id=19690&p_sub_i</u> d=19682&p_dim2=19683, ^b<u>http://www.prairies-aoc.net/</u>, ^c<u>http://www.aop-pressales-</u>

eip-agri montsaintmichel.fr/qualite_viande.php, ^dhttp://www.burgundypasturebeef.com/, ^ehttp://www.omegabeefdirect.ie/, ^fhttp://www.minnesotagrown.com/wholesaler/pastureland-cooperative/, ^ghttp://www.heumilch.at/, ^hhttp://www.biobeef.it/, ^hhttp://www.kovieh.com/de/, ^jhttp://www.gourmetpasturebeef.com/ ^k http://www.formaggio-rivetdor.it/, ^hhttp://www.laugenrind.com/cms/de/laugenrind.html, ^mhttp://www.grunalpepennar.it/, ⁿhttp://www.weidemelk.nl/, ^ohttp://www.slowfood.com/

Research needs from practice

Develop affordable and rapid analytical methods for routine authentication and traceability, including a validation on a large scale in order to take the between-animal variability (genetic component) into account.

Optimise a set of markers able to ensure a good discrimination of the products based on management practices and/or origin (i.e. multiple markers or in more than in one tissue).

Validation on a large scale (large number of commercial farms representative of European farming system and practices) of authentication methods developed at a local scale under controlled conditions or on-farm.

Optimise authentication and traceability protocols minimising the bureaucratic effort of farmers; exploit the potential of ICT-based tools.

Refine the understanding of the effect of botanically diverse composition of pastures and forage on the product quality.

Define management practice ensuring a constant quality over time.

Define management practice enabling to take advantage of the occurrence of legumes in the pastures without sensory defects in the lamb meat (too strong flavour arising from skatole and indole production in the rumen).

Appraisement of the relevance of ecosystem services for product improvement (i.e. improvement of biodiversity of pollinators and plants in order to improve honey yield and honey quality). Study and model the trade-offs between product quality traits and other ecosystem services.

For grazing animals, synchronisation of feed demand and grass on offer on pastures (see the mini paper "Help farmers to manage grassland production versus animal needs").

System and participatory approaches with multiple stakeholder types.

Ideas for innovative actions

The EIP program should support innovative operational groups in the European Community on the purpose to link together:

Permanent grasslands - products - territories

• Ensure the sustainability of farming, agro-processing firms and territories providing professionals with a set of tools that enable them to develop and promote quality products based on enhancement of grassland-based production systems, especially in mountain areas and with associated woody vegetation. These areas have indeed natural, historical and social characteristics that specifically needs to be transformed into assets, enabling the outstanding intrinsic (nutritional and sensory values) and extrinsic (ecosystem services) qualities of their products to be recognized by consumers.

• Support projects and works carried out in this field throughout the territories with the aim to establish recognized operational groups and to participate actively in regional development.

• Define marketing arguments ensuring valorisation of permanent grass-based products to consumers.

• Create a European network (movement) of producers sharing the same management strategies for producing grassland-based products. Define quality standards for them.

The expected socio-economic impacts are primarily aimed to

• create wealth on the entire sector, sustaining the continuation of farmers in mountainous area and the development of local processing of milk and meat,

• create differentiated offerings, develop new products and services and increase the value of products in sectors recognized by the market,

• enable economic diversification territories (e.g. the development of "baskets of goods", associating food and activities related to agro-tourism and eco-tourism) and development planning (landscapes, local breeds, natural and cultural heritage),

• improvement of public health, reduce environmental impact.

Literature

¹ Dennis M.J. (1998). Recent developments in food authentication. Analyst 123, 151-156.

² WHO/FAO (2007). World Health Organization – Food and Agriculture Organization of the United Nations. Codex alimentarius. Food Import and Export Inspection and Certification Systems. 3rd edition.

³ Moloney A.P., Monahan F.J., Schmidt O. (2014). Quality and authenticity of grassland products. Grassland Science in Europe 19:509–520.

⁴ Dewhurst R.J., Shingfield K.J., Lee M.R.F., Scollan N.D. (2006). Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology 131:168–206.

⁵ Elgersma A., Tamminga S., Ellen G. (2006). Modifying milk composition through forage. Animal Feed Science and Technology 131:207–225.

⁶ Mel'uchová B., Blaško J., Kubinec R., Górová R., Dubravská J., Margetín M., Soják L. (2008). Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Ruminant Research 78:56–65.

⁷ Shingfield K.J., Bonnet M., Scollan N.D. (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 7:132–162.

funded by

⁸ Chilliard Y., Glasser F., Ferlay A., Bernard L., Rouel J., Doreau M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol 109:828–855

⁹ Valenti B., Martin B., Andueza D., Leroux C., Labonne C., Lahalle F., Larroque H., Brunschwig P., Le - comte C., Brochard M., Ferlay A. (2013). Infrared spectroscopic methods for the discrimination of cows' milk according to the feeding system, cow breed and altitude of the dairy farm. International Dairy Journal 32:26-32.

¹⁰ Hurtaud C., Dutreuil M., Coppa M., Agabriel C., Martin B. (2014). Characterization of milk from feeding systems based on herbage or corn silage with or without flaxseed and authentication through fatty acid profile. Dairy Science & Technology 94:103–123.

¹¹ Couvreur S., Hurtaud C., Lopez C., Delaby L., Peyraud J.L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science 89:1956–1969.

¹² Coppa M., Ferlay A., Monsallier F., Verdier-Metz I., Pradel P., Didienne R., Farruggia A., Montel M.C., Martin B. (2011). Milk fatty acid composition and cheese texture and appearance from cows fed hay or different grazing systems on upland pastures. Journal of Dairy Science 94:1132–1145.

¹³ Coppa, M., Verdier-Metz I., Ferlay A., Pradel P., Didienne R., Farruggia A., Montel M. C., Martin B. (2011). Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. International Dairy Journal 21:815–822.

¹⁴ Martin B., Hurtaud C., Graulet B., Ferlay A., Chilliard Y., Coulon J.-B. (2009). Herbe et qualités nutritionelles et organoleptique des produits laitiers (Grass and the nutritional and organoleptic qualities of dairy products). Fourrages 199:291–310.

¹⁵ Lucas A., Agabriel C., Martin B., Ferlay A., Verdier-Metz I., Coulon J.-B., Rock E. (2006). Relationships between the conditions of cow's milk production and the contents of components of nutritional interest in raw milk farmhouse cheese. Lait 86:177–202.

¹⁶ Calderon F., Tornambé G., Martin B., Pradel P., Chauveau-Duroit B., Nozière P. (2006). Effects of mountain grassland maturity stage and grazing management on carotenoids in sward and cow's milk. Animal Research 55:1-12.

¹⁷ Nozière P., Graulet B., Lucas A., Martin B., Grolier P., Doreau M. (2006). Carotenoids for ruminants: from forages to dairy products. Animal Feed Science and Technology 131:418-450.

¹⁸ Stergiadis S., Leifert C., Seal C.J., Eyre M.D., Nielsen J.H, Larsen M.K., Slots T., Steinshamn H., Butler G. (2012). Effect of feeding intensity and milking system on nutritionally relevant milk components in dairy farming systems in the north east of England. Journal of Agricultural and Food Chemistry 60:7270-7281.

¹⁹ Ferlay A., Martin B., Lerch S., Gobet M., Pradel P. and Chilliard Y. (2010). Effect of supplementation of maize silage diets with extruded linseed, vitamin E and plant extracts rich in polyphenols, and morning v. evening milking on milk fatty acid profile in Holstein and Montbéliarde cows. Animal 4:672-640.

²⁰ Prache S., Cornu A., Berdagué J.L., Priolo A. (2005). Traceability of animal feeding diet in the meat and milk of small ruminants. Small Ruminant Research 59:157–168.

²¹ Ferlay, A., B. Martin, P. Pradel, J. B. Coulon, and Y. Chilliard. (2006). Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbéliarde cow breeds. Journal of Dairy Science 89:4026–4041.

funded by

²² Thomet P., Cutullic E., Bisig W., Wuest C., Elsaesser M., Steinberger S., Steinwidder A. (2011). Merits of full grazing systems as a sustainable and efficient milk production strategy. Grassland Science in Europe 16:273-285.

²³ Martin B., Verdier-Metz S., Hurtaud C., Coulon J.-B. (2005). How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Animal Science 81:205–212.

²⁴ Viallon C., Martin B., Verdier-Metz I., Pradel P., Garel J.-P., Coulon J.-B., Berdagué J.-L. (2000). Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait 80, S. 635–641.

²⁵ Noni I. de, Battelli G. (2008). Terpenes and fatty acid profiles of milk fat and "Bitto" cheese as affected by transhumance of cows on different mountain pastures. Food Chemistry 109:299–309.

²⁶ Tornambé G., Cornu A., Pradel P., Kondjoyan N., Carnat A.P., Petit M., Martin B. (2006). Changes in terpene content in milk from pasture-fed cows. Journal of Dairy Science 89:2309–2319.

²⁷ Revello Chion A., Tabacco E., Giaccone D., Peiretti P.G., Battelli G., Borreani G. (2010), Variation of fatty acid and terpene profiles in mountain milk and "Toma piemontese" cheese as affected by diet composition in different seasons. Food Chemistry 121:393-399.

²⁸ Coppa M., Martin B., Pradel P., Leotta B., Priolo A., Vasta V. (2011). Effect of a hay-based diet or different upland grazing systems on milk volatile compounds. Journal of Agricultural and Food Chemistry 59: 4947-4954.

²⁹ Aurousseau B., Bauchart D., Calichon E., Micol D., Priolo A. (2004). Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Science 66: 531-541.

³⁰ Dian P.H.M., Andueza D., Barbosa C.P., Amoureux S., Jestin M., Carvalho P.C.F., Prado I.N., Prache S. (2007). Methodological developments in the use of visible reflectance spectroscopy for discriminating pasture-fed from concentrate-fed lamb carcasses. Animal 1:8, 1198-1208.

³¹ Prache S., Thériez M. (1999). Traceability of lamb production systems: carotenoids in plasma and adipose tissue. Animal Science 69:29-36.

³² Priolo A., Prache S., Micol D., Agabriel J. (2002). Reflectance spectrum of adipose tissue to trace grass-feeding in sheep : Influence of measurement site and shrinkage time after slaughter. Journal of Animal Science 80:886-891.

³³ Priolo A., Cornu A., Prache S., Krogman M., Kondjoyan N., Micol D., Berdagué J.L. (2004). Fat volatiles to trace grass-feeding in sheep. Meat Science 66:475-481.

³⁴ Vasta V., Luciano G., Dimauro C., Rhörle F., Priolo A., Monahan F. J., Moloney A.P. (2011). The volatile profile of *longissimus dorsi* muscle of heifers fed pasture, pasture silage or cereal concentrates: implications for dietary discrimination. Meat Science 87:282-289.

³⁵ Priolo A., Vasta V., Fasone V., Lanza C.M., Scerra M., Biondi L., Bella M., Whittington F.M. (2009). Meat odour and flavour and indoles concentration in ruminal fluid and adipose tissue of lambs fed green herbage or concentrates with or without tannins. Animal 3:454-460.

³⁶ Devincenzi T., Prunier A., Nabinger C., Prache S. (2014b) Influence of fresh alfalfa supplementation on fat skatole and indole concentration and chop odour and flavour in lambs grazing a cocksfoot pasture. Meat Science 98:607-614.

³⁷ Borreani G., Coppa M., Revello-Chion A., Comino L., Giaccone D., Ferlay A., Tabacco E. (2013). Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy. Journal of Dairy Science, 96: 6840-6855

European Commission

³⁸ Vlaeminck, B., Fievez V., Cabrita A.R.J., Fonseca A.J.M., Dewhurst R.J. (2006). Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology 131:389-417.

³⁹ Hurtaud C., Peyraud J.L., Michel G., Berthelot D., Delaby L. (2009). Winter feeding systems and dairy cow breed have an impact on milk composition and flavor of two Protected Designation of Origin of French cheeses. Animal 3:1327-1338.

⁴⁰ Bauman D.E., Griinari J.M. (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 23:203-227.

⁴¹ Carpino S., Mallia S., La Terra S., Melilli C., Licitra G., Acree T.E., Barbano D.M., Van Soest P.J. (2004). Composition and Aroma Compounds of Ragusano Cheese: Native Pasture and Total Mixed Rations. Journal of Dairy Science 87:816-830.

⁴² Slots T., Butler G., Leifert C., Kristensen T., Skibsted L.H., Nielsen J.H. (2009). Potentials to differentiate milk composition by different feeding strategies. Journal of Dairy Science 92:2057-2066.

⁴³ Agabriel C., Cornu A., Journal C., Sibra C., Grolier P., Martin B. (2007). Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. Journal of Dairy Science 90:4884-4896.

⁴⁴ Verdier-Metz I., Martin B., Pradel P., Albouy H., Hulin S., Montel M.-C., Coulon J.-B. (2005). Effect of grass-silage vs. hay diet on the characteristics of cheese: interactions with the cheese model. Lait 85: 469-480.

⁴⁵ Agabriel C., Martin B., Sibra C., Bonnefoy J. C., Montel M. C., Didienne R., Hulin S. (2004). Effect of dairy production system on the sensory characteristics of Cantal cheeses: a plant-scale study. Animal Research, 53:221-234.

⁴⁶ Leiber F., Kreuzer M., Nigg D., Wettstein H.R. and Scheeder M.R.L. (2005). A study on the causes for the elevated n-3 fatty acids in cows' milk of Alpine origin. Lipids 40:191-202.

⁴⁷ Morand-Fehr P., Fedele V., Decandia M., Le Frileux Y. (2007). Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Ruminant Research 68:20-34.

⁴⁸ Martin B., Pomiès D. Pradel P., Verdier-Metz I., Remond B. (2009). Yield and sensory properties of cheese made with milk from Holstein or Montbelliarde cows milked twice or once daily. Journal of Dairy Science 92:4730-4737.

⁴⁹ Guiadeur M., Verdier-Metz I., Monsallier F., Agabriel J., Cirié C., Montel M.C., Martin B. (2011). Traditional milking of Salers cows: influence of removing calf on cheesemaking ability of milk in comparison to Holstein cows. In: University of Turin (ed.) Proceedings of the 10th International Meeting on Mountain Cheese, 14-15 September 2011, Dronero, Italy, Università degli Studi di Torino, Torino, pp. 21-22.

⁵⁰ Agabriel J, Faure B, Lebreton FX, Lherm M, Micol D, Garcia-Launay F, Pradel P, Angeon V, Martin B, 2014. La race bovine Salers : un atout pour le développement de son territoire d'origine par son identité forte et des produits qualifiés. Cah Agric 23 : 138-47.

⁵¹ Cozma A., Martin B., Guiadeur M., Pradel P., Tixier E., Ferlay A., 2013, Influence of calf presence during milking on yield, composition, fatty acid profile and lipolytic system of milk in Prim'Holstein and Salers cow breeds. Dairy Science and Technology, 93, 99-113

⁵² Engel E., Ferlay A., Cornu A., Chilliard Y., Agabriel C., Bielicki G., Martin B. (2007). Relevance of isotopic and molecular biomarkers for the authentication of milk according to production zone and type of feeding. Journal of Agricultural and Food Chemistry 55:9099-9108.

⁵³ Coppa M., Revello-Chion A., Giaccone D., Comino L., Tabacco E., Borreani G. (2014). Use of milk fatty acid composition to authenticate cow diets. Grassland Science in Europe 19:668–670.

⁵⁴ Martin B., Coppa M., Chassaing C., Agabriel C., Borreani G., Barcarolo R., Baars T., Kusche D., Harstad O.M., Verbič J., Golecký J., Ferlay A. (2014). Can we use the fatty acid composition of bulk milk to authenticate the diet composition? Grassland Science in Europe 19:553–555.

⁵⁵ Besle J.M., Viala D., Martin B., Pradel P., Meunier B., Berdagué J.L., Fraisse D., Lamaison J.L., Coulon J.B., (2010). Ultraviolet-absorbing compounds in milk are related to forage polyphenols. Journal of Dairy Science, 93:2846-2856.

⁵⁶ Renou J.P., Deponge C., Gachon P., Bonnefoy J.C., Coulon J.B., Garel J.P., Vérité R., Ritz P. (2004). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry: cow milk. Food Chemistry 85:63-66.

⁵⁷ Devincenzi T., Delfosse O., Andueza D., Nabinger C., Prache S. (2014a) Dose-dependent response of nitrogen stable isotope ratio to proportion of legumes in diet to authenticate lamb meat produced from legume-rich pastures. Food Chemistry 152:456-461.

⁵⁸ Coppa M., Martin B., Agabriel C., Chassaing C., Sibra C., Constant I., Graulet B., Andueza D. (2012). Authentication of cow feeding and geographic origin on milk using visible and near-infrared spectroscopy. Journal of Dairy Science 95:5544–5551

⁵⁹ Dian P.H.M., Chauveau-Duriot B., Prado I.N., Prache S. (2007). A dose-response study relating the concentration of carotenoid pigments in blood and fat to carotenoid intake level in sheep. Journal of Animal Science 85:3054-3061.

⁶⁰ Huang Y., Andueza D., Oliveira L., Zawadzki F., Prache S. (2015). Visible spectroscopy on carcass fat combined with chemometrics to distinguish pasture-fed, concentrate-fed and concentrate-finished pasture-fed lambs. Meat Science, in press.

⁶¹ Andueza D., Agabriel C., Constant I., Lucas A., Martin B. (2013). Using visible or near infrared spectroscopy (NIRS) on cheese to authenticate cow feeding regimes. Food Chemistry, 141:209-214.

⁶² Scampicchio M., Mimmo T., Capici C., Huck C., Innocente N., Drusch S., Cesco S. (2012). Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry. Journal of Agricultural and Food Chemistry 60:11268–11273.

⁶³ Ehtesham E., Baisden W.T., Keller E.D., Hayman A.R., Van Hale R., Frew R.D. (2013). Correlation between precipitation and geographical location of the $δ^2$ H values of the fatty acids in milk and bulk milk powder. Geochimica et Cosmochimica Acta 111:105–116.

⁶⁴ Coppa M., Ferlay A., Leroux C., Jestin M., Chilliard Y., Martin B., Andueza D. (2010). Prediction of milk fatty acid composition by Near Infrared Reflectance Spectroscopy (NIRS). International Dairy Journal 20:182-189.

⁶⁵ Coppa, M., Revello-Chion A., Giaccone D., Ferlay A., Tabacco, E., Borreani G. (2014). Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chemistry 150:49-57.

⁶⁶ Soyeurt A., Dehareng F., Gengler N., McParland S., Wall E., Berry D.P., Coffey M., Dardenne P. (2011). Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94:1657–1667.

⁶⁷ Manca G., Camin F., Coloru G.C., Del Caro A., Depentori D., Franco M.A., Versin G. (2001). Characterization of the Geographical Origin of Pecorino Sardo Cheese by Casein Stable Isotope (¹³C/¹²C and ¹⁵ N/¹⁴N) Ratios and Free Amino Acid Ratios. Journal of Agricultural and Food Chemistry 49:1404–1409.

