Diverging TFP/Innovation trends
Facts and policies
Reinhilde Veugelers
KULeuven & Bruegel

Annual Research Conference DG ECFIN
Brussels, November 2016
Motivation

Over the medium- to longer term, trends in innovation capacity and total factor productivity growth will determine the growth and convergence trajectories of the EU economies.

Moreover, persistent innovation and productivity growth divergences among EU, and in particular euro area, countries raise concerns of rising income differentials and long-term cohesion across countries.

- What are the major trends and drivers of total factor productivity growth in the EU? And of innovation capacity more specifically?
 - How different are the TFP and Innovation numbers for EU member countries?
 - Are the differences diminishing over time, establishing convergence?
 - Are the laggards catching up?
 - Impact of the crisis?
- What policy recommendations to re-ignite a sustainable convergence process?
Assessing heterogeneity and convergence

We will look at trends in TFP growth and Innovation capacity more particularly & directly

Because of different capacities to put in place a virtuous innovation-growth eco-system, but also because of differences in initial conditions requiring innovation systems to be composed in a different way, we can expect substantial heterogeneity among European countries in innovation capacity.

We expect the process of EU and economic integration to push convergence in innovative capacity and TFP growth.

To measure heterogeneity in innovation capacity, we use the \(\sigma \)-coefficient or the coefficient of variation CV (\(\sqrt{\text{VAR}/\text{MEAN}} \)).

\(\sigma \)-convergence occurs when the dispersion (CV) across a group of economies, decreases over time.

We will look within the EU, to different groups, reflecting different (initial) conditions and capacities:

- EURO vs NON-EURO
- EU15 vs EU13
- EU SOUTH vs EU NORTH
- Innovation leaders vs Innovation laggards

We will disentangle overall EU heterogeneity (and its trend) into between group gaps (and its trend) and within group heterogeneity (and its trend)
Trends in TFP growth
Dispersion in TFP growth: trend

Sigma convergence (coefficient of variation)
EU: EU 15 vs EU13

Sigma convergence (coefficient of variation)
Eurozone

Dispersion in TFP trend
Base Year 2000; Source: Ameco
Trends in Innovation Capacity

Innovation Union Score (IUS): EU-World

Source: EC, Innovation Union Scoreboard, 2016

1 IUS is a composite indicator capturing 8 dimensions of innovation: Human Resources, Research Systems, Finance, Firm Investment, Linkages, IPR, Innovations, Economic Effects. For the international benchmarking of Europe, it uses information from 12 indicators to assess these 8 dimensions.
Innovation Capacity within EU

Innovation Union Score by EU Member States

IUS score 2015 EU-28

Source: EC, Innovation Union Scoreboard, 2016
Trends in Innovation Capacity within EU

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Convergence in Innovation Capacity within EU

σ-convergence in Innovation Capacity

Trend in Coefficient of Variation of IUS

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Selected Countries

Source: EC, Innovation Union Scoreboard, 2016
Trends in Within and Between Group Variation in IUS

By IUS groups

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Trends in Within and Between Group Variation in IUS

By Region

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Private Sector Innovation Capacity

Business Expenditures on R&D: EU-World

BERD as % of GDP

Source: OECD

- Japan
- Korea
- United States
- European Union (28 countries)
- China
Private Sector Innovation Capacity

Business Expenditures on R&D

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Convergence in Private Sector Innovation Capacity within EU

Source: Own calculation on basis of EC, Innovation Union Scoreboard, 2016
Private Sector Innovation Capacity:
SMEs introducing innovations

% SMEs introducing new products/processes

Source: EC, Innovation Union Scoreboard, 2016 on basis of different waves of CIS
Private Sector Innovation Capacity:
SMEs introducing innovations

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016 on basis of different waves of CIS
Convergence in Private Sector Innovation Capacity

% SMEs introducing product/process innovations: Coefficient of Variation

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016 on basis of different waves of CIS
Enablers of innovation capacity:
public R&D expenditures

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016
Enablers of innovation:

Convergence in public R&D expenditures within EU

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016
Selected Countries

Public R&D (%GDP): North

Public R&D (%GDP) CEE

Public R&D (%GDP): South

Source: EC, Innovation Union Scoreboard, 2016
Enablers of innovation

Quality of Science Base

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016
Enablers of innovation

Quality of human capital

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016
Trends in Convergence in Innovation Capacity

Comparing components of Innovation Capacity

Source: Own calculations on basis of EC, Innovation Union Scoreboard, 2016
Main findings

• Overall feeble performance of EU relative to world peers, with (too) slow catching up
• Substantial & persistent heterogeneity within EU
 • Slow pre-crisis convergence halted;
 • Signs of increasing divergence post crisis recovery
• When decomposing the within EU persistent heterogeneity:
 • Substantial and persistent gap in performance across groups (innovation leaders/laggerds, EU15-13, North-South)
 • Some weak signs of closing gaps between EU15-13
 • Leaders losing momentum (FI 😞)
 • Some bottom laggards catching up (LV 😊)
 • Within group EU13 variance is high & persistent;
 • Within EU15: North-South divide important and persistent
• Heterogeneity is highest & persistent for Business R&D; lower for SMEsIntroducingInnovations but also persistent
Main findings continued

Persistent heterogeneity in (policy) enablers for innovation

- **Public R&D**: substantial heterogeneity within EU and increasing
 - Substantial gap between leaders/laggards; EU15-13
 - Innovation leaders forging ahead, with no catching up from laggards
 - Increasing within EU13 variance

- **Quality of the science base in EU countries**: persistent and high variance
 - EU15-13 persistent gap
 - Within EU13 heterogeneity

- **Quality of Human Capital**: Heterogeneity within EU has declined
 - Catching up of laggards: especially of EU13
 - Within EU13 heterogeneity has declined
Next steps for research

Zeroing in on Europe’s capacity for structural change

- Missing “new” sectoral specialization with opportunities for innovation based growth
- Missing “new” companies with opportunities for innovation based growth
- Stuck in “old” sectoral specialization with failure to adjust
- Stuck in “old” firms with failure to adjust
 - A within and across sectors analysis
 - A within and across firm level analysis

Mapping within EU linkages of national innovation systems

From a collection of national/regional systems towards a truly integrated EU system:
 strengths by EU countries/regions spilling over into innovation, productivity growth and economic returns in other EU countries
Main tentative policy implications

• Framework conditions and budget for change
 • Competitive markets for change, finance for change, regulation enabling /not impeding change
 • Quality of the human capital base and the public science & research infrastructure for change

• Framework conditions and budget for integration
 • Improving cross-border spillovers of national enablers
 • Removing barriers for European Innovation Value Chains