SOVEREIGNS VERSUS BANKS

Òscar Jordà* Moritz Schularick[†] Alan M. Taylor[§]

European Commission

Annual Research Conference 2015

Brussels, November 23

*Federal Reserve Bank of San Francisco; University of California, Davis

†University of Bonn; CEPR

§University of California, Davis; NBER; CEPR

The questions

- Is public debt or private debt the main risk for financial stability?
- What's the interaction between private and public debt in post-crisis deleveraging?
- Is there a precautionary reason to keep public debt low?

How we answer these questions

Based on the near universe of advanced economies' business cycles since 1870, in this paper we:

- Examine the co-evolution of public debt and private credit in a new dataset for 17 countries since 1870
- Ask whether one (or both) of these stocks of liabilities is a harbinger of financial crises
- Quantify the effects in recessions of private and public debt overhang and their interaction

What we find

- Total economy debt levels have risen strongly, but mainly through the private sector.
- Private credit booms, not public debt booms, are the best predictor of financial crises.
- High levels of public debt do not matter much over the business cycle.
- But: the capacity of the public sector to use its balance sheet when the private sector deleverages is critical.

MAJOR TRENDS IN THE DATA

Our data

- 17 countries: Belgium, Canada, Australia, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, U.K., U.S.
- Variables: private and public debt, nominal GDP, real GDP per capita, investment/GDP, CA/GDP, CPI inflation, short- and long-term interest rates
- Recession and Crisis Dates: Bry and Boschan (1971) for recessions. Jordà, Schularick, and Taylor (2012) for normal versus financial recessions and crisis dates

Public debt versus private credit

Sovereigns v. banks: Total liabilities then and now

Business cycle chronology

Examples of business cycle peaks

Total = 269; N = 206; F = 63 (all, including wartime periods)

		~ <i>))</i> - ·		-,		()				- I		- /
CAN	N	1871	1877	1882	1884	1888	1891	1894	1903	1913	1917	1928
		1944	1947	1953	1956	1981	1989					
	F	1874	1907									
CHE	N	1875	1880	1886	1890	1893	1899	1902	1906	1912	1916	1920
		1933	1939	1947	1951	1957	1974	1981	1994	2001		
	F	1871	1929	1990								
DEU	N	1879	1898	1905	1913	1922	1943	1966	1974	1980	1992	2001
	F	1875	1890	1908	1928							
DNK	N	1870	1880	1887	1911	1914	1916	1923	1939	1944	1950	1962
		1973	1979	1992								
	F	1872	1876	1883	1920	1931	1987					
ESP	N	1873	1877	1892	1894	1901	1909	1911	1916	1927	1932	1935
		1940	1944	1947	1952	1958	1974	1980	1992			
	F	1883	1889	1913	1925	1929	1978					
FIN	N	1870	1883	1890	1898	1907	1913	1916	1938	1941	1943	1952
		1957	1975									
	F	1876	1900	1929	1989							

- Peaks of real GDP per capita from Bry-Boschan algorithm
- Financial recession $F = 1 \iff$ fin. crisis within ± 2 years
- Normal recession N = 1 otherwise

Five stylized facts

Expansions have become longer lasting

Pre-WWI	Interwar	Bretton Woods	Post-BW
3 yrs	4 yrs	6 yrs	10 yrs

The annual rate of growth of expansions has declined

Pre-WWI	Interwar	Bretton Woods	Post-BW
3.6%	5.2%	4.3%	2.7%

- 3 Private credit pro-cyclical (expansions +, recessions -)
- Public debt counter-cyclical (expansions -, recessions +)
- After no trend 1900–70, both private credit and public debt have grown, at a combined 9 p.p.y. (pct. pt. / year) since 1970s, and cyclicality gave way to upward trends. Unprecedented in history

DEBT AND FINANCIAL CRISES

Not all cycles are created equal

Full sample	All		Financial		Normal	
_	Recessions		Recessions		Recessions	
Financial recession indicator	0.23		1		О	
Observations	269		63		206	
Normal recession indicator	0.77		o		1	
Observations	269		63		206	
Change in private credit/GDP	0.70	(2.26)	1.73	(2.35)	0.41	(2.15)
Observations	198		44		154	
Change in public debt/GDP	-0.76	(6.06)	-0.13	(3.65)	-0.95	(6.62)
Observations	218		51		167	
Public debt level/GDP	0.51	(0.36)	0.50	(0.34)	0.51	(0.37)
Observations	247		58		189	

Predicting financial crises

- Is private or public borrowing the greater risk to financial stability?
- Model the log-odds ratio of a financial crisis using panel logit with country fixed effects:

$$\log \frac{P[S_{it} = 1 | X_{it}]}{P[S_{it} = 0 | X_{it}]} = \beta_{0i} + \beta_1 X_{it} + e_{it}$$

- 5-yr moving averages: parsimonious summary of medium-term fluctuations and interactions
- Binary classification and predictive ability tests

Private credit predicts financial crises

Classifier logit model	(1)	(2)	(3)	(4)	(5)
Change in private credit/GDP	21.79***		21.34***	26.63**	
(5-year moving average)	(5.39)		(5.44)	(13.00)	
Change in public debt/GDP		-2.83	-3.17		-4.21
(5-year moving average)		(1.88)	(3.68)		(3.29)
Lagged level of private credit/GDP				-0.03	
				(0.63)	
Lagged level of public debt/GDP					-0.03
					(0.29)
(Lagged level of private credit/GDP)				-3.63	0.45
× (Lagged level of public debt/GDP)				(9.34)	(3.02)
Observations	1901	1983	1805	1895	1850
Area under the curve (AUC)	0.68	0.61	0.68	0.68	0.61
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)

- Public debt does not predict crises, private credit does.
- Public debt rises after crises, not before.

FISCAL CAPACITY AND THE COSTS OF FINANCIAL CRISES

Debt hangovers

- On the private side, arguments over whether deleveraging after credit booms may weigh on aggregate demand
 - Koo (2008); Mian and Sufi (2012); Krugman and Eggertsson (2012): balance sheet repair after asset price collapse or tightening of borrowing limits
- On the public side, arguments over whether high levels of public debt may slow down growth
 - Reinhart et al. (2012): Studied 26 episodes where public debt to GDP ratio exceeded 90% and found that these episodes were associated with growth slowdown
- How do private and public balance sheets jointly determine the cost of financial crises?

Empirical challenge

- Can we disentangle these issues based on our near universe of modern business cycle data?
- We think so:
 - Consider a county i coming out of a business cycle expansion p and entering a recession at time t(p)
 - ... when private credit grew above country-specific historical average in the expansion: $(x_{i,t(p)} \overline{x}_i)_{\text{credit}}$
 - ... when the public debt to GDP level is above/below/at historical average at start of the recession: $(x_{i,t(p)} \overline{x}_i)_{\text{debt}}$
 - ... when both interact
 - ... does any of this change the expected path of the economy through recession and recovery $(y_{t(p)},...,y_{t(p)+h})$?

Empirical strategy

- Examine outcomes over time
- Use a saturated regression control strategy: condition on broad range of lagged macro variables that may both relate to the shape of the recovery and to the size of the overhang
- Use semiparametric approach for added flexibility and to examine nonlinearities easily
- To do all this use methods of local projections (Jordà 2005)

Local projections: average effect of the overhang

Paths in normal versus financial recessions and experiments

$$\underline{\Delta_h y_{it(p)+h}^k}_{\text{outcome}} = \underbrace{\theta_N^k d_{it(p)}^N}_{\text{average conditional paths}} + \underbrace{\theta_F^k d_{it(p)}^F}_{\text{effect of the overhang}} + \underbrace{\sum_{l=0}^L \Gamma_{h,l}^k Y_{it(p)-l}}_{\text{fixed effects (demeaned)}} + \underbrace{\lambda_i^k}_{\text{error term}} + \underbrace{\mu_{h,it(p)}^k}_{\text{error term}} + \underbrace{\mu_{h,it(p)}^k}_{\text{error term}} + \underbrace{\mu_{h,it(p)}^k}_{\text{error term}}$$

where
$$\underbrace{k=1,...,K}_{\text{variables}}$$
; $\underbrace{h=1,...,H}_{\text{horizons}}$; $\underbrace{l=1,...,L}_{\text{lags}}$; $\underbrace{p=1,...,P}_{\text{recessions}}$

Two steps

- **First**, examine how the overhang of a private credit boom changes the expected path of the economy
- Second, study how high/low levels of public debt affect the path

Controls: lags of output, investment, lending, prices, interest rates, public debt

Private credit overhang: "credit bites back"

The dotted line is when private credit during the expansion grew at the mean + 1 sd $\,$

Public credit AND private debt overhang

- Let's combine things:
 - Consider how responses are modulated by the level of public debt at the start of the recession
 - AND condition on the annual change in private credit during in the prior expansion
- Complicated interaction structure, but can be estimated in same way with fixed effects panel

Fiscal space after private credit booms

The dotted/shortdash/longdash line is when public debt is at 15/50/85% and private credit at mean + 1 sd

Main conclusions

- In advanced economies, financial stability risks typically originate in the private sector.
 - To understand the driving forces of financial crises, one has to study private borrowing and its problems.
- Private credit booms in the expansion phase adversely affect the post-recession path of output.
 Private credit overhang is a regular phenomenon of the modern business cycle.
- Fiscal space matters after private sector credit booms.

 There is a case to keep public debt low for precautionary reasons to counteract private sector deleveraging if need be.