Oil Shocks and the Zero Bound on Nominal Interest Rates

Martin Bodenstein Luca Guerrieri Christopher J. Gust

Discussion by Zeno Enders

July 2010
Summary

Question: how does the international transmission of an oil demand shock change, if one country is at the zero lower bound (zlb)?
Summary

Question: how does the international transmission of an oil demand shock change, if one country is at the zero lower bound (zlb)?

Authors develop a medium-scale international DSGE model with an oil sector, building on previous work.
Summary

Question: how does the international transmission of an oil demand shock change, if one country is at the zero lower bound (zlb)?

Authors develop a medium-scale international DSGE model with an oil sector, building on previous work.

Answer: foreign oil demand shock increases domestic GDP
Summary

Question: how does the international transmission of an oil demand shock change, if one country is at the zero lower bound (zlb)?

Authors develop a medium-scale international DSGE model with an oil sector, building on previous work.

Answer: foreign oil demand shock increases domestic GDP.

Interesting question with surprising answer.
Model Setup

More or less standard two-country business cycle model
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods

Nominal and real rigidities:

• Sticky prices and wages
• Lagged price and wage indexation
• Consumption habits
• Investment adjustment costs
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods

Nominal and real rigidities:
- Sticky prices and wages

Enders on Bodenstein et al. Summary Discussion Conclusion 2/10
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods

Nominal and real rigidities:

- Sticky prices and wages
- Lagged price and wage indexation
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods

Nominal and real rigidities:

- Sticky prices and wages
- Lagged price and wage indexation
- Consumption habits
Model Setup

More or less standard two-country business cycle model

Each country has endowment of oil

Oil is used for production of intermediate goods and again for production of consumption goods

Nominal and real rigidities:
- Sticky prices and wages
- Lagged price and wage indexation
- Consumption habits
- Investment adjustment costs
Experiment

Preference shock brings about severe recession (C -20%)
Experiment

Preference shock brings about severe recession (C -20%)

Zero lower bound is reached
Experiment

Preference shock brings about severe recession (C -20%)

Zero lower bound is reached

Foreign demand for oil increases gradually

→ Gap between actual (zero) and targeted nominal rates is reduced

Real interest rate declines

While gross output is lower with oil shock, oil imports (used in production) fall

→ GDP rises
Experiment

Preference shock brings about severe recession (C -20\%)

Zero lower bound is reached

Foreign demand for oil increases gradually

Oil price and price level also increase gradually
Experiment

Preference shock brings about severe recession (C -20\%)

Zero lower bound is reached

Foreign demand for oil increases gradually

Oil price and price level also increase gradually

→ Gap between actual (zero) and targeted nominal rates is reduced
Experiment

Preference shock brings about severe recession (C -20%)

Zero lower bound is reached

Foreign demand for oil increases gradually

Oil price and price level also increase gradually

→ Gap between actual (zero) and targeted nominal rates is reduced

Real interest rate declines
Experiment

Preference shock brings about severe recession (C -20%)

Zero lower bound is reached

Foreign demand for oil increases gradually

Oil price and price level also increase gradually

→ Gap between actual (zero) and targeted nominal rates is reduced

Real interest rate declines

While gross output is lower with oil shock, oil imports (used in production) fall → GDP rises
Discussion

• Path of oil price
• Calibration
• Monetary policy
• Sensitivity
As in, e.g., Christiano et al. ’09, increase in expected inflation is beneficial at zlb
Path of oil price

As in, e.g., Christiano et al. ’09, increase in expected inflation is beneficial at zlb

Here, inflation prospects increase via anticipated oil price path, driven by foreign oil demand that follows AR(2) process (not shown)
Path of oil price

As in, e.g., Christiano et al. ’09, increase in expected inflation is beneficial at zlb

Here, inflation prospects increase via anticipated oil price path, driven by foreign oil demand that follows AR(2) process (not shown)

Is this a likely scenario?
(China’s PMI fell from 57 to 51 points since January)
Path of oil price

As in, e.g., Christiano et al. ’09, increase in expected inflation is beneficial at zlb

Here, inflation prospects increase via anticipated oil price path, driven by foreign oil demand that follows AR(2) process (not shown)

Is this a likely scenario?
(China’s PMI fell from 57 to 51 points since January)

Furthermore, oil price is problematic as vehicle for anticipated inflation
Path of oil price

Empirically, oil price is a random walk (Abosedra '05) because of speculative price, but oil not storable in the model. The RW implies less expected inflation, and GDP effects might vanish.
Empirically, oil price is a random walk (Abosedra ‘05) because speculative price, but oil not storable in the model. RW: less expected inflation, GDP effects might vanish.
Complete path anticipated
Empirically, oil price is a random walk (Abosedra ’05) b/c speculative price, but oil not storable in the model
Complete path anticipated

Empirically, oil price is a random walk (Abosedra ’05) b/c speculative price, but oil not storable in the model

RW: less expected inflation, GDP effects might vanish
Calibration

Severe recession creates deflation
Severe recession creates deflation
Not observed in the US
Severe recession creates deflation
Not observed in the US
Erceg & Lindé: case for flatter Philips Curve
Severe recession creates deflation
Not observed in the US
Erceg & Lindé: case for flatter Philips Curve
In this case, output effect much smaller
Monetary Policy

In the model, policy makers do not change behavior at zlb
Monetary Policy

In the model, policy makers do not change behavior at zlb

In reality, monetary (and fiscal) policy was quite creative
In the model, policy makers do not change behavior at zlb.

In reality, monetary (and fiscal) policy was quite creative.

Nonconventional monetary policy could make zlb less important.
Monetary Policy

In the model, policy makers do not change behavior at zlb.

In reality, monetary (and fiscal) policy was quite creative.

Nonconventional monetary policy could make zlb less important.

Even without, might be optimal to stay longer at the zlb, thereby changing dynamics (Eggerston/Woodford ’03).
Sensitivity

Relatively high weight of 2 on inflation in Taylor rule (might shorten zlb after inflationary shock)
Sensitivity

Relatively high weight of 2 on inflation in Taylor rule (might shorten zlb after inflationary shock)

How important are GHH preferences? (higher consumption today could reduce labor supply, lowering GDP)
Sensitivity

Relatively high weight of 2 on inflation in Taylor rule (might shorten zlb after inflationary shock)

How important are GHH preferences? (higher consumption today could reduce labor supply, lowering GDP)

How important are different oil intensities of Home and Foreign?
Sensitivity

Relatively high weight of 2 on inflation in Taylor rule (might shorten zlb after inflationary shock)

How important are GHH preferences? (higher consumption today could reduce labor supply, lowering GDP)

How important are different oil intensities of Home and Foreign?

How important oil price elasticity of 0.38? (large price movements)
Interesting experiment, deepens our understanding of zlb
Conclusion

Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects
Conclusion

Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects

Conduct several robustness checks
Conclusion

Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects

Conduct several robustness checks

Suggestions:
Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects

Conduct several robustness checks

Suggestions:
 • Clearly state motivation
Conclusion

Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects

Conduct several robustness checks

Suggestions:
 - Clearly state motivation
 - Welfare: is this oil shock beneficial?
Conclusion

Interesting experiment, deepens our understanding of zlb

Authors provide clear intuition about effects

Conduct several robustness checks

Suggestions:

• Clearly state motivation
• Welfare: is this oil shock beneficial?
• Policy implication: anticipated import/energy tax?