Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	000000	00000000000	

The Selection Effect of International Competition (*a.k.a.:* Trade-revealed TFP)

Andrea Finicelli, Patrizio Pagano, and Massimo Sbracia

Massimo Sbracia massimo.sbracia@bancaditalia.it DG ECFIN's 5th Annual Research Conference Brussels, October 16-17 2008

Introduction ••••••	The EK model 000	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion
1				
Motivat	ion			

- The Ricardian model does not deliver a positive effect of trade openness on the TFP. One can build textbook examples in which one country holds a comparative advantage in the production of low-productivity goods, so that its TFP diminishes after openness
- Yet, growing empirical evidence especially studies based on firm-level data is pointing out that trade has a significant positive impact on TFP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• One question we tackle here is: are those textbook examples "theoretically" robust?

- We build on the Ricardian trade model of Eaton and Kortum, from which we obtain a closed-form expression of the TFP of the tradeable sector:
 - The TFP of the tradeable sector of an open economy with perfectly competitive markets = autarky TFP augmented by a measure of trade openness (*trade-revealed TFP*)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Then: trade openness always raises the TFP of the tradeable sector, a remarkable difference with respect to standard Ricardian models

- The result is proved under the assumptions of the EK model: Fréchet distribution and mutual independence of country technologies. BUT: neither of these assumptions is necessary! The prediction that TFP rises is very general
 - It holds for correlated Fréchet distributions, with the extent of the productivity gain decreasing as correlation increases
 - Under mutual independence, it holds for any distribution of country technologies, including, then, all the distributions used in this literature, such as Pareto, Weibull, uniform

- With perfect competition we are able to obtain the same result as Melitz, BUT there are key differences about the way in which the TFP increases
- Here firms do not self-select. It is international competition that forces them to exit: not only firms with low-productivity, but also firms with high-productivity (selection effect of international competition)
- TFP increases because the exit of "some" high-productivity firms is more than compensated by the exit of "many" low-productivity firms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other findings: Evidence (i)

- The model yields a simple method to quantify this effect. For a sample of 19 OECD countries, the contribution of international competition to the TFP of the manufacturing sector was, on average, 9.4% in 2002 (5.8% in 1985)
- We link model parameters to the TFP of the tradeable sector relative to that of another country. Then, we can estimate it: (i) the resulting TFP (trade-revealed TFP) is a real estimate (not just a residual), (ii) it requires data on bilateral trade flows instead of hard-to-get data on the volume of physical capital

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Introduction
 The EK model
 Trade-revealed TFP
 Intuition, extensions

 00000●
 000
 000
 000000

 6
 6
 6

Empirics Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Other findings: Evidence (ii)

- Finally, we focus on the manufacturing TFP of Italy, relative to that of the US, and compare it with a development-accounting TFP (and with other estimates)
- Results show that **the dynamics of the two variables are surprisingly similar, but an appealing difference in levels emerges**: our *trade-revealed TFP* no longer yields the puzzling result that Italy is the most productive country in the world

Introduction 000000	The EK model ●○○	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion
7				
EK redu	X			

- a. Consumers have CES preferences
- b. Trade barriers are modeled as iceberg costs, $d_{ni} \geq 1$
- c. Perfect competition and constant returns-to-scale
- d. Heterogeneous firms with Fréchet-distributed technologies

Introduction 000000	The EK model ○●○	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion 0000000000		
8						
Technologies I						

 $z_i(j)$ is efficiency of country i in producing the tradeable good j, with $i \in \{1, ..., N\}$ and $j \in [0, +\infty)$;

$$q_{i}\left(j
ight)=z_{i}\left(j
ight)\cdot I_{i}\left(j
ight)$$
 ,

 $q_{i}\left(j
ight)=$ amount of good j produced by the representative firm of country i

 $I_i(j)$ = amount of input needed to produce that output (the bundle of input will include labor and intermediate goods)

Introduction 000000	The EK model ○○●	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics 000000000	Conclusion 00	
9						
Technologies II						

For each country *i*, the $z_i(j)$ are extracted from a country-specific Fréchet distribution: $Z_i \sim Frechet(T_i, \theta)$

$$\mathsf{Pr}\left(Z_i < z
ight) = \exp\left(-T_i \cdot z^{- heta}
ight)$$
 ,

with $T_i > 0$, $\theta > 1$, and $\{Z_i\}_{i=1}^N$ mutually independent

 T_i , the **state of technology**, reflects country *i*'s *absolute advantages*

 θ , the **"precision"** of Z_i , is inversely related to dispersion of Z_i and the gains from trade (*comparative advantages*)

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	000000	00000000	00
10					

Our first contribution: the TFP of tradeable goods

- The mean of Z_i refers to the theoretical distribution of the productivities of *all tradeable goods*, i.e. includes also goods that would be produced only under autarky
- We can use the model to single out the distribution of the productivities of the firms who actually engage in the production of some goods
- We call this random variable TFP; and we prove the following result:

(日) (同) (三) (三) (三) (○) (○)

Introduction 000000	The EK model 000	Trade-revealed TFP ○●○	Intuition, extensions 000000	Empirics 000000000	Conclusion 00		
11							
Proposition 1							

Proposition (1)

If $Z_i \sim Fréchet(T_i, \theta)$ and markets are perfectly competitive then:

 $TFP_i \sim Fréchet\left(\Lambda_i, \theta
ight)$,

where

$$\Lambda_i = T_i + \sum_{k \neq i} T_k \left(\frac{c_k d_{ik}}{c_i} \right)^{-\theta} . \tag{P1}$$

The mean $E(\mathsf{TFP}_i) = \Lambda_i^{1/\theta} \cdot \Gamma\left(\frac{\theta-1}{\theta}\right)$ is our *trade-revealed TFP*

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Introduction 000000	The EK model 000	Trade-revealed TFP ○○●	Intuition, extensions 000000	Empirics Conclusion 0000000000		
12						
Proposition 2						

Proposition (2)

$$\Lambda_i = T_i \left(1 + \frac{IMP_i}{PRO_i - EXP_i} \right) . \tag{P2}$$

A by-product of Prop. 2 is a Ricardian measure of trade openness: instead of the sum of nominal imports and exports scaled by the nominal GDP or by GDP in PPP US\$ (Alcalá-Ciccone, 2004), **Ricardian trade theory suggests to use the value of total absorption scaled by the value of the domestic production sold domestically**

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	00000	0000000000
13				

"How" TFP increases: EK versus Melitz (i)

- Essential ingredients: two countries (*n* and *i*), no trade barriers (i.e. $d_{ni} = d_{in} = 1$), no intermediate goods ($\beta = 1$), identical input costs (i.e. $c_n = c_i = 1$); then country *i* produces and exports good *j* if and only if z_i (*j*) $\geq z_n$ (*j*)
- Any firm can survive or die after openness, and the probability of surviving (dying) is increasing (decreasing) in its own productivity. The probability of surviving for a firm with productivity z > 0:

$$\Pr\left(Z_i \geq Z_j | Z_i = z\right) = f\left(z\right) = \exp\left(-T_n \cdot z^{- heta}\right)$$

is always included in the open interval (0,1) and $f^\prime>0$

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	00000	00000000	00
14					

"How" TFP increases: EK versus Melitz (ii)

- "Exceptional export performance"
- Reintroduce trade barriers (otherwise all producers would also export); distribution of the productivities of the exporters:

$$exporters_i \sim Fréchet \left(T_i + T_n \cdot d_{ni}^{ heta}, heta
ight)$$
while: TFP $_i \sim Fréchet \left(T_i + T_n \cdot d_{in}^{- heta}, heta
ight)$

 E (exporters_i) > E (TFP_i). BUT: in Melitz even the worst exporter has a higher productivity than the best non-exporter; here few "bad" exporters and "good" non-exporters coexist with many "good" exporters and "bad" non-exporters

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	00000	00000000	00
15					

Extension: are the propositions robust? (i)

- The Fréchet assumption is not necessary
- In the simplified setup, the result $E(\text{TFP}_i) \ge E(Z_i)$ can be written as:

$$E(Z_i|Z_i \geq Z_n) \geq E(Z_i)$$

- This inequality does not hold for all the joint distributions of Z_i and Z_n . However:
- The assumption of independence is sufficient for it to hold, irrespectively of the distribution of Z_i and Z_n . In other words: under mutual independence TFP always rises after openness

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	000000	000000000	0
16					

Extension: are the propositions robust? (ii)

The independence assumption is not necessary

• A multivariate extension of the Fréchet distribution:

$$\Psi_{i,n}(z_i, z_n) = \exp\left\{-\left[\left(T_i \cdot z_i^{-\theta}\right)^{1/r} + \left(T_n \cdot z_n^{-\theta}\right)^{1/r}\right]^r\right\}$$

- r = 1: then Z_i and Z_n are independent
- r < 1, then Z_i and Z_n are positively correlated
- $r \rightarrow 0$, then the correlation between Z_i and Z_n tends to 1

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	0000000000
17				

Trade with a symmetric country

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	00000	0000000000
18				

Trade with an asymmetric country

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conc	lusion
000000	000	000	000000	0000000000	
10					

Measuring the selection effect

Denote:

$$\Omega_i = 1 + rac{IMP_i}{PRO_i - EXP_i}$$

• then the TFP gain is
$$(\Omega_i)^{1/\theta}$$

- (memo: gain in real wages is $(\Omega_i)^{1/\theta\beta}$)
- we follow Alvarez and Lucas and set heta=6.67

Introduction	The EK mode
000000	000
20	

Trade-revealed TFP

Intuition, extensions

Empirics 0000000000

TFP gains from openness

	1985	1990	1995	2002	mean 85-02
Australia	3.4	3.2	4.2	4.9	3.9
Austria	7.5	9.1	10.0	14.5	10.4
Belgium	20.2	19.5	22.7	34.1	23.4
Canada	6.4	6.7	9.8	9.8	8.8
Denmark	9.5	10.3	11.5	16.4	11.7
Finland	4.2	4.7	5.0	5.6	5.1
France	3.4	4.5	4.8	5.8	4.7
Germany	4.0	4.3	4.1	5.8	4.5
Greece	4.7	6.2	6.7	7.0	6.5
Italy	2.6	2.8	3.5	4.2	3.3
Japan	0.5	0.6	0.6	0.8	0.6
Netherlands	13.4	15.5	15.6	20.7	16.8
New Zealand	5.6	6.1	6.3	7.4	6.2
Norway	8.5	8.5	8.7	8.8	8.7
Portugal	2.7	5.8	6.9	9.1	6.7
Spain	2.2	3.6	4.2	5.6	4.2
Sweden	5.9	6.0	7.4	7.6	7.0
United Kingdom	4.9	5.3	6.1	7.3	5.9
United States	1.4	1.6	1.8	2.2	1.8
mean across countries	5.8	6.5	7.4	9.4	7.4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	000000000

Measuring manufacturing TFP: three steps

- Estimate a testable implication that relates trade data to trade barriers and a country dummy that depends on its state of technology and labor costs (*a competitiveness index*)
- Use estimated competitiveness indexes and data on nominal wages to extract states of technology

(日) (同) (三) (三) (三) (○) (○)

Use Proposition 2 to compute trade-revealed TFPs

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	000000	000000000000000000000000000000000000000)
22					

Step 1: estimating competitiveness

From market shares and prices EK obtain:

$$\log\left[\left(\frac{X_{ni}}{X_{nn}}\right)\left(\frac{X_{ii}/X_i}{X_{nn}/X_n}\right)^{\frac{1-\beta}{\beta}}\right] = S_i - S_n - \log d_{ni},$$

with:

$$S_{i} \equiv \frac{1}{\beta} \log (T_{i}) - \theta \log (w_{i})$$
$$\log d_{ni} = \theta d_{k} + \theta m_{n} + \theta b + \theta I + \theta a$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics	Conclusion
000000	000	000	000000	00000000000)
23					

Step 2: extracting technologies

• From the S_i's extract the T_i's as:

$$T_{i} = \left[\exp\left(S_{i}
ight) \cdot w_{i}^{ heta}
ight]^{eta}$$

where

$$w_i = comp_i \cdot \exp\left(-gh_i
ight)$$
 ,

 $comp_i$ nominal compensation per worker; g = 0.06 return on education; h_i average years of schooling; $\theta = 6.67$

 Exchange rates to convert wages in a common currency: EK use market rates, we show it is better to use PPPs

Introduction 000000	The EK model	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion
24				

Step 3: trade-revealed TFPs

Finally:

$$\lambda_i = \left[rac{T_i}{T_{us}} \cdot rac{\Omega_i}{\Omega_{us}}
ight]^{1/ heta}$$
 ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(the subscript *us* refers to the United States)

Introduction 000000	The EK model 000	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion
25				
Results				

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	000000000000
26				

Case study: Italy vs. US

Assume

$$Y_i = A_i K_i^lpha H_i^{1-lpha}$$
 ,

where

$$H_i = L_i \cdot \exp\left(-gh_i\right)$$
,

backworking TFP:

$$A_{i} = \left(\frac{Y_{i}}{L_{i}}\right)^{1-\alpha} \left(\frac{K_{i}}{Y_{i}}\right)^{-\alpha} \left(\frac{H_{i}}{L_{i}}\right)^{-(1-\alpha)}$$

Calibration: g = 0.06 and $\alpha = 1/3$; K_i from perpetual inventory; L_i = worked hours in the manufacturing sector

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	00000000000
27				

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	00000000000
28				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 000000	The EK model 000	Trade-revealed TFP 000	Intuition, extensions 000000	Empirics Conclusion
29				
Summar	у			

- Development-accounting: relative TFP of Italy is equal to 1.21 in 1985, then collapses to 0.94 in 2002 a loss of 27 percentage points!
- Trade-revealed: relative TFP is lower than 1 in 1985 (0.98), then declines to 0.89 in 2002 a loss of 9 percentage points

• US BLS and Italy's ISTAT estimate manufacturing TFP *growth rates*: total change in the relative TFP of Italy in 1985-2002 shows a loss of 11 percentage points

Introduction	The EK model	Trade-revealed TFP	Intuition, extensions	Empirics Conclusion
000000	000	000	000000	
Conclus	ion			

- Our analysis unravels the probabilistic foundations of the results on trade and TFP in the Ricardian model
- We deliver the same prediction as Melitz model, but the way in which the TFP increases seems more general and consistent with the reality
- The trade-revealed methodology allows to overcome data limitations that hamper sectoral estimates of TFP
- Results from the case study seem promising and provide a sort of indirect validation of the EK model