Labour and product market reforms: questioning policy complementarity

Bruno Amable, University of Paris X and PSE (Paris-Jourdan Sciences Economiques)

Donatella Gatti, University of Lyon 2, PSE (Paris-Jourdan Sciences Economiques) and IZA

(Copyright rests with the authors)
Aim of presentation

• Theoretical analysis of economic complementarity vs. substituability of reforms in labour and product markets

• Preliminary empirical findings on 18 OECD countries, from 1980 up to 2004
Outline

• Product market competition and employment

• Interactions across policies

• The model

• Main theoretical results

• Preliminary empirical findings

• Conclusion
Product market competition and employment

Main positive effects of PM competition:

– increased PM competition lowers mark-ups and shifts out the labour demand curve (Nickell [1999])
– tighter PM competition favours the entry of new firms (Blanchard and Giavazzi [2003] and Koeniger and Vindigni [2003])
– increased PM competition yields productivity improvements (Aghion et al. [2002], Peretto [2000] and Gersbach [2000])
– tighter PM competition makes labour demand more sensitive to real wages; this shifts down the bargained real wage schedule (Nickell [1999]; Blanchard and Giavazzi [2003])

However:

– short-term costs due to lower PM and LM rents (Blanchard and Giavazzi [2003])
– in dynamic efficiency wage models, PM competition yields reduced job security, hence the efficiency wage schedule shifts upward: possible long term employment losses (Amable and Gatti [2004])
Interactions across policies (1)

• Policies interactions within the labour market (Coe and Snower, 1997; Orszag and Snower, 1999)

• Interactions across labour and financial market imperfections (Wasmer and Weil, 2004; Acemoglu, 2001)

• Interactions across product and labour market imperfections (Blanchard and Giavazzi, 2003; Koeniger and Vindigni, 2003; Saint Paul, 2002)
 – LM deregulation, by lowering rents, reduces incentives to fight for capturing them and eases PM deregulation and *vice versa*
 – free entry makes it more difficult for firms to bear the costs of EPL
 – LM competition increases employment and lowers incentives to protect jobs

• No analysis of interactions across market regulations in dynamic efficiency wage frameworks
Interactions across policies (2)
Empirical findings

- Boeri et al. [2000] and Nicoletti et al. [2000] prove that OECD indexes of regulations in product and labour markets are strongly correlated

- Kugler and Pica [2003] show, on Italian data, that a tighter entry regulation lowers the gains associated with LM deregulation

- No systematic empirical investigation of interactions across LM and PM policies
The model (1)
General features

• Imperfections on both LM and PM:
 • PM: imperfect competition due to entry barriers
 • LM: intrinsic imperfections due to workers incentive problem
 plus legislative intervention through firing costs

• Firms are subject to productivity shocks:
 • High vs. low productivity firms (or jobs)
 • Transitions can take place in both directions

• Two building blocks:
 • Wage setting
 • Price setting
The model (2)
Wage setting

- Efficiency wage model *a la* Shapiro and Stiglitz [1984]
- Workers instantaneous utility depends on real wage and on on-the-job effort
- Effort is either 0 (shirking) or $e > 0$
- Firms have a monitoring device allowing to detect a shirking worker with probability $1 > x > 0$
- Workers caught shirking lose their jobs
The model (2)

Wage setting

• Workers employed in firms hit by a bad shock lose their jobs with probability q

$$ q = \frac{lg - lb}{lg} = \left(1 - \frac{1}{l}\right) $$

$$ l = \frac{lg}{lb}. $$

• They receive a lump sum F paid by the firm

• Workers fired because of shirking receive nothing
The model (2)

Wage setting

• By imposing the no-shirking conditions, one obtains

\[
\begin{align*}
 w^G &= \frac{a + p \cdot q + r + x}{x} \cdot e - F \cdot p \cdot q \\
 w^B &= \frac{a + r + x}{x} \cdot e
\end{align*}
\]

• Both \(a \) and \(q \) are endogenous

\[
\frac{\partial w^G}{\partial q} \quad \text{has the sign of} \quad \frac{e}{x} - F
\]
The model (3)

Labour demand

• Firms benefit from imperfect competition on PM and impose a mark-up over production costs → this lowers labour demand

• Because of PM imperfections high and low productivity firms can impose differentiated prices: \(P_G \) and \(P_B \) → this possibility fades away when PM competition increases → following shocks, firms replace price adjustments with quantity adjustments (through LM turnover)
The model (4)
Macroeconomic equilibrium

- As in Shapiro and Stiglitz [1984], equilibrium employment is determined by crossing optimal labour demand curves and marginal labour cost schedules.

- First, we determine the hiring rate a compatible with the flow equilibrium condition

$$a \cdot \left(N - \frac{L_G + L_B}{2} \right) = \frac{p}{2} \cdot q \cdot L_G$$

- At any instant a fraction p of G-firms switch positions with B-firms.
- Firms adjust their labour force to its optimal value.
- Size of adjustment is $q \ L_G$.
The model (4)

Macroeconomic equilibrium

\[
(r+p) \cdot F + p \cdot e/x = \alpha_G \cdot P_G(l^*) \cdot (1 - 1/\eta) + \alpha_B \cdot P_B(l^*) \cdot (1 - 1/\eta)
\]

\[
\phi^G(L,l^*) \quad \phi^B(L,l^*)
\]

\[
\phi^G \quad \phi^B
\]
Main theoretical results (1)

• An increase in redundancy payments F always lead to an increase in aggregate employment.

• The effect of PM competition is ambiguous: more competition improves access to employment, but it increases job losses.

• Let us consider two policy dimensions (reforms can go in both directions):
 – PM regulation decreases competition and the elasticity η.
 – LM regulation, via legislative firing constraints, increases the value of F.

• How should one combine these two policies?
Main theoretical results (1)

- Policies can be complements or substitutes with respect to employment

- Two policies are complements if each of them is more effective in improving employment when the other one is also implemented:
 - if \(\frac{\partial L}{\partial \eta} < 0 \) and \(\frac{\partial^2 L}{\partial \eta \partial F} < 0 \) the positive effect of PM regulation on employment is stronger when F is increased → complementarity between PM and LM regulations
 - if \(\frac{\partial L}{\partial \eta} > 0 \) and \(\frac{\partial^2 L}{\partial \eta \partial F} > 0 \) the positive impact of PM deregulation is larger when F is increased → complementarity between PM deregulation and increasing LM regulation

- Two policies are substitutes if implementing any of them decreases the effectiveness of the other one
Main theoretical results (2)

Simulations

- Complementarity between PM and LM regulations ($\frac{\partial L}{\partial \eta} < 0$)

- Higher F and stronger PM regulation foster job security, the latter by reducing employment differential across B− and G−firms. Increased job security contributes to real wage moderation

- For very high values of F and low values of η, PM and LM regulations are policy substitutes. The economy is close to full employment: increasing F makes unnecessary further increases in PM regulation
Main theoretical results (2)

Simulations

• Substitution between PM deregulation and LM regulation \(\frac{\partial L}{\partial \eta} > 0. \)

• Increased PM competition yields stronger turnover while higher F promote job security. Hence, although each policy enhances employment, together they provide conflicting incentives to workers and employers.

• Lowering F magnifies the positive effect of PM competition, but yields lower employment.
Preliminary empirical findings

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>lag jobless rate</td>
<td>.4804962***</td>
<td>.8478554***</td>
<td>.8141533***</td>
<td>.4878916***</td>
</tr>
<tr>
<td>PMR</td>
<td>3.372508**</td>
<td>3.790282***</td>
<td>3.445991***</td>
<td></td>
</tr>
<tr>
<td>EPL</td>
<td>-3.707794***</td>
<td>-2.241889***</td>
<td>-2.843671***</td>
<td>-1.232287***</td>
</tr>
<tr>
<td>EPL*PMR</td>
<td></td>
<td></td>
<td></td>
<td>1.828228</td>
</tr>
<tr>
<td>RR</td>
<td>2.314394</td>
<td>1.83658</td>
<td>2.128872</td>
<td></td>
</tr>
<tr>
<td>COOR</td>
<td>-1.573911***</td>
<td>-.4780409</td>
<td>-.9362384***</td>
<td>-1.514647***</td>
</tr>
<tr>
<td>CBI</td>
<td>.1498346</td>
<td>.027039</td>
<td>-.1430191</td>
<td>.200488</td>
</tr>
<tr>
<td>UD</td>
<td>.1804011***</td>
<td></td>
<td></td>
<td>.203967***</td>
</tr>
<tr>
<td>d_UD</td>
<td></td>
<td>.2994036***</td>
<td>.2629805***</td>
<td></td>
</tr>
<tr>
<td>TW</td>
<td>.1147237***</td>
<td>.0243538</td>
<td>.0356913</td>
<td>.0855858*</td>
</tr>
<tr>
<td>FA</td>
<td>.016597**</td>
<td></td>
<td></td>
<td>.0167462**</td>
</tr>
<tr>
<td>d_FA</td>
<td></td>
<td>.0182108**</td>
<td>.0177629**</td>
<td></td>
</tr>
<tr>
<td>RER</td>
<td>-2.742293**</td>
<td>-2.992851**</td>
<td>-3.250178***</td>
<td>-2.545249**</td>
</tr>
<tr>
<td>Inflation</td>
<td>-.3814308***</td>
<td>.0018331</td>
<td>-.0222728</td>
<td>-.3883498***</td>
</tr>
<tr>
<td>Credit</td>
<td>-.1054779***</td>
<td>-.0717003***</td>
<td>-.0702153***</td>
<td>-.0974894***</td>
</tr>
<tr>
<td>Estimator</td>
<td>PCSE</td>
<td>PCSE</td>
<td>PCSE</td>
<td>PCSE</td>
</tr>
<tr>
<td>time and country dummies</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>AR1</td>
<td>y</td>
<td>y</td>
<td></td>
<td>panel specific</td>
</tr>
<tr>
<td>rho</td>
<td>.1787095</td>
<td>.1509307</td>
<td></td>
<td>.1753568</td>
</tr>
<tr>
<td>robust</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Number obs.</td>
<td>238</td>
<td>226</td>
<td>226</td>
<td>238</td>
</tr>
</tbody>
</table>
Preliminary empirical findings

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>lag unemployment</td>
<td>.6942031***</td>
<td>.6937818***</td>
<td>.6665141***</td>
</tr>
<tr>
<td>PMR</td>
<td>2.991014***</td>
<td>3.283917***</td>
<td>2.405103***</td>
</tr>
<tr>
<td>EPL</td>
<td>-.5920692**</td>
<td>-.2595662*</td>
<td>-1.070341***</td>
</tr>
<tr>
<td>EPL*PMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPL*RR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR</td>
<td>.5452509</td>
<td>.5099105</td>
<td>2.066288***</td>
</tr>
<tr>
<td>COOR</td>
<td>-2.156524***</td>
<td>-2.317946***</td>
<td>-1.812675***</td>
</tr>
<tr>
<td>CBI</td>
<td>-.573803***</td>
<td>-.5867212***</td>
<td>-.3366514***</td>
</tr>
<tr>
<td>UD</td>
<td>.0396125***</td>
<td>.040699***</td>
<td>.0407221***</td>
</tr>
<tr>
<td>TW</td>
<td>.0532728***</td>
<td>.0524322***</td>
<td>.0746813***</td>
</tr>
<tr>
<td>FA</td>
<td>.0056632**</td>
<td>.0060357***</td>
<td>.0046396**</td>
</tr>
<tr>
<td>RER</td>
<td>-1.302139*</td>
<td>-1.287773*</td>
<td>-1.51797**</td>
</tr>
<tr>
<td>Productivity (lag)</td>
<td>-5.501064***</td>
<td>-5.53044***</td>
<td>-1.600112**</td>
</tr>
<tr>
<td>Credit</td>
<td>-.0448293***</td>
<td>-.0442707***</td>
<td>-.044485***</td>
</tr>
<tr>
<td>TTB</td>
<td>.1901479***</td>
<td>.1976669***</td>
<td>.0816768*</td>
</tr>
<tr>
<td>eta</td>
<td>.8452574***</td>
<td>.8592565***</td>
<td>.8252756***</td>
</tr>
<tr>
<td>time dummies and fe</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>time inv. variables</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>AR1</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>rho</td>
<td>.3729823</td>
<td>.3767836</td>
<td>.3979176</td>
</tr>
<tr>
<td>robust</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Number obs.</td>
<td>212</td>
<td>212</td>
<td>212</td>
</tr>
</tbody>
</table>
Conclusion

• We show that engaging in PM deregulation yields an implicit LM reform leading to more intense turnover.

• Because job insecurity has a negative impact on incentives, a pressure towards a compensation through higher real wages follows.

• Hence, policies increasing job security may be necessary to offset detrimental effects of labour turnover.

• When increased PM regulation is desirable for employment, a complementarity emerges between PM and LM regulations → both interact to ensure more stable labour relations.

• When tighter PM competition is the desirable policy for employment, PM deregulation and LM regulation become substitute policies → although lowering redundancy payments magnifies the positive effect of PM competition, it also lowers employment; joint deregulation policies have conflicting effects on employment.
The model (2)

Wage setting

- Discounted utilities associated with various possible positions for a worker

\[
\begin{align*}
 r \cdot U &= a \cdot (V^G - U) \\
 r \cdot V^G_S &= w^G + x \cdot (U - V^G_S) + p \cdot q \cdot (U + F - V^G_S) + p \cdot (1 - q) \cdot (V^B - V^G_S) \\
 r \cdot V^G_{NS} &= w^G - e + p \cdot q \cdot (U + F - V^G_{NS}) + p \cdot (1 - q) \cdot (V^B - V^G_{NS}) \\
 r \cdot V^B_S &= w^B + x \cdot (U - V^B_S) + p \cdot (V^G - V^B_S) \\
 r \cdot V^B_{NS} &= w^B - e + p \cdot (V^G - V^B_{NS})
\end{align*}
\]
The model (1)

General features

• A single consumption good and a continuum of intermediate goods over [0, 1]

• Final good is produced competitively. One has:

\[Y_t = \left(\int_0^1 Y_t(j) \frac{n-1}{n} \, dj \right)^{\frac{n}{n-1}} \]

\[P_t = \left(\int_0^1 P_t(j)^{1-\eta} \, dj \right)^{\frac{1}{1-\eta}} \]

\[Y_t(j) = \left(\frac{P_t(j)}{P_t} \right)^{-\eta} \cdot \bar{Y}_t \]

• Monopolistic competition in the intermediate goods market
The model (1)

General features

- Firms are subject to productivity shocks

\[Y_t(j) = \alpha_t(j) \cdot l_t(j) \]

\[\alpha_j(t+dt) = \begin{cases}
\alpha_G \text{ with probability } p \cdot dt \text{ if } \alpha_j(t) = \alpha_B \text{ and with probability } 1 - p \cdot dt \\
\alpha_B \text{ with probability } 1 - p \cdot dt \text{ if } \alpha_j(t) = \alpha_B \text{ and with probability } p \cdot dt \\
\text{ if } \alpha_j(t) = \alpha_G
\end{cases} \]

such that \(\alpha_G > \alpha_B > 0 \).
The model (3)
Labour demand

• For each firm, the value of a marginal job is

\[r \cdot J = \frac{\partial \pi}{\partial l} + E \left[J \right] \]

• Let \(J_G \) being the value of a marginal job in G-firms is and \(J_B \) in B-firms

• A firm hit by a bad shock adjusts its labour force up to the point where \(J_B = -F \). Hence:

\[-r \cdot F = \frac{\partial \pi_{Bj}}{\partial l_{Bj}} + p \cdot (J_G + F) \]
\[r \cdot J_G = \frac{\partial \pi_{Gj}}{\partial l_{Gj}} - p \cdot (J_G + F) \]

• According to the state \(j \) of the firm, the marginal revenue is

\[\frac{\partial \pi_j}{\partial l_j} = \frac{P_j}{P} \cdot \left(1 + \frac{\partial P_j}{\partial l_j} \cdot \frac{l_j}{P_j} \right) - w^j - \frac{\partial w^j}{\partial l_i} \cdot l_j \]
The model (3)

Labour demand

- Intermediate goods price varies across G- and B-firms: \(P_G \) and \(P_B \). We normalize \(P = 1 \)

- One has

\[
\frac{P_j}{P} \cdot \left(1 + \frac{\partial P_j}{\partial l_j} \cdot \frac{l_j}{P_j}\right) = \frac{\alpha_G \cdot P_G \cdot \left(1 - \frac{1}{\eta}\right)}{\alpha_B \cdot P_B \cdot \left(1 - \frac{1}{\eta}\right)}
\]

- Hence, given efficiency wage constraints, first-order conditions are:

\[
\alpha_G \cdot P_G \cdot \left(1 - \frac{1}{\eta}\right) = \frac{w^G + p \cdot \left(\frac{e}{x} - F\right) \cdot (1 - q) + p \cdot F}{\frac{a + p + r + x}{x} \cdot e} = \frac{a + p + r + x}{x} \cdot e
\]

\[
\alpha_B \cdot P_B \cdot \left(1 - \frac{1}{\eta}\right) = \frac{w^B - (p + r) \cdot F}{\frac{a + r + x}{x} \cdot e - (p + r) \cdot F}
\]
The model (3)

Labour demand

- Given price index and aggregate production, the expressions for intermediate goods’ prices are:

\[
P_B = \left(\frac{1 + (\alpha \cdot l)^{\frac{\eta-1}{\eta}}}{2} \right)^{\frac{1}{\eta-1}}
\]

\[
P_G = \left(\frac{1 + (\alpha \cdot l)^{\frac{1-\eta}{\eta}}}{2} \right)^{\frac{1}{\eta-1}}
\]

\[
\alpha = \frac{\alpha_G}{\alpha_B}
\]
The model (4)
Macroeconomic equilibrium

- One can express the hiring rate as a function of aggregate and relative employment

\[L = \frac{a \cdot (2 - q)}{a \cdot (2 - q) + \rho \cdot q} \]

- Hence, equilibrium conditions are:

\[\phi^B(L, l) = \alpha_B \cdot P_B(l) \cdot \left(1 - \frac{1}{\eta}\right) \]

\[\phi^G(L, l) = \alpha_G \cdot P_G(l) \cdot \left(1 - \frac{1}{\eta}\right) \]

- Wage schedules are increasing in L; however, their position depends on the equilibrium value of the employment ratio