Wireless Technologies in Industrial Automation

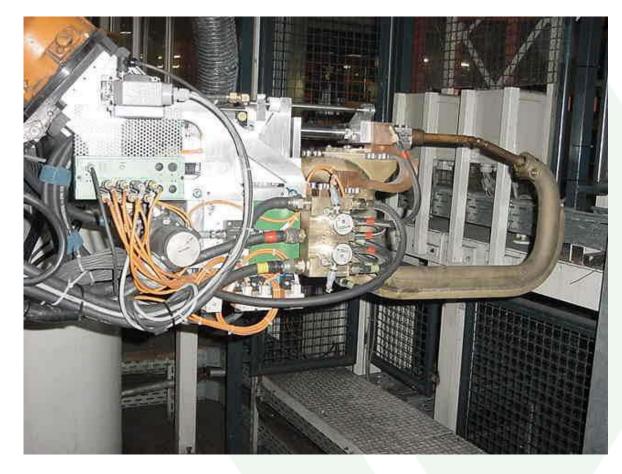
Core technology for advanced manufacturing Challenge and solutions

by Mr Rolf-Dieter Sommer ZVEI Taskforce Wireless in Industrial Automation

European Commission Workshop: *Wireless resources for Advanced Manufacturing* 30 October 2014, Brussels

The European Engineering Industries Association

Content


Wireless Technologies in Industrial Automation

- Application examples and requirements
- Requirements for Industrial Automation
- Main reasons for using the 2.4 GHz band
- Latest versions of EN 300 328 and resulting problems
- Economic consequences
- Challenge and request to the European Commission
- Proposed compromise
- Proposed way forward

Example: Wireless technologies in the automotive industry

Welding tools that are used in car manufacturing

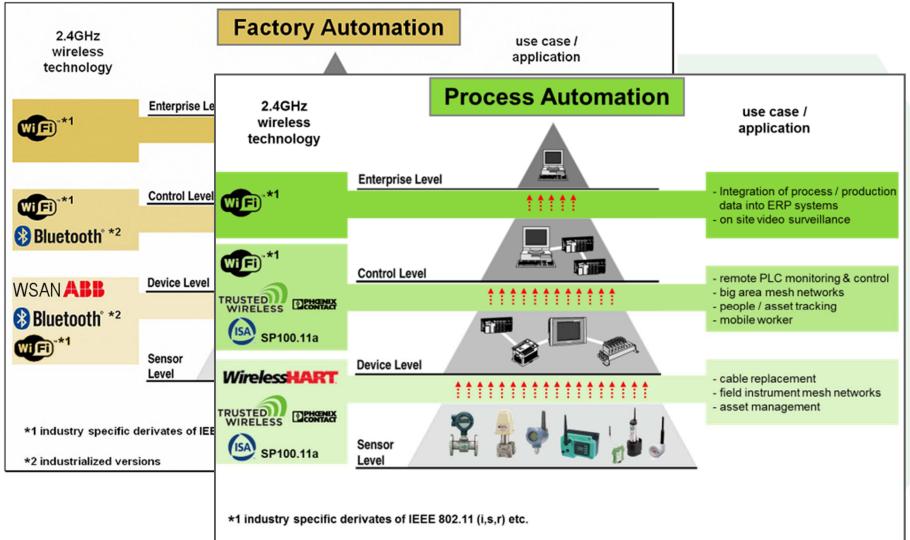
Example: Wireless technologies for logistical purposes

Autonomous vehicles

Example: Wireless technologies in the oil and gas industries

Control of flare system with lots of metal

Example: Wireless technologies in the mining industry


Maintenance free wireless link

The European Engineering Industries Association

Plurality of Technologies in Industrial Automation

Requirements for Wireless Technologies in Industrial Automation

Manufacturing- and Process- automation need

- Transmission distance (Extended plants and non line of sight)
- Determinism
- Short latency
- Robustness
- Co-existence
- Energy efficiency

(Temporal definition)

- (Fast response)
- (Availability of the link, data integrity)
- (Plant management)
- (Battery operated devices)

Industrial Automation uses the licence free 2.4 GHz band because:

- It is above the range of typical electromagnetic interferences (welding processes, frequency inverters, ...).
- It offers acceptable propagation characteristics regarding distances and material penetration for non line of sight links. Higher frequencies are less suitable as attenuation increases and propagation becomes quasi-optical.
- The bandwidth in combination with frequency management is sufficient.
- The band is globally established with similar regulatory details. Thus it enables competitive solutions for the international market.

Long term operational experience is available:

- Different wireless technologies in the 2.4 GHz band are operative in industrial applications for many years: coexistence difficulties have not been reported.
- Frequency planning, heat map analysis and signal strength verification are state of the art and ensure coexistence.

Latest versions of EN 300 328 and resulting problems

Revision of EN300328

- v1.8.x requires devices with more than 10mW power to automatically adapt e.g. "*listen before talk*" (LBT).
- Devices must immediately search any other transmission and if any are detected they must cancel their transmission need at once.
- This kind of adaptivity is aligned with the requirements of consumers, offices and IT applications. It does not reflect the needs of industrial automation.

Resulting problems

The kind of automation mechanisms in the version v1.8.x is detrimental for determinism, latency and energy efficiency.

Economic consequences for Advanced Manufacturing

The special European path for the 2.4GHz band:

- creates unfavorable conditions for a fast development and deployment of Advanced Manufacturing in Europe,
- jeopardises the global competitiveness of machine and plant constructors by reduced technological alternatives,
- threatens the productivity margin of European industries by Production unneccessary need of investment.

Wireless has a pull-through effect on the value chain: **Revenue loss at device level shows**

Machine and plant constructors

Device manufacturers

100 times on production level

Value chain

Revenue in Mrd. €	DE 2012	EU 2012	Revenue in Mrd. €	DE 2012	EU 2012	Revenue in Mrd. €	DE 2012	EU 2012
Automation	38,1	96,2	Machine constr.	205	622	Processing trade	1.738	6.900
	,	,				Chemical	189	520
						Automotive	362	845
						Electrical	167	600

Challenge and request to the European Commission


- Shipments of wireless devices fulfilling the requirements of industrial automation must be continued beyond 2014
- A compromise is necessary
- A procedure is needed to put this compromise into effect before end of 2014

Proposed compromise

The "10 mW-Factory" compromise:

- Devices outside the factory presumed victims shall sense devices located inside the factory not stronger than any legacy 10mW devices in permitted short distance.
- Devices located inside the factory may be operated at 100 mW with a shared access mechanism suitable for industrial applications.

Proposed way to proceed

- European Commission to add a note in the OJEU on EN 300 328 v.1.8.1 before end 2014 to allow the application of the "10 mW-Factory" compromise.
- ETSI to be requested to integrate the compromise in the next edition of EN 300 328