

Land Surface Analysis SAF (LSA SAF)

Pedro Viterbo

Instituto de Meteorologia, Lisboa, Portugal

Acknowledgments: Isabel Trigo & the LSA SAF consortium

Workshop on GMES GLOBAL LAND component of the Land Service 12-13 December 2011 Lisbon

Layout

- Overview of the LSA SAF: now and the future
- Examples & applications
- Future sensors & evolution of user needs
- Concluding remarks

Layout

- Overview of the LSA SAF: now and the future
- Examples & applications
- Future sensors & evolution of user needs
- Concluding remarks

LSA SAF in a nutshell

- EUMETSAT Satellite Applications Facility on Land Surface Analysis: Dedicated to algorithm development, validation and operational production of land surface related products (primarily) based on European meteorological satellites (MSG and METOP)
- Real time operations (i.e., some products are available every 15 min, ~1 hour after observed)
- Effective use of MSG and EPS data related to:
 - LAND
 - LAND-ATMOSPHERE Interactions
 - **BIOSPHERIC** Applications
- Timely provide:
 - Products
 - User support
- Reviewed (~annually) by technical and scientific review panels

The Land SAF Consortium

A consortium of 7 Institutions in 6 countries

Meteo-France (MF), France

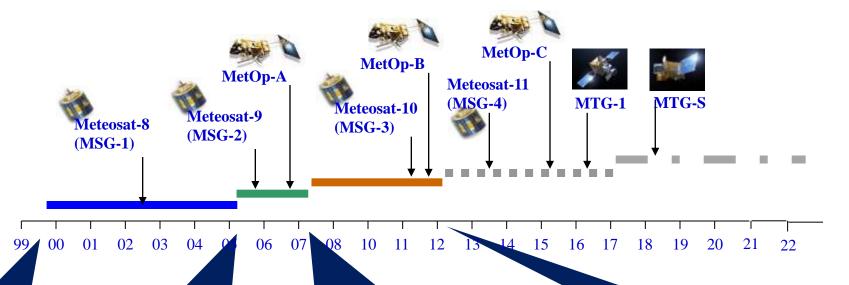
Royal Meteorological Institute (RMI), Belgium

Finnish Meteorological Institute (FMI), Finland

Karlsruhe Institute of Technology

• IDL, University of Lisbon

• UV, University of Valencia


Organisation principles

- Algorithms developed and validated by one of the patners
- Algorithms handed over to IM for integration and production
- Operational chain in Lisbon

Land SAF Chronogram

Development Phase: Sep 1999

Initial
Operations
Phase:
Feb 2005

Continuous
Development &
Operations Phase:
Mar 2007

Continuous
Development &
Operations Phase 2:
Mar 2012

LSA SAF current consortium

- Instituto de Meteorologia (IM), Portugal
- METEO FRANCE
- Meteo-France (MF), France
- ×MI
- Royal Meteorological Institute (RMI), Belgium
- Finnish Meteorological Institute (FMI), Finland
- ЕІМК
- IMK, University of Karlsruhe
- 0
- IDL, University of Lisbon

• UV, University of Valencia

CDOP-2 new members:

- KCL (UK)
- VITO (Belgium)

Family of products: CDOP-2

Surface Radiation

LST

↓LongWave Flux

↓ShortWave Flux

Albedo

State

Fraction Veg Cover

LAI

fAPAR

NDVI

Vegetation

Water stres

Evapotranspiration

Reference Evap

Wild fires

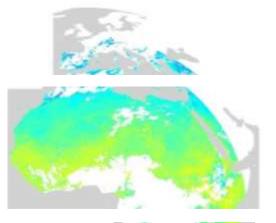
Fire Detection

Fire Radiative Power

Fire Risk (Europe)

MSG

Metop


Increased level of maturity

Product characteristics

- All products have a <u>quality flag</u> (a-priori error bar for LST) field associated
- All products have a Product User Manual and a comprehensive Validation Report (regularly updated)
- 4 production areas for MSG
 - Europe
 - N. Africa
 - S. Africa
 - S. America
- SEVIRI resolution
- Variable time resolution
 - 15 min to 10 days
- EPS products generation for a subset of variables

Additional information & service components

- Users (> 500 registered users)
 - Numerical Weather Prediction
 - Update parameters, Assimilation & Forecast Verification (ECMWF, UKMO, MF, AEMET, IM, ...)
 - GMES Atmosphere (MACC & MACC II)
 - Agriculture & Forestry (JRC)
 - World Food Programme
 - Research (e.g. AMMA, U. Leicester)
 - Environmental Monitoring
 - Hydrology
 - **(...)**
- Help desk
- Regular workshops (biennally since 2002; Toulouse) for user feedback and evolution of user requirements

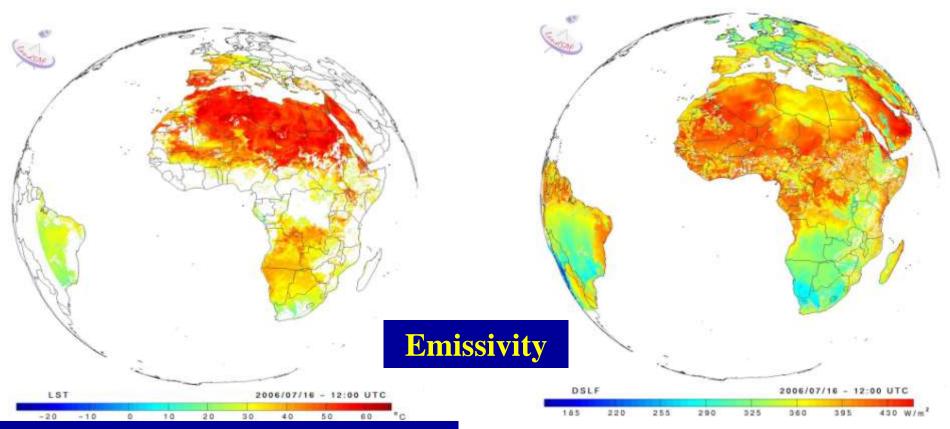
Cooperation and training activities

- Cooperation with other SAFs
 - Shared validation of fluxes with CM and OSI SAF
 - Use of other SAF's parameters to improve LSA SAF products (e.g., H-SAF soil moisture to improve LSA SAF ET)
- Cooperation with EUMETSAT Central Facility
 - Production of Fire Radative Power, developped at EUMETSAT HQ
 - Demonstrated flexibility of overall software architecture
- Geoland-2 (FP7 project, 2008-2012): LSA SAF partners are consortium members
- Work closely with key users
 - JRC (agrometereological applications, VEGA intercomparison)
 - ECMWF for Fire Radiative Power
- Training
 - One training event in Mozambique
 - Modules developed for EUMETRAIN
 - Regular participation in remote sensing courses in Brazil

_ ...

Layout

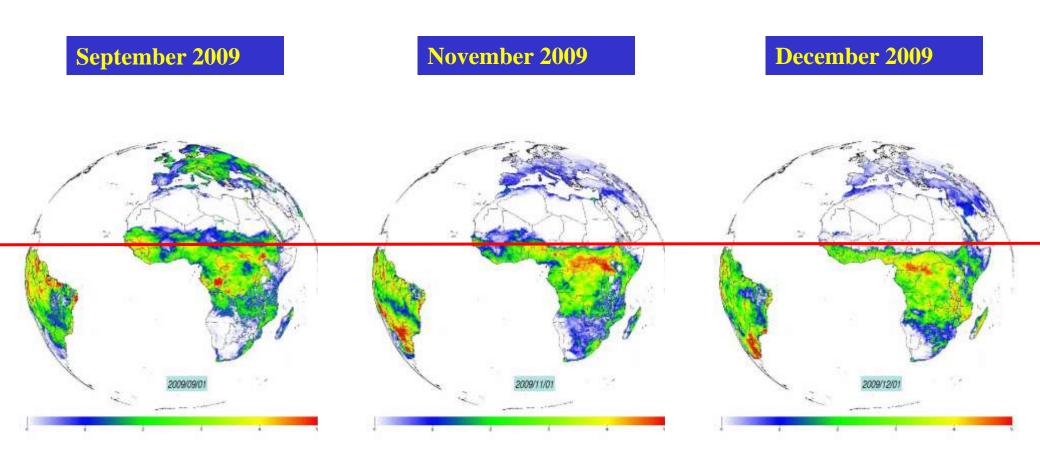
- Overview of the LSA SAF: now and the future
- Examples & applications
- Future sensors & evolution of user needs
- Concluding remarks



Surface Radiation Budget: Longwave

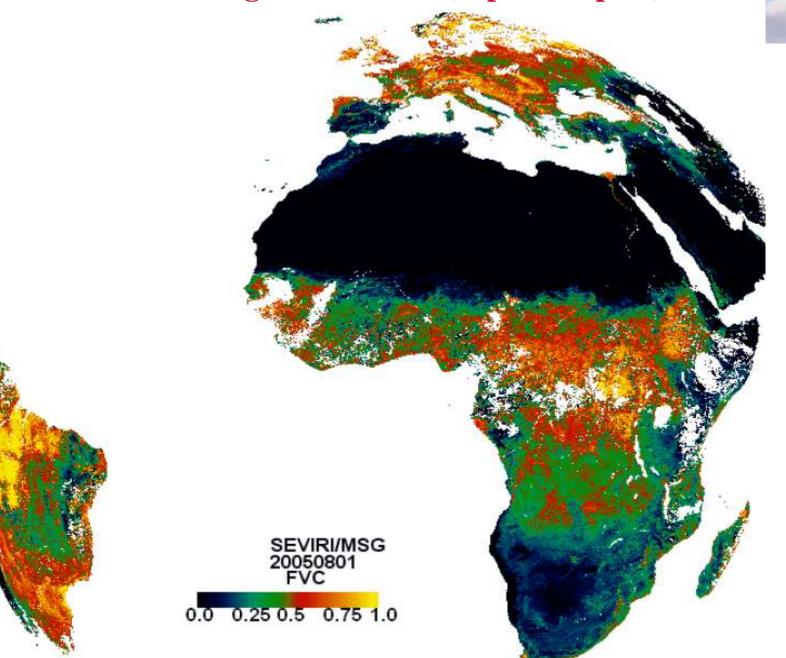
Surface Temperature Every 15 min

Downwelling LW Flux Every 30 min



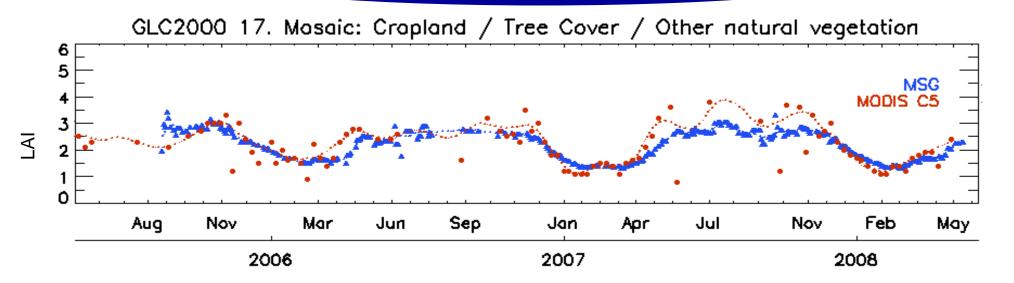
15 Jul 2006 (12 UTC) – 16 Jul 2006 (12 UTC)

Daily evapotranspiration (mm)



LSA SAF

Fraction of vegetation cover (Sep 05- Sep 07)



A common misconception: Higher resolution is better

Leaf Area Index: Central Africa

- •MSG product more robust against double-season false alarms
- •Temporal oversampling benefits the accuracy of retrieved seasonal parameters
 - Both products based on cloud-free images only
 - •MSG samples 50 times/day; MODIS samples 2 times/day
 - •Improved time sampling of MSG compensates for lower resolution

Fire Radiative Power

Algorithm:

- Detects pixels containing active fires
- Reports their time/location and
- Fire Radiative Power (in MW)

Input:

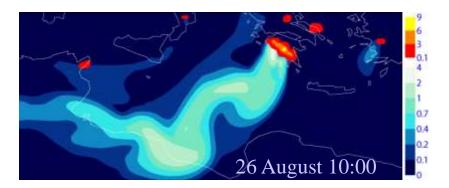

- VIS, MIR + TIR data
- Cloud mask (SAF NWC)
- Landcover map

15-min

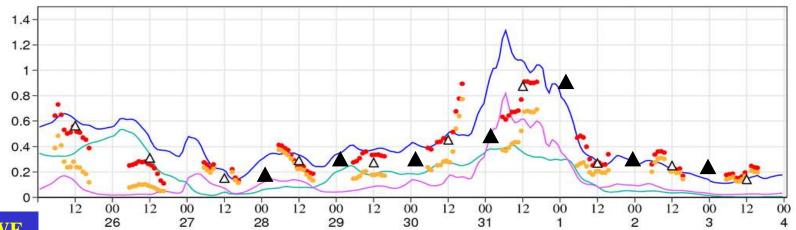
FRP

- **∞ Combustion rate**
- **∞ Smoke release**

 \rightarrow CO₂eq emissions



Modelled AOD of Greek Fire Plumes, August 2007


Instituto de Meteorologia

- Emissions calculated from Fire Radiative Power observed by SEVIRI on Meteosat.
- Emission factors from Andreae & Merlet 2001 and Ichoku & Kaufman 2005.
- Run at 25km global resolution, typical for regional models.

Comparison of model (eyvo) & MODIS AOT at 550nm and L1.5 Aeronet AOT at 500nm FC Total FC Dust FC BC+OM Aeronet Total Aeronet Fine MODIS Total

Layout

- Overview of the LSA SAF: now and the future
- Examples & applications
- Future sensors & evolution of user needs
- Concluding remarks

LSA SAF outline for CDOP-2

Product & Service Continuation

- Maintenance, quality monitoring & validation of MSG & EPS inherited products
- Upgrade of existing algorithms for MTG data

New Algorithms / Products aim to:

- Overcome known deficiencies of current products
- Address requests from user community User support
- Toolbox to allow more friendly handling of data (NRT / off-line):
 - Selection of time window for processing
 - Definition of Regions of Interest and Projections
 - Data / image format
- Training
 - Series of LSA SAF workshops
 - Training courses, in cooperation with other programmes (EUMETRAIN, EUMETSAT)
 - Applications of LSA SAF products

LSA SAF products and MTG

- LSA SAF will use radiances from the (Full Disk) Imagery Mission, (SEVIRI follow-up)
- Better spatial resolution will benefit all LSA SAF products
- Enhanced spectral characteristics vs. SEVIRI

- FD-VIS 0.4 Better aerosol, improvement of AL, SW flux, but also LW

flux and LST

- FD-IR 3.8/8.5 Extended dynamical range for fire applications

- FD-IR 1.3 et al Improved cloud mask and cloud type specification

- Impact on products
 - All products, given better clouds
 - Fire products
 - AL, radiative fluxes and LST, cascading into other products (VEGA, ET)
 - More competitive VEGA products with enhanced spatial resolution

CDOP-2 new products: A sample

Family	Product
LST & Emiss.	Isotropic LST, All weather LST, Reprocessed LST
Albedo	Soil / vegetation / snow free Albedo, Reprocessed Albedo
Surface radiation fluxes	Total and diffuse DSSF, Net LW radiation
Turbulent heat fluxes	Reference evapotranspiration, Sensible heat flux, and Latent heat flux
Vegetation parameters & properties	Vegetation index, Net Primary Production, Gross Primary Production, Canopy water content
Wild Fire Products	FRP pixel bias correction, Burnt area/vegetation recovery, Daily Fire Radiative Energy / Carbon Emissions, Reprocessed Fire Radiative Power

Summary, conclusions and perspectives

- Algorithm development, validation and operational production of land surface related products from remote sensing data, with a particular emphasis on EUMETSAT satellites:
 - LAND
 - LAND-ATMOSPHERE Interactions
 - Land Biosphere Applications
- Outlook
 - Strenghten our links with users, emphasis on collaborative efforts with key users, including targeted training efforts
 - CDOP-2 and plans for the upcoming MTG products
- Product dissemination
 - Daily from our web site (http://landsaf.meteo.pt)
 - EUMETCAST
- Further information
 - http://landsaf.meteo.pt
 - Trigo et al. 2011, Int. J. Rem. Sens., 32, 2725-2744
 - Other papers in the web site