Compound		Other saturated alipha	tic hydrocarbons C ₆ -C	8 Data colle	Data collection sheet (1/4)	
See Table 1 for CAS numb	hers in the factsheet	See Annex 1 for existing human classifications in the factsheet	health-based CLP			
Organisation name	AgBB	ANSES	BAuA	ЕСНА	ECHA	
Risk value name	NIK (=LCI)	CLI (=LCI)	OEL (aliphatic C6-C8)	DNEL(general population, long-term, inhalation, systemic) [Hydrocarbons, C6-C7, n- alkanes, isoalkanes, cyclics, <5% n-hexane" (EC number: 921-024-6)]	DNEL _{(general population, long-term,} inhalation, systemic) (octane & isooctane)	
Risk value (µg/m ³)	15000	10000	700000	608000	608000	
Risk value (ppb)	N/A	N/A	N/A	N/A	~130000	
Reference period	Chronic	Chronic	Chronic	Chronic	Chronic	
Year	2012	1993	2017	2011, updated 2017	2011, updated in 2017	
Key study	N/A	N/A	N/A	GLP-guideline study (OECD guideline 413) as reported in the registration dossier	GLP-guideline study (OECD guideline 413) as reported in the registration dossiers for octane and isooctane	
Study type	N/A	N/A	N/A	Subchronic inhalation study	Subchronic inhalation study	
Species	N/A	N/A	N/A	Rat	Rat	
Duration of exposure	N/A	N/A	N/A	6 h/d, 5 d/wk for 13 weeks	6 h/d, 5 d/wk for 13 weeks	
Critical effect	Value based on provision OEL by the German BAu for C5-C8 aliphatic hydrocarbons in 2012 (BAuA, 2012).		The group limit value is based on the 700 mg/m ³ (200 ppm) limit value for cyclohexane proposed	Subchronic toxicity or neurotoxic effects of "light alkylate naphtha distillate" (CAS 64741-66- 8)	Subchronic toxicity or neurotoxic effects of "light alkylate naphtha distillate" (CAS 64741-66- 8)	

			by the European Commission's Scientific Committee on Occupational Exposure Limits (SCOEL).		
Critical dose value	1500 mg/m ³	N/A	N/A	NOAEC: 6646 ppm (24.3 g/m³)	NOAEC: 6646 ppm (24.3 g/m ³)
Adjusted critical dose		N/A	N\A	N/A	N/A
Single assessment factors	100 (due to use of OEL)	N/A	None	10 (overall assessment factor)	10 (overall assessment factor)
Other effects/comments				No-threshold effect and/or no dose-response information available.	
UF _H Intraspecies variabili	ity; UF _A Interspecies variabilit	y; UFs Used subchronic study	7; UF _D Data deficiencies		

Compound		Other saturated aliphatic hydrocarbons C ₆ -C ₈			Data collection sheet (2/4)	
See Table 1 for CAS num	bers in the factsheet	See Annex 1 for existing CL	P classifications			
Organisation name	ACGIH	ACGIH	ACGIH		DFG	DFG
Risk value name	TLV-TWA (hexane isomers, other than n- hexanes)	TLV-TWA (heptane, isomers)	TLV-TWA (octane, all isomers)		hexane isomers and 2- lopentane but without n-hexane)	MAK (n-octane and isomers without trimethylpentane isomers)
Risk value (µg/m³)	1760000	1640000	1401000		00 (hexane isomers) (methyl cyclopentane)	2350000
Risk value (ppb)	500000	400000	300000		500000	500000
Reference period	Chronic	Chronic	Chronic		Chronic	Chronic
Year	2001	2001	2001		2009	2004
Key study						
Study type						
Species						
Duration of exposure						
Critical effect						
Critical dose value						
Adjusted critical dose						

Single assessment factors					
Other effects/comments	A TLV-TWA of 500 ppm is recommended based on the absence of adverse effects from exposure to concentrations at or below 500 ppm.	The TLV for heptane is based on its narcotic and irritative effects, and a TLV-TWA of 400 ppm is recommended for all isomers of heptane.	On the basis of the comparison with the acute response of humans and animals to inhaled octane isomers and by analogy with other paraffinic hydrocarbons, a TLV- TWA of 300 ppm is recommended.	As written in (DFG, 2009), taking into account the MAK values for pentane isomers and n-heptane as well as data for n-hexane and studies with 2- or 3- methylpentane, the MAK value for hexane isomers (except n- hexane) and methyl cyclopentane was set at 500 mL/m ³ .	MAK value derived based on structural analogies to n-heptane and n-nonane.
UF _H Intraspecies variabil	ity; UF _A Interspecies variab	ility; UFs Used subchronic	study; UF _D Data deficienc	ies	

Compound		Other satura	ated aliphatic hydroca	rbons C ₆ -C ₈	Data collection sheet (3/4)	
See Table 1 for CAS numb	pers in the factsheet	See Annex 1 for exis	sting CLP classifications	in the factsheet		
	UK	UK	Sweden	Sweden	Sweden	Finland
Organisation Name	-	UK	Sweden	Sweden	Sweden	Finland
Risk value name	8 h-TWA (C5-C6 normal and branched chain alkanes and cycloalkanes)	8 h-TWA (≥C7 normal and branched chain alkanes)	Level limit value (hexanes except n- hexane)	Level limit value (n- heptane and other isomers)	Level limit value (Octanes)	8h limit value (for hexanes except n- hexane)
Risk value (µg/m ³)	1800000	1200000	700000	800000	900000	1800000
Risk value (ppb)	~500000 (C ₆)	300000 (C7) 210000 (C8)	200000	200000	200000	500000
Reference period	Chronic	Chronic	Chronic	Chronic	Chronic	Chronic
Year	2011	2011	1989	1989	1989	2009
Key study	N/A	N/A	N/A	N/A	N/A	N/A
Study type						
Species						
Duration of exposure						
Critical effect						
Critical dose value	N/A	N/A	N/A	N/A	N/A	N/A
Adjusted critical dose						

Single assessment factors						
	TWAs to be used for	TWAs to be used				
	calculating OELs of	for calculating OELs				
Other	mixture using the	of mixture using				
effects/comments	reciprocal	reciprocal				
	calculation	calculation				
	procedure (RCP)	procedure (RCP)				
UF _H Intraspecies variability; UF _A Interspecies variability; UF _S Used subchronic study; UF _D Data deficiencies						

Compound		Other saturated aliph	atic hydrocarbons C ₆ -C ₈	Data collec	tion sheet (4/4)
See Table 1 for CAS numb	pers in the factsheet	See Annex 1 for existing CLP c	lassifications in the factshee	t	
Organisation name	Finland	Finland	The Netherlands	NIOSH	OSHA
Risk value name	8h limit value (for 2-or 3- methylhexane, 2,3- or 2,4-dimethylpentane)		8-h OEL (octane)	REL-TWA (octane)	8h TWA (octane)
Risk value (µg/m ³)	1200000	1400000	1450000	350000	2350000
Risk value (ppb)	300000	300000	300000	75000	500000
Reference period	Chronic	Chronic	Chronic	Chronic	Chronic
Year	2009	2009	2005	1994	1994
Key study	N/A	N/A	N/A	N/A	N/A
Study type					
Species					
Duration of exposure					
Critical effect					
Critical dose value	N/A	N/A	N/A	N/A	N/A
Adjusted critical dose					
Single assessment factors					
Other effects/comments			dy; UF₀ Data deficiencies		

EU-LCI derivation for 'Other saturated aliphatic hydrocarbons C6-C8'

(adoption of the EU-LCI value for methylcyclopentane)

Compound		Methylcyclopentane	Factsheet
Parameter	Note	Comments	Value / descriptor
EU-LCI value and status			
EU-LCI value	1	Mass/volume [µg/m ³]	14000
EU-LCI status	2	Draft/final	Final
EU-LCI year of issue	3	Year when the EU-LCI value has been issued	2018
General information			
CLP-INDEX-No.	4	INDEX	Not available
EC-No.	5	EINECS – ELINCS - NLP	202-503-2
CAS-No.	6	Chemical Abstracts Service number	96-37-7
Harmonised CLP classification	7	Human health risk related classification	No harmonised classification
Molar mass and conversion factor	8	[g/mol] and [ppm – mg/m ³]	84.16 1 ppm = 3.46 mg/m ³
Key data / database			
Key study, author(s), year	9	Critical study with lowest relevant effect level	
Read across compound	10	Where applicable	2-methylpentane CAS 107-83-5
Species	11	Rat, human, etc.	
Route/type of study	12	Inhalation, oral feed, etc.	
Study length	13	Days, subchronic, chronic	
Exposure duration	14	Hrs/day, days/week	
Critical endpoint	15	Effect(s), site of	
Point of departure (POD)	16	LOAEC*L, NOAEC*L, NOEC*L, Benchmark dose, etc.	POD/TAF in EU-LCI factsheet for 2-methylpentane
POD value	17	[mg/m ³] or [ppm] or [mg/kg _{BW} ×d]	14.707 mg/m ³ or 4.143 ppm
Assessment factors (AF)	18		
Adjustment for exposure duration	19	Study exposure hrs/day, days/week	-
Study length	20	$sa \rightarrow sc \rightarrow c$ (<i>R8-5</i>)	-
Route-to-route extrapolation factor	21		-
Dose-response	22 a	Reliability of dose-response, LOAEL \rightarrow NOAEL	-
	22 b	Severity of effect (R 8-6d)	-
Interspecies differences	23 a	Allometric Metabolic rate <i>(R8-3)</i>	-
	23 b	Kinetic + dynamic	-
Intraspecies differences	24	Kinetic + dynamic Worker - general population	-

AF (sensitive population)	25	Children or other sensitive groups	-
Other adjustment factors Quality of whole database	26	Completeness and consistency Reliability of alternative data (<i>R8-6</i> <i>d,e</i>)	-
Result			
Summary of assessment factors	27	Total Assessment Factor (TAF)	
POD/TAF	28	Calculated value (µg/m ³ <u>and</u> ppb)	
Molar adjustment factor	29	Used in read-across (84.16/86.18)	0.98
Rounded value	30	[µg/m³]	14000
Additional comments	31		
Rationale section	32		

Data compilation and evaluation for the substance group 'Other saturated aliphatic hydrocarbons C6-C8' are based on a project funded by the European Commission and carried out by Ramboll Environment & Health GmbH (formerly BiPRO GmbH).

'Other saturated aliphatic hydrocarbons (SAHs) C_6 - C_8 ' refers to all saturated and aliphatic alkanes with six to eight carbon atoms, including branched or cyclic alkanes, except for n-hexane, cyclohexane, methylcyclohexane and n-heptane, which already have individually derived EU-LCI values due to their chemical-specific toxicity profiles. A total of 38 SAHs C_6 - C_8 were identified as fitting this description.

Data compilation for this group of substances focused on SAHs C₆-C₈ that have been detected in indoor air. To determine which of the 38 substances are included in this group, an extensive literature search was conducted using various literature databases such as PubMed, Google Scholar and TOXNET, and key conference reports regarding indoor air (e.g. from the International Society of Indoor Air Quality & Climate or ISIAQ), using the CAS numbers and chemical names of the 38 SAHs C₆-C₈ as search terms. The German Association of Ecological Research Institutes (AGÖF) has also been working to assess the presence of volatile organic compounds (VOCs), including SAHs, in indoor air and to establish guidance values based on their common, average concentrations in indoor air ('statistically derived assessment'). AGÖF has published its assessment and its established guidance values for over 150 VOCs in a publicly accessible format on its website (AGÖF, 2013). The literature search revealed that 11 of the 38 SAHs C₆-C₈, namely **methylcyclopentane**, **2- or 3-methylpentanes (all C₆), 2- or 3-methylpentane (isooctane) (all C₈)**, had at least two indoor air measurements. Data compilation and evaluation therefore focused primarily on these 11 SAHs.

EU-LCI factsheets have been compiled for 2-methylpentane, 3-methylpentane, methylcyclopentane, the C7 substance group (2-methylhexane, 3-methylhexane, 2,3-dimethylpentane and 2,4-dimethylpentane) and the C8 substance group (octane, 2-methylheptane, 3-methylheptane and 2,2,4-trimethylpentane). The proposed EU-LCI values vary between 14000 and 20000 μ g/m³ due to molar adjustment. Since these substances show similar toxicity and the studies available are of comparable quality, the EU-LCI working group decided to use a conservative approach and adopt the lowest proposed value of 14000 μ g/m³ for methylcyclopentane as the EU-LCI value for the substance group 'other saturated aliphatic hydrocarbons until C8'.

Rationale for read-across

The EU-LCI derivation for methylcyclopentane was conducted using read-across from 2-methylpentane. The key assumption underlying the read-across approach using 2-methylpentane is that 2-methylpentane is the closest homologue compound of methylcyclopentane (same carbon number but in cyclic form) which has existing toxicological data and a proposed EU-LCI value (see second factsheet in this document). Both compounds show similar low systemic toxicity profiles (Chung et al., 2014; Yang et al., 2014). Although a subchronic inhalation study of methylcyclopentane is available (performed according to OECD 413) (Yang et al., 2014), the same read-across approach was applied for all the other SAHs C₆-C₈ in order to maintain a single EU-LCI derivation approach for this group of substances. Furthermore, the key study of 2-methylpentane (subchronic inhalation exposure, also performed according to OECD 413) was considered to be the most conservative of the available subchronic inhalation studies of SAHs C₆-C₈, with the lowest NOAEC of 1160 ppm (compared to a NOAEC of 1300 ppm in the methylcyclopentane study). The EU-LCI for methylcyclopentane obtained using the read-across approach, therefore, would be lower and more conservative than the EU-LCI derived *de novo* for methylcyclopentane.

The toxicological critical endpoint for 2-methylpentane is increased relative liver weight in rats (Chung et al., 2014), which was also observed in the subchronic inhalation study for methylcyclopentane (Yang et al., 2014).

Compound	Structure	MW (g/mol)	EU-LCI value
Methylcyclopentane	СН3	84.16	Read-across to be used $14000 \ \mu g/m^3$
2-methylpentane	H ₃ C H ₃ C CH ₃	86.18	15000 μg/m ³ (<i>de novo</i> protocol) Unrounded value: 14707 μg/m ³ or 4143 ppb

The unrounded EU-LCI value for 2-methylpentane is $14707 \,\mu g/m^3$, which was used as the read-across EU-LCI value for methylcyclopentane. There was no cut-off rule in place, as there is no difference in carbon number between the two homologue compounds.

The EU-LCI value for methylcyclopentane is 14707 μ g/m³. After applying the molar adjustment factor of 0.98 at 23 °C and 1.013 atm, the rounded EU-LCI value for methylcyclopentane is 14000 μ g/m³.

The proposed EU-LCI of 14000 μ g/m³ (~ 4046 ppb) is above the odour detection threshold of 1700 ppb (Nagata, 2003).

<u>References</u>

AGÖF, 2013. AGÖF Guidance Values for Volatile Organic Compounds in Indoor Air. Available from http://www.agoef.de/orientierungswerte/agoef-voc-guidance-values.html (last retrieved on 4.12.2019).

Chung YH, Lim CH and Han JH, 2014. A study on subchronic inhalation toxicity of 2-methylpentane. Journal of Korean Society of Occupational and Environmental Hygiene, 24, 169-181.

Nagata Y, 2003. Measurement of odor threshold by triangle odor bag method. Odor Measurement Review 118, 118-127.

Yang YS, Lee SB, Choi SJ, Lee BS, Heo JD, Song CW, Kim HY, Kim JC and Lee K, 2014. Evaluation of subchronic inhalation toxicity of methylcyclopentane in rats. Food and Chemical Toxicology, 63, 186-194.

Compound		2-Methylpentane	Factsheet
Parameter	Note	Comments	Value / descriptor
EU-LCI value and status			
EU-LCI value	1	Mass/volume [µg/m³]	15000
EU-LCI status	2	Draft/final	Final
EU-LCI year of issue	3	Year when the EU-LCI value has been issued	2018
General information			
CLP-INDEX-No.	4	INDEX	601-007-00-7
EC-No.	5	EINECS – ELINCS - NLP	203-523-4
CAS-No.	6	Chemical Abstracts Service number	107-83-5
Harmonised CLP classification	7	Human health risk related classification	Skin irrit. 2, Asp. tox. 1, STOT SE 3
Molar mass and conversion factor	8	[g/mol] and [ppm – mg/m ³]	86.18 1 ppm = 3.55 mg/m ³
Key data / database			
Key study, author(s), year	9	Critical study with lowest relevant effect level	Chung et al., 2014
Read across compound	10	Where applicable	
Species	11	Rat, human, etc.	Rat
Route/type of study	12	Inhalation, oral feed, etc.	Inhalation
Study length	13	Days, subchronic, chronic	Subchronic
Exposure duration	14	Hrs/day, days/week	6 h/d. 5 d/wk for 13 weeks
Critical endpoint	15	Effect(s), site of	Increased relative liver and kidney weights in male rats
Point of departure (POD)	16	LOAEC*L, NOAEC*L, NOEC*L, Benchmark dose, etc.	NOAEC
POD value	17	[mg/m ³] or [ppm] or [mg/kg _{BW} ×d]	1160 ppm
Assessment Factors (AF)	18		
Adjustment for exposure duration	19	Study exposure hrs/day, days/week	5.6
Study length	20	$sa \rightarrow sc \rightarrow c$ (R8-5)	2
Route-to-route extrapolation factor	21		1
Dose-response	22 a	Reliability of dose-response, LOAEL \rightarrow NOAEL	1
	22 b	Severity of effect (R 8-6d)	1
Interspecies differences	23 a	Allometric Metabolic rate <i>(R8-3)</i>	1
	23 b	Kinetic + dynamic	2.5
Intraspecies differences	24	Kinetic + dynamic Worker - general population	10
AF (sensitive population)	25	Children or other sensitive groups	1

EU-LCI derivation for 2-methylpentane

Other adjustment factors Quality of whole database	26	Completeness and consistency Reliability of alternative data (<i>R8-6 d,e</i>)	1	
Result				
Summary of assessment factors	27	Total Assessment Factor (TAF)	280	
POD/TAF	28	Calculated value (µg/m ³ <u>and</u> ppb)	14707 $\mu g/m^3$ and 4143 ppb	
Molar adjustment factor	29	Used in read-across		
Rounded value	30	[µg/m³]	15000	
Additional comments	31			
The study was written in Korean and published in a Korean journal, but the abstract and the data in tables				

The study was written in Korean and published in a Korean journal, but the abstract and the data in and figures were published in English.

Rationale section	32		
-------------------	----	--	--

'Other saturated aliphatic hydrocarbons (SAHs) C_6 - C_8 ' refers to all saturated and aliphatic alkanes with six to eight carbon atoms, including branched or cyclic alkanes, except for n-hexane, cyclohexane, methylcyclohexane and n-heptane, which already have individually derived EU-LCIs due to their chemicalspecific toxicity profiles. A total of 38 SAHs C_6 - C_8 were identified as fitting this description.

Data compilation for this group of substances focused on SAHs C₆-C₈ that have been detected in indoor air. To determine which of the 38 substances are included in this group, an extensive literature search was conducted using various literature databases such as PubMed, Google Scholar and TOXNET, and key conference reports regarding indoor air (e.g. from the International Society of Indoor Air Quality & Climate or ISIAQ) using the CAS numbers and chemical names of the 38 SAHs C₆-C₈ as search terms. The German Association of Ecological Research Institutes (AGÖF) has also been working to assess the presence of volatile organic compounds (VOCs), including SAHs, in indoor air and to establish guidance values based on their common, average concentrations in indoor air ('statistically derived assessment'). AGÖF has published its assessments and established guidance values for over 150 VOCs in a publicly accessible format on its website (AGÖF, 2013). The literature search revealed that 11 of the 38 SAHs C₆-C₈, namely **methylcyclopentane**, **2- or 3-methylpentanes (all C₆), 2- or 3-methylpentane (isooctane) (all C₈)**, had at least two indoor air measurements. Data compilation and evaluation therefore focused primarily on these 11 SAHs.

Data sources for the EU-LCI derivation of other SAHs C₆-C₈ include assessment reports on SAHs published by organisations or authorities (ACGIH, 2001a, 2001b, 2001c; ATSDR, 1999; DFG, 2009, 2014; Goldhaber et al., 2007; OECD, 2010). In particular, there is a 2014 report from a project commissioned by the German Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) that provides an extensive review of the toxicological data on hydrocarbon solvent mixtures, covering specifically C₆, C₇ and C₈ aliphatic hydrocarbon solvents (FoBIG, 2014), and a comprehensive review of the toxicity of hydrocarbon solvents including SAHs published in 2015 (McKee et al., 2015). Only the information relevant for this group of substances was reviewed and considered for the EU-LCI derivation.

Rationale for key study/POD

No chronic inhalation studies of the 11 targeted SAHs C_6-C_8 were identified, but studies were identified of repeated inhalation exposure to methylcyclopentane, 2-methylpentane, 3-methylpentane, n-octane and 2,2,4-trimethylpentane (single substance exposure). These studies consistently showed low systemic toxicity (reversible lethargy, mild indications of intoxication, slight increase in serum markers or organ weight) and no mortality upon exposure to SAHs C_6-C_8 at concentrations up to ~6000 ppm (Sung et al., 2010; Lammers et al., 2011; Chung et al., 2014; Yang et al., 2014; Chung et al., 2016; ECHA, 2017b).

It is important to clarify that in the absence of n-hexane, other SAHs C₆-C₈ do not trigger neurotoxicity such as peripheral neuropathy. Peripheral neuropathy is only attributable to exposure to n-hexane, due to its specific metabolism to 2,5-hexanedione, a toxic gamma diketone metabolite (Egan et al., 1980; Frontali et al., 1981; Ono et al., 1981; Galvin & Bond, 1999a; Galvin & Bond, 1999b). Additionally, kidney effects (such as renal accumulation of alpha-2μ-globulin leading to nephropathy) found in male rats after exposure to certain SAHs such as 2,2,4-trimethylpentane are not considered relevant for human risk assessment due to the species-specific and sex-specific effect.

There are, however, two subchronic studies with a reported chemical-specific effect of increased relative liver weight after inhalation exposure to either 2-methylpentane or methylcyclopentane in rats (Chung et al., 2014; Yang et al., 2014). Both studies were considered suitable as key studies for the EU-LCI derivation.

The subchronic inhalation study of 2-methylpentane (published in Korean, with abstract and data tables and figures provided in English) was performed in accordance with OECD test guideline 413 on groups of 10 Sprague-Dawley rats (of each sex) exposed to 0, 290, 1160 or 4640 ppm for 6 hours/day, 5 days/week for 13 weeks. No mortality or clinical symptoms were observed in any of the exposed animals. Key observed effects included a dose-dependent increase in serum total cholesterol in exposed male rats at \geq 290 ppm and a dose-dependent increase in relative liver and kidney weights in exposed male rats (with statistical significance reached at 4640 ppm). Histopathological examination and scoring revealed altered renal effects (e.g. cystic change in renal tubules) and goblet cell hyperplasia in the nasal cavity in exposed male rats. No significant changes were observed in exposed female rats. The nasal cavity effect was considered by the authors to be a non-specific and local effect (i.e. not a systemic toxic effect), due to the nature of the study (Chung et al., 2014). As explained above, the renal effects observed in male rats are species-specific and sex-specific, and the no-observed-adverse-effect concentration (NOAEC) was set at 1160 ppm.

A subchronic inhalation study of methylcyclopentane was also performed in accordance with OECD test guideline 413 (subchronic inhalation toxicity: 90-day study) on groups of 10 Sprague-Dawley rats (of each sex) exposed to 0, 290, 1300 or 5870 ppm for 6 hours/day, 5 days/week for 13 weeks. Various observations and measurements such as clinical signs, mortality, body weight, food consumption, ophthalmoscopy, urinalysis, haematology, serum biochemistry, gross pathology, organ weights and histopathology were carried out. The observed effects were clinical symptoms such as increased salivation and rubbing against the cage wall, and increased liver weight in rats of both sexes exposed to 5870 ppm, as well as slightly higher kidney weight in female rats exposed to 5870 ppm. There were also significant increases in serum total cholesterol and phospholipid levels in exposed male rats at \geq 290 ppm. Histopathological examination and scoring revealed no significant differences in findings such as (1) tubular degeneration/regeneration or hypertrophy/hyperplasia or inflammatory cell foci in the kidneys, (2) inflammatory cell foci, focal necrosis, hepatocyte vacuolation or bile duct hyperplasia in the liver, (3) foamy macrophages in the lung or (4) olfactory degeneration/regeneration in the nasal cavity. The NOAEC for this study was established at 1300 ppm (Yang et al., 2014).

This effect of increased relative liver weight, as observed in both these studies, was selected as the critical effect for the EU-LCI derivation. For the point of departure, the more conservative NOAEC for the same effect was selected from two subchronic inhalation studies, i.e. 1160 ppm for 2-methylpentane instead of 1300 ppm for methylcyclopentane (Chung et al., 2014). This value is also considered the most conservative observed-effect level, as the other studies reported the highest-tested concentrations as their NOAECs.

The EU-LCI derivation was performed *de novo* specifically for 2-methylpentane, which is the tested SAH in the selected key study. The EU-LCI derivation for the other selected SAHs C₆-C₈ was performed separately using the read-across approach on the basis of this key study of 2-methylpentane.

Assessment factors (AF)

Standard default assessment factors to adjust for exposure duration, study length, intraspecies and intraspecies differences were applied. The assessment factors applied are:

- adjustment for exposure duration: 5.6
- study length: 2
- interspecies difference: 2.5
- intraspecies difference: 10

The total assessment factor is 280.

This resulted in a calculated EU-LCI value of 14707 μ g/m³ (taking the conversion factor of 2-methylpentane of 1 ppm = 3.55 mg/m³ at 23 °C). A derived EU-LCI for 2-methylpentane of 15000 μ g/m³ is proposed.

<u>References</u>

- ACGIH, 2001a. American Conference of Governmental Industrial Hygienists. Heptane, isomers. Documentation of the Threshold Limit Values and Biological Exposure, 9 pages.
- ACGIH, 2001b. American Conference of Governmental Industrial Hygienists. Hexane isomers, other than nhexane. Documentation of the Threshold Limit Values and Biological Exposure, 9 pages.
- ACGIH, 2001c. American Conference of Governmental Industrial Hygienists. Octane, all isomers. Documentation of the Threshold Limit Values and Biological Exposure, 9 pages.
- AGÖF, 2013. AGÖF Guidance Values for Volatile Organic Compounds in Indoor Air. Available from http://www.agoef.de/orientierungswerte/agoef-voc-guidance-values.html (last retrieved on 4.12.2019).
- ATSDR, 1999. Toxicological Profile for Total Petroleum Hydrocarbons (TPH). Available from https://www.atsdr.cdc.gov/toxprofiles/tp123.pdf (last retrieved on 4.12.2019).
- Chung YH, Lim CH and Han JH, 2014. A study on subchronic inhalation toxicity of 2-methylpentane. Journal of Korean Society of Occupational and Environmental Hygiene, 24, 169-181.
- Chung YH, Shin SH, Han JH and Lee YH, 2016. Subacute Inhalation Toxicity of 3-Methylpentane. Toxicol Res 32, 245-250.
- DFG, 2009. Hexan-Isomeren (außer n-Hexan) und Methylcyclopentan [MAK Value Documentation in German language, 2009]. The MAK-Collection for Occupational Health and Safety: Wiley-VCH Verlag GmbH & Co. KGaA.
- DFG, 2014. Octane and its Isomers (except trimethylpentane isomers) [MAK Value Documentation, 2004]. The MAK-Collection for Occupational Health and Safety: Wiley-VCH Verlag GmbH & Co. KGaA.
- ECHA, 2017b. Registration dossier. 2,2,4-trimethylpentane. Available from https://echa.europa.eu/registration-dossier/-/registered-dossier/13847 (last retrieved on 4.12.2019).
- Egan G, Spencer P, Schauenburg H, Murray KJ, Bischoff M and Scala R, 1980. n-Hexane-'free' hexane mixture fails to produce nervous system damage. NeuroToxicology 1, 515-524.
- FoBIG, 2014. Deutsche Gesetzliche Unfallversicherung e. V. (DGUV). Weiterentwicklung der RCP-Methode zur Bewertung von Lösemittelkohlenwasserstoff-Gemischen am Arbeitsplatz. 124 pages.
- Frontali N, Amantini MC, Spagnolo A, Guarcini AM, Saltari MC, Brugnone F, et al., 1981. Experimental Neurotoxicity and Urinary Metabolites of the C5-C7 Aliphatic Hydrocarbons Used as Glue Solvents in Shoe Manufacture. Clinical Toxicology 18, 1357-1367.
- Galvin JB and Bond G, 1999a. 2-Methylpentane (isohexane). Journal of Toxicology and Environmental Health, Part A 58, 81-92.
- Galvin JB and Bond G, 1999b. 3-Methylpentane. Journal of Toxicology and Environmental Health, Part A 58, 93-102.
- Goldhaber S, Zeiger E and Stack F, 2007. U.S. Environmental Protection Agency. Toxicological review of 2,2,4-trimethylpentane. Report No. EPA/635/R-07/003. 43 pages.
- Lammers JH, Muijser H, Owen DE, Kulig BM and McKee RH, 2011. Neurobehavioral effects of acute exposure to normal (n-) paraffins. Int J Toxicol 30, 47-58.
- McKee RH, Adenuga MD and Carrillo JC, 2015. Characterization of the toxicological hazards of hydrocarbon solvents. Crit Rev Toxicol 45, 273-365.
- OECD, 2010. SIDS Initial Assessment Profile C₇-C₉ Aliphatic Hydrocarbon Solvents Category. Available from <u>https://hpvchemicals.oecd.org/ui/handler.axd?id=afd8ccb9-af39-43ca-b49c-5034972e75dc</u> (last retrieved on 4.12.2019).
- Ono Y, Takeuchi Y and Hisanaga N, 1981. A comparative study on the toxicity of n-hexane and its isomers on the peripheral nerve. International Archives of Occupational and Environmental Health 48, 289-294.
- Sung JH, Choi B-G, Kim HY, Baek M-W, Ryu HY, Kim YS, et al., 2010. Acute and Subchronic Inhalation Toxicity of n-Octane in Rats. Safety and Health at Work 1, 192-200.
- Yang YS, Lee SB, Choi SJ, Lee BS, Heo JD, Song CW, Kim HY, Kim JC and Lee K, 2014. Evaluation of subchronic inhalation toxicity of methylcyclopentane in rats. Food and Chemical Toxicology, 63, 186-194.

IUPAC name	Synonyms	CLP-Index no.	EC no.	CAS no.	Sum formula	Structural formula	
	SAHs with 6 carbons (n = 5)						
2-Methylpentane	i-Caproylhydride, i-Hexane, isohexane	601-007-00-7	203-523-4	107-83-5	C6H14	H ₃ C H ₃ C	
3-Methylpentane	Diethyl-methyl-methane	601-007-00-7	202-481-4	96-14-0	C6H14	H ₃ C CH ₃	
2,2-Dimethylbutane	Neohexane	601-007-00-7	200-906-8	75-83-2	C6H14	$H_3C \xrightarrow{CH_3}_{CH_3}CH_3$	
2,3-Dimethylbutane	Diisopropyl	601-007-00-7	201-193-6	79-29-8	C6H14	$H_3^C \longrightarrow CH_3$	
Methylcyclopentane	N/A	N/A	202-503-2	96-37-7	C ₆ H ₁₂	CH3	
		SAHs v	with 7 carbons (n = 9)			
2-Methylhexane	isoheptane ethyl-isobutyl-methane	601-008-00-2	209-730-6	591-76-4	C7H16	H ₃ C CH ₃	
3-Methylhexane	N/A	601-008-00-2	209-643-3	589-34-4	C7H16	H ₃ C CH ₃ CH ₃	
2,2-Dimethylpentane	neoheptane	601-008-00-2	209-680-5	590-35-2	C7H16	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃	
2,3-Dimethylpentane	N/A	601-008-00-2	209-280-0	565-59-3	C7H16	H ₃ C CH ₃	
2,4-Dimethylpentane	N/A	601-008-00-2	203-548-0	108-08-7	C7H16		

Table 1: Identity of other saturated aliphatic hydrocarbons (SAHs) C₆-C₈ (total of 38 substances)

IUPAC name	Synonyms	CLP-Index no.	EC no.	CAS no.	Sum formula	Structural formula
3,3-Dimethylpentane	N/A	601-008-00-2	209-230-8	562-49-2	C7H16	H ₃ C CH ₃ CH ₃
3-Ethylpentane	N/A	601-008-00-2	210-529-0	617-78-7	C7H16	H ₃ C H ₃ C CH ₃
2,2,3-Trimethylbutane	N/A	601-008-00-2	207-346-3	464-06-2	C7H16	$H_3C \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3}$
Cycloheptane	N/A	N/A	291-64-5	291-64-5	C7H14	\bigcirc
		SAHs w	vith 8 carbons (n = 24	ŀ)		
Octane	N/A	601-009-00-8	203-892-1	111-65-9	C ₈ H ₁₈	H,C. CH,
2-Methylheptane	Isooctane	601-009-00-8	209-747-9	592-27-8	C ₈ H ₁₈	H ₃ C CH ₃
3-Methylheptane	N/A	601-009-00-8	209-660-6	589-81-1	C ₈ H ₁₈	H,C,C,CH,
4-Methylheptane	N/A	601-009-00-8	209-650-1	589-53-7	C ₈ H ₁₈	H ₃ C CH ₃
3-Ethylhexane	N/A	601-009-00-8	210-621-0	619-99-8	C8H18	H ₃ C CH ₃
2,2-Dimethylhexane	N/A	601-009-00-8	209-689-4	590-73-8	C ₈ H ₁₈	H ₃ C + CH ₃ CH ₃
2,3-Dimethylhexane	N/A	601-009-00-8	209-547-1	584-94-1	C8H18	H ³ C CH ³ CH ³

IUPAC name	Synonyms	CLP-Index no.	EC no.	CAS no.	Sum formula	Structural formula
2,4-Dimethylhexane	N/A	601-009-00-8	209-649-6	589-43-5	C ₈ H ₁₈	H ₁ C CH ₃ CH ₃
2,5-Dimethylhexane	N/A	601-009-00-8	209-745-8	592-13-2	C8H18	
3,3-Dimethylhexane	N/A	601-009-00-8	209-243-9	563-16-6	C ₈ H ₁₈	
3,4-Dimethylhexane	N/A	601-009-00-8	209-504-7	583-48-2	C8H18	
3-Ethyl-2-methylpentane	N/A	601-009-00-8	210-187-2	609-26-7	C8H18	H ₃ C H ₃ C CH ₃ CH ₃
3-Ethyl-3-methylpentane	N/A	601-009-00-8	213-923-0	1067-08-9	C ₈ H ₁₈	H ₃ C CH ₃ CH ₃ C CH ₃
2,2,3-Trimethylpentane	N/A	601-009-00-8	209-266-4	564-02-3	C ₈ H ₁₈	
2,2,4-Trimethylpentane	Isooctane	601-009-00-8	208-759-1	540-84-1	C ₈ H ₁₈	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
2,3,3-Trimethylpentane	N/A	601-009-00-8	209-207-2	560-21-4	C8H18	H ₃ C CH ₃ CH ₃
2,3,4-Trimethylpentane	N/A	601-009-00-8	209-292-6	565-75-3	C8H18	

IUPAC name	Synonyms	CLP-Index no.	EC no.	CAS no.	Sum formula	Structural formula
2,2,3,3-Tetramethylbutane	hexamethyl-ethane	601-009-00-8	209-855-6	594-82-1	C8H18	$H_{3}C \xrightarrow[CH_{3}]{CH_{3}} CH_{3} CH_{3} CH_{3}$
1,1-Dimethylcyclohexane	N/A	N/A	209-687-3	590-66-9	C ₈ H ₁₈	H ₃ C CH ₃
1,2-Dimethylcyclohexane	N/A	N/A	583-57-3	583-57-3	C ₈ H ₁₆	H ₃ C CH ₃
1,3-Dimethylcyclohexane	N/A	N/A	209-707-0	591-21-9	C ₈ H ₁₆	H ³ C
1,4-Dimethylcyclohexane	1,4-dimethyl-hexane Hexahydro-p-xylene	N/A	209-663-2	589-90-2	C8H16	H ³ C-CH ³
Ethylcyclohexane	N/A	N/A	1678-91-7	1678-91-7	C ₈ H ₁₆	H ₂
Cyclooctane	N/A	N/A	206-031-8	292-64-8	C ₈ H ₁₆	

Sources:

GDL, 2017. Gefahrstoffdatenbank der Länder. Available from <u>https://www.gefahrstoff-info.de</u> (last retrieved on 4.12.2019). GESTIS, 2017. GESTIS Substance Database. Available from <u>http://gestis-en.itrust.de</u> (last retrieved on 4.12.2019). TOXNET, 2017. Hazardous Substances Data Bank (HSDB). Available from <u>https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm</u> (last retrieved on 4.12.2019).

Annex 1: Health-based CLP classifications of other SAHs C6-C8

Name	CAS	Health-based CLP classification					
SAHs with 6 carbons (n = 5)							
2-Methylpentane	107-83-5	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Methylpentane	96-14-0	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2-Dimethylbutane	75-83-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,3-Dimethylbutane	79-29-8	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
Methylcyclopentane	96-37-7	Asp. Tox. 1 (H304)*					
	SAI	Hs with 7 carbons (n = 9)					
2-Methylhexane	591-76-4	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Methylhexane	589-34-4	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2-Dimethylpentane	590-35-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,3-Dimethylpentane	565-59-3	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,4-Dimethylpentane	108-08-7	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3,3-Dimethylpentane	562-49-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Ethylpentane	617-78-7	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2,3-Trimethylbutane	464-06-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
Cycloheptane	291-64-5	Asp. Tox. 1 (H304)*					
	SAHs with 8 carbons (n = 24)						
Octane	111-65-9	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2-Methylheptane	592-27-8	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Methylheptane	589-81-1	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
4-Methylheptane	589-53-7	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Ethylhexane	619-99-8	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2-Dimethylhexane	590-73-8	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,3-Dimethylhexane	584-94-1	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,4-Dimethylhexane	589-43-5	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,5-Dimethylhexane	592-13-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3,3-Dimethylhexane	563-16-6	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3,4-Dimethylhexane	583-48-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Ethyl-2-methylpentane	609-26-7	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
3-Ethyl-3-methylpentane	1067-08-9	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2,3-Trimethylpentane	564-02-3	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2,4-Trimethylpentane	540-84-1	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,3,3-Trimethylpentane	560-21-4	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,3,4-Trimethylpentane	565-75-3	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
2,2,3,3-Tetramethylbutane	594-82-1	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
1,1-Dimethylcyclohexane	590-66-9	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
1,2-Dimethylcyclohexane	583-57-3	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
1,3-Dimethylcyclohexane	591-21-9	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
1,4-Dimethylcyclohexane	589-90-2	Skin Irrit. 2 (H315); Asp. Tox. 1 (H304); STOT SE 3 (H336)					
Ethylcyclohexane	1678-91-7	Asp. Tox. 1 (H304); STOT SE 3 (H336)*					
Cyclooctane	292-64-8	Asp. Tox. 1 (H304)*					
	1 11. 1.						

Human health-based CLP classifications for the other saturated aliphatic hydrocarbons C₆-C₈.

* Only notified classification and labelling according to CLP criteria (i.e. not harmonised).

Sources:

ECHA, 2017b. Registration dossier. 2,2,4-trimethylpentane. Available from <u>https://echa.europa.eu/registration-dossier/-/registered-dossier/13847</u> (last retrieved on 4.12.2019).

GDL, 2017. Gefahrstoffdatenbank der Länder. Available from <u>https://www.gefahrstoff-info.de (</u>last retrieved on 4.12.2019).

GESTIS, 2017. GESTIS Substance Database. Available from <u>http://gestis-en.itrust.de</u> (last retrieved on 4.12.2019). GSBL, 2017. Gemeinsamer zentraler Stoffdatenpool von Bund und Länder [Joint Substance Data Pool of the German Federal Government and Federal States]. Available from <u>https://www.gsbl.de/konzept.htm</u> (last retrieved on 4.12.2019).