Compound		Ethyl methyl ketone (2-butanone)			Data collection sheet	
N°CAS 78-93-3		CLP: Eye Irrit. 2 (H319), STOT SE 3 (H336)				
Organisation name	U.S. I	EPA	REACH registrants	OE	ННА	NAC-AEGL
Risk value name	RfC		DNEL	Acute REL		AEGL-1
Risk value (µg/m ³)	5000		106000	13000		586000
Risk value (ppb)						
Reference period	chronic		chronic	acute (1 h)		acute (15 min – 8 h)
Year	2003		2011, update 2016	2008		2011
Key study	Schwetz, B.A.; Mast, T.J.; Weigel, R.J.; Dill, J.A.; Morrissey, R.E. (1991): Developmental toxicity of inhaled methyl ethyl ketone in Swiss mice. Fundam Appl Toxicol, 16, 742-748		not indicated	Nakaaki K (1974): An experimental study on the effect of exposure to organic solvent vapour in human subjects. J Sci Labour 50:89-96		Dick et al. 1992; Muttray et al. 2002; Seeber et al. 2002; Shibata et al. 2002
Study type	developmental toxicity		not indicated	acute study with exposure of human volunteers		acute study with exposure of human volunteers
Species	mouse		not indicated	human		human
Duration of exposure in key study	7 h/d, during days 6 – 15 of gestation			2 h		4 h
Critical effect	incidence of misaligned sternebrae		not indicated	subjective reports of eye, nose, and throat irritation, lacrimation and sneezing		subjective symptoms of irritation and annoyance
Critical dose value	LEC ₁₀ 5202 mg/m ³		not indicated	LOAEC 270 ppm (802 mg/m ³)		NOAEC 200 ppm (594 mg/m ³)
Adjusted critical dose	LEC ₁₀ (BMDL ₁₀) 1517 mg/m ³ (continuous exposure); LEC ₁₀ (HEC) 1517 mg/m ³			no adjustment required		no adjustment required
Single assessment factors (see table R.8.6)	UF _H 10 x UF _A 3 x UF _D 10 = 300		not indicated (total factor: 2)	UF _H 10 x	$\mathrm{UF}_\mathrm{L}6=60$	UF _H 1 = 1
Other effects						
Remarks	confidence					
UFL used LOAEL; UFH int allometric scaling	raspecies varia	bility; UFA int	erspecies variability; UFS u	ised subchro	nic study; UF	D data deficiencies, AS

Compound	2-B	utanone (ethyl methyl ketone)	Factsheet	
Parameter	Note	Comments	Value / descriptor	
EU-LCI value and status				
EU-LCI value	1	Mass/volume [µg/m ³]	20 000	
EU-LCI status	2	Draft/final	Final	
EU-LCI year of issue	3	Year when the EU-LCI value was issued	2016	
General information				
CLP Index No	4	INDEX	606-002-00-3	
EC No	5	EINECS — ELINCS — NLP	201-159-0	
CAS No	6	Chemical Abstracts Service number	78-93-3	
Harmonised CLP classification	7	Human health risk-related classification	Eye Irrit. 2, STOT SE 3	
Molar mass and conversion factor	8	[g/mol] and [ppm — mg/m ³]	72.11 1ppm = 2.97 mg/m ³	
Key data / database				
Key study, author(s), year	study, author(s), year 9 Critical study v		Saillenfait et al. (2006)	
Read-across compound	10	Where applicable		
Species	11	Rat etc. / human	Rat	
Route/type of study	12	Inhalation, oral feed, etc.	Inhalation	
Study length	13	Days, subchronic, chronic	GD 6-20	
Exposure duration	14	Hours/day, days/week	6 h/d	
Critical endpoint	15	Effect(s), site of	Maternal and foetal reduced weight	
Point of departure (POD)	16	LOAEC*L, NOAEC*L, NOEC*L, benchmark dose, etc.	NOAEC	
POD value	17	[mg/m ³] or [ppm] or [mg/kg _{BW} ×d]	2000 ppm (5940 mg/m ³)	
Assessment factors (AF)	18			
Adjustment for exposure duration	19	Study exposure hours/day, days/week	4	
Study length	20	$sa \rightarrow sc \rightarrow c$ (R8-5)	1	
Route-to-route extrapolation factor	21		1	
Dose-response	22 a	Reliability of dose-response, LOAEL \rightarrow NOAEL	1	
	22 b	Severity of effect (R 8-6d)	1	
Interspecies differences	23 a	Allometric Metabolic rate (<i>R8-3</i>)	1	
	23 b	Kinetic + dynamic	2.5	
Intraspecies differences	24	Kinetic + dynamic Worker — general population	10	
AF (sensitive population)	25	Children or other sensitive groups	1	
Other adjustment factors Quality of whole database	26	Completeness and consistency Reliability of alternative data (<i>R8-6 d,e</i>)	3	

Result			
Summary of assessment factors	27	Total Assessment Factor (TAF)	300
POD/TAF	28	Calculated value (µg/m ³ <u>and</u> ppb)	19800 $\mu\text{g}/\text{m}^3$ and 6666.7 ppb
Molar adjustment factor	29	Used in read-across	
Rounded value	30	[µg/m³]	20 000
Additional comments	31		
Rationale section	32		

Data compilation and evaluation for ethyl methyl ketone is based on a project funded by the German Environment Agency (Voss JU, 2017, *in press*).

Ethyl methyl ketone (methyl ethyl ketone, MEK, 2-butanone) is a colourless, volatile liquid with an acetone-like minty odour. It occurs naturally at low concentrations in many plants and foodstuffs. In industry, large amounts are used as extraction solvent for grease and fats, in de-icing, adhesives and sealants and in polishes and waxes. MEK is detected at low concentrations (mostly < $10 \ \mu g/m^3$) in indoor air in homes, nursery schools and offices. Traces (ca. $5 \ \mu g/L$) have also been found in urine samples of non-occupationally exposed humans.

MEK is rapidly absorbed by inhalation (absorption rate \geq 50 %). Distribution is rapid and into all organs. MEK is oxidised by P450 monoxygenases to 3-hydroxybutanone which is further metabolised. It is likely that most of the MEK is finally completely oxidised. Only small amounts of unchanged MEK are excreted by exhalation, and only small amounts (< 5 %) are excreted as metabolites in urine.

Rationale for critical effects

In a developmental study with mice, pregnant CD-1-mice (33/concentration) were exposed to 0, 400, 1000 or 3000 ppm MEK (0, 1188, 2970, 8910 mg/m³, nominal concentrations) for 7 h/d on gestation day (GD) 6 – 15 (Schwetz et al., 1991). The liver weight of the dams was increased at the highest concentrations, without other signs of maternal toxicity. At the highest concentration, the body weight of male foetuses was significantly decreased (5 %), the effect was similar (4 %) but missed statistical significance in females. Additionally, there was a positive trend for an increased incidence of foetuses with misaligned sternebrae. The NOAEC in this study was 1010 ppm (2970 mg/m³).

In a similar study with Sprague-Dawley rats (18-26/concentration) exposed 7 h/d on GD 6 – 15 to 0, 400, 1000, 3000 ppm MEK (0, 1188, 2970, 8910 mg/m³), maternal toxicity (reduced weight gain) was observed at the highest concentration. Furthermore, there was an increased incidence of a skeletal variation (extralumbal rips) in foetuses at the highest concentrations. No teratogenic effects were observed (Deacon et al., 1981).

In a previous study with exposure of Sprague-Dawley rats (21-23/group) to 0, 1000 or 3000 ppm (0, 2970, 8610 mg/m³), 7 h/d, GD 6 – 15, reduced ossification of sternebrae was observed in foetuses of dams exposed to 3000 ppm MEK (8610 mg/m³). In this study, four rare malformations were also noted at the highest concentration (Schwetz et al., 1991). However, this effect was not confirmed in later studies of the same group in rats (Deacon et al., 1981) and mice (Schwetz et al., 1991).

In a further set of two developmental toxicity studies, Sprague-Dawley rats were exposed for 6 h/d on days 6 - 20 of gestation to 0, 1000, 2000, 4000, 6000 ppm (0, 2970, 5940, 11880, 17820 mg/m³) (first experiment, 19-23 pregnant dams/concentration) or 0, 1000, 3000 ppm MEK vapour (0, 2970, 8910 mg/m³) (second experiment, 15-19 pregnant dams/concentration). From 3000 ppm, maternal weight gain and food consumption were significantly lower compared to control. Foetal body weight also was lower at \geq 3000 ppm. No exposure-related embryolethality was observed. No increases in skeletal or visceral variations or malformation were observed up to 3000 ppm; at 4000 and 6000 ppm, a total of four foetuses showed several malformations.

It should be noted that similar malformations (anal atresia, tail malformations) had already previously been observed in 2 foetuses in another study with rats and considered as rare (Schwetz et al., 1974). Skeletal variations (in total and incidence of supernumerary 14th rib) were non-significantly increased at 3000 ppm, and the

incidence of incomplete ossification of sternebrae was significantly increased at 4000 ppm (Saillenfait et al., 2006). The overall NOAEC from both experiments of this study is 2000 ppm (5940 mg/m³).

Rationale for starting point (POD)

The NOAEC of 2000 ppm (5940 mg/m³) from the developmental toxicity studies was taken as the POD for the derivation of EU-LCI.

Rationale for extrapolation factors

- Adjustment for exposure duration: 4 (24/6)
- Interspecies differences: 2.5
- Intraspecies differences: 10
- Uncertainty: 3 (no chronic toxicity/carcinogenicity study, no two-generation reproductive toxicity study).

Total extrapolation factor is 300, leading to a rounded value of 20000 μ g/m³. The derived value is higher than the reported absolute odour threshold of 0.44 ppm (1.3 mg/m³) (Nagata, 2003). Thus, odour perception is likely at the proposed EU-LCI value.

<u>References</u>

Nagata Y. (2003): Measurement of odor threshold by triangle odor bag method. Odor Measurement Rev 118-127.

Saillenfait AM, Gallissot F, Sabate JP, et al. (2006) Developmental toxicity of combined ethylbenzene and methylethylke-tone administered by inhalation to rats. Food Chem Toxicol 44:1287-1298

Deacon MM, Pilny MD, John JA, et al. (1981) Embryo- and fetotoxicity of inhaled methyl ethyl ketone in rats. Toxicol Appl Pharmacol 59:620-622.

Schwetz BA, Leong BK, Gehring PJ (1974) Embryo- and fetotoxicity of inhaled carbon tetrachloride, 1.1dichloroethane and methyl ethyl ketone in rats. Toxicol Appl Pharmacol 28:452-464.

Schwetz BA, Mast TJ, Weigel RJ, Dill JA, Morrissey RE (1991) Developmental toxicity of inhaled methyl ethyl ketone in Swiss mice. Fundam Appl Toxicol 16:742-748.

Voss JU (2017) Toxikologische Basisdaten und Textentwurf für die Ableitung von EU-LCI-Werten für Triethylamin (CAS Nr. 121-44-8), Tributylphosphat (CAS Nr. 126-73-8), Triethylphosphat (CAS Nr. 78-40-0), Methylmethacrylat (CAS Nr. 80-62-6) und Ethylmethylketon (CAS Nr. 78-93-3). UBA Texte, *in press*.