Radiation-Shapes-Thermal Protection Investigations
for High Speed Earth Re-entry

RASTAS SPEAR: Radiation-Shapes-Thermal Protection Investigations for High Speed Earth Re-entry

Let's embrace Space - FP7 Conference- Budapest 12-13 May 2011

ASTRIUM-ST SAS (F) IoA (PL)
CIRA (I) KYBERTEC (CZ)
CFS Engineering (CH) MSU (R)
NCSR Demokritos (G) ONERA (F)
CNRS (F) VKI (B)

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 241992
• In the frame of EC (European Community) FP7 second call
 • Activity 9.2 • strengthening of space foundations / research to support space science exploration
 • SPA.2009.2.1.01 Space Exploration
• Duration
 • Sep 2010 - Sep 2012
• Status : Astrium is the coordinator. Team composed of 10 partners
• More on www.rastas-spear.eu
Partners per country
General Objective

• Need to develop the capability to send vehicles into space, which collect and return to Earth samples from solar system bodies.

• Rastas Spear project aims to increase Europe’s knowledge in high speed re-entry vehicle
Objectives of the project

- **OBJ 1 (WP1, WP2, WP4 + WP5)**: To better understand phenomena during high speed re-entry enabling more precise Capsule sizing and reduced margins.

- **OBJ 2 (WP2)**: To identify the ground facility needs for simulation.

- **OBJ 3 (WP3)**: To master heat shield manufacturing techniques and demonstrate heat shield capabilities.

- **OBJ 4 (WP3+WP4)**: To master damping at ground impact and flight mechanics and thus ensure a safe return of the samples.

<table>
<thead>
<tr>
<th>WORKPACKAGES</th>
<th>WP Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP 1 Review of System Requirements</td>
<td>AST CNRS</td>
</tr>
<tr>
<td>WP 2 Ground Facilities Improvement</td>
<td>AST CIRA CNRS VKI</td>
</tr>
<tr>
<td>WP 3 Key Technologies for High Speed Entry Mastering</td>
<td>AST-F CIRA DEMOKRITOS IOA</td>
</tr>
<tr>
<td>WP 4 Ablation-Flight mechanics coupling assessment</td>
<td>AST CIRA CNRS</td>
</tr>
<tr>
<td>WP 5 Gas-Surface interactions modelling</td>
<td>AST CFS MSU ONERA</td>
</tr>
<tr>
<td>WP 6 Synthesis, Management & Coordination</td>
<td>AST + KYBERTEC + WP leaders</td>
</tr>
</tbody>
</table>
Radiation-Shapes-Thermal Protection Investigations for High Speed Earth Re-entry

WBS

WP1
Review of System Requirements
- 1.1 Atmosphere modelling
- 1.2 Trajectories
- 1.3 Aerodynamics & ATD
- 1.4 Vehicle Design

WP2
Ground Facilities Improvement
- 2.1: Analysis of Current Ground Facilities
- 2.2: Shock tube technology
- 2.3: Ballistic Range Technology
- 2.4: Plasma Generator Technology
- 2.5: Synthesis

WP3
Key Technologies for High Speed Entry
- 3.1: Choice of TPS+Joints
- 3.2: Flow tests
- 3.3: Breadboard manufacturing
- 3.4: Crushable Structure

WP4
Ablation-Flight Mechanics Coupling assessment
- 4.1 Tools coupling
- 4.2 Ablation coupling assessment
- 4.3 Engineering modelling Correction by CFD

WP5
Gas-Surface Interactions Modelling
- 5.1: Review of surface roughness and blowing influence
- 5.2: Ground Experiment Preparation
- 5.3: CFD Modelling
- 5.4: Synthesis of WP

WP6
Management, Dissemination and Exploitation
- 6.1 Management
- 6.2 Dissemination & Exploitation
Conclusion

- Rastas Spear is a typical R&D project
 - Part of European Community Framework Programme n°7 (FP7)
- Objective to increase the TRL of
 - Key technologies
 - Methodologies
- Project is now on-track
- Frame of the study has been defined
 - Focus on passive Earth Return Capsule
- Remaining steps until end of study will allow completion of overall project objectives
 - Completion Fall 2012