

eIDAS-Node Security Considerations
v2.8

eID Internal – eIDAS-Node Security Considerations v2.8

Table of Contents – 2

Table of Contents

1 Introduction .. 5
1.1 Document structure .. 5
1.2 Document aims ... 5
1.3 Other technical reference documentation .. 5

2 eIDAS-Node security headers ... 7
2.1 Available security headers.. 7
2.1.1 Content Security Policy ... 7
2.1.2 X-XSS protection... 8
2.1.3 Strict-Transport-Security ... 8
2.1.4 X-Frame-Options... 9
2.1.5 X-Content-Type-Options ... 9
2.1.6 Cache control – pragma expiration ... 10
2.1.7 X-Robots-Tag .. 10
2.2 Development guidelines ... 10

3 eIDAS-Node configuration recommendations for production 12

4 Event logging ... 13

5 LightRequest/LightResponse interface ... 14
5.1 LightToken .. 14
5.2 Simple Protocol .. 14

6 Security components' interfaces .. 15

7 Keystores .. 16

8 Additional considerations ... 17
8.1 Caches configuration .. 17
8.2 Metadata used in the eIDAS-Node ... 17
8.2.1 Metadata exchange... 17
8.2.2 Revocation of no longer entitled nodes ... 18
8.3 Clock ... 18
8.4 Skew time ... 18
8.5 Crypto dependencies .. 18
8.6 Ignite and TLS .. 18
8.7 IP Address in SAML Assertion ... 20
8.8 Security provider installation... 20
8.9 Key agreement ... 21
8.10 Software stack update practices ... 21

9 Known limitations .. 22
9.1 Algorithms for signing ... 22
9.2 Key rollover ... 23
9.3 eIDAS Connector and eIDAS ProxyService should be deployed separately 23

10 References .. 24

eID Internal – eIDAS-Node Security Considerations v2.8

Introduction – 3

Document history

Version Date Modification reason Modified
by

1.0 25/04/2018 Origination DIGIT

2.1 06/07/2018 Reuse of document policy updated and version changed to
match the corresponding Release.

DIGIT

2.3 20/06/2019 Adapt to be in line with the changes in CEF eIDAS-Node v2.3 DIGIT

2.4 06/12/2019 Adapt to be in line with the changes in CEF eIDAS-Node v2.4.
Main changes made in sections 5.1, 7, 8.1 and 8.5. Added
sections: 8.8, 8.9, and 8.10. Removed obsolete 9.3.

DIGIT

2.5 10/12/2019 Updates related to support of eIDAS Technical Specification
1.2

DIGIT

2.6 15/04/2022 Updates related to passwords security, server fingerprinting
and security providers configuration

DIGIT

2.7 01/09/2023 eIDAS-Node 2.7 release DIGIT

2.8 05/09/2023 eIDAS-Node 2.8 pre-release DIGIT

Disclaimer
This document is for informational purposes only and the Commission cannot be held
responsible for any use which may be made of the information contained therein. References to
legal acts or documentation of the European Union (EU) cannot be perceived as amending
legislation in force or other EU documentation.

The document contains information of a technical nature and does not supplement or amend
the terms and conditions of any procurement procedure; therefore, no compensation claim can
be based on the contents of this document.

© European Union, 2023
Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on
the reuse of Commission documents.

List of abbreviations

The following abbreviations are used within this document.

Abbreviation Meaning

ECDH Elliptic-Curve Diffie–Hellman

eIDAS Electronic Identification and Signature. The Regulation (EU) N°910/2014
governs electronic identification and trust services for electronic transactions in
the internal market to enable secure and seamless electronic interactions
between businesses, citizens and public authorities.

CSP Content Security Policy.

HSTS HTTP Strict Transport Security.

IdP Identity Provider. An institution that verifies the citizen's identity and issues an
electronic ID.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG

eID Internal – eIDAS-Node Security Considerations v2.8

Introduction – 4

Abbreviation Meaning

MS Member State

SAML Security Assertion Markup Language

SP Service Provider

XHR XMLHttpRequest: an API in the form of an object whose methods transfer data
between a web browser and a web server.

XSS Cross-site scripting. A type of computer security vulnerability typically found in
web applications.

eID Internal – eIDAS-Node Security Considerations v2.8

Introduction – 5

1 Introduction

This document describes the security considerations that should be taken into account when
integrating and operating the eIDAS-Node v2.5 (or higher) which implements eIDAS Technical
Specifications v1.2 (https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eIDAS+eID+Profile .) .

This document focuses on the Generic parts of the eIDAS-Node, which are targeted for
production. The testing tools (demo SP, demo IdP), the supplied Specific parts and the Simple
Protocol, should be used for demo purposes only, and should not be deployed in your
infrastructure.

Note: The URLs with ec.europa.eu domain in this document are only accessible to the experts
registered with the eIDAS eID Implementation community.

1.1 Document structure

• Chapter 1 — Introduction this section.

• Chapter 2 — eIDAS-Node security headers describes the HTTP response headers that
the eIDAS-Node can send in order to increase its security.

• Chapter 3 — eIDAS-Node configuration recommendations for production identifies the
main elements to consider when installing the software in a production environment.

• Chapter 4 — Event logging gives the pointers to operations considerations related to
handling audit logging data.

• Chapter 5 — LightRequest/LightResponse interface briefly describes the integration
interface for background communication between eIDAS Specific and the Generic
parts.

• Chapter 6 — Security components' interfaces identifies the interfaces of the main
security components that can be implemented before installing the eIDAS-Node.

• Chapter 7 — Keystores identifies the keystores in eIDAS-Node.

• Chapter 8 — Additional considerations describes more security aspects to be
considered.

• Chapter 9 — Known limitations identifies the main known limitations in eIDAS-Node
related to security.

• Chapter 10 — References

1.2 Document aims

The aim of this document is to provide information on:

• Recommendations for setting the software security parameters, e.g. skew time;

• Operational considerations, e.g. handling logging information;

• Identification of crypto dependencies (third-party library); and

• Known limitations and opportunities for improvement.

1.3 Other technical reference documentation

We recommend that you also familiarise yourself with the following eID technical reference
documents which are available on Digital Home > eID :

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eIDAS+eID+Profile

eID Internal – eIDAS-Node Security Considerations v2.8

Introduction – 6

• eIDAS-Node Installation, Configuration and Integration Quick Start Guide describes
how to quickly install a Service Provider, eIDAS-Node Connector, eIDAS-Node Proxy
Service and IdP from the distributions in the release package. The distributions provide
preconfigured eIDAS-Node modules for running on each of the supported application
servers.

• eIDAS-Node Installation and Configuration Guide describes the steps involved when
implementing a Basic Setup and goes on to provide detailed information required for
customisation and deployment.

• eIDAS-Node National IdP and SP Integration Guide provides guidance by
recommending one way in which eID can be integrated into your national eID
infrastructure.

• eIDAS-Node Demo Tools Installation and Configuration Guide describes the installation
and configuration settings for Demo Tools (SP and IdP) supplied with the package for
basic testing.

• eIDAS-Node and SAML describes the W3C recommendations and how SAML XML
encryption is implemented and integrated in eID. Encryption of the sensitive data
carried in SAML 2.0 Requests and Assertions is discussed alongside the use of AEAD
algorithms as essential building blocks.

• eIDAS-Node Error and Event Logging provides information on the eID implementation
of error and event logging as a building block for generating an audit trail of activity on
the eIDAS Network. It describes the files that are generated, the file format, the
components that are monitored and the events that are recorded.

• eIDAS-Node Error Codes contains tables showing the error codes that could be
generated by components along with a description of the error, specific behaviour and,
where relevant, possible operator actions to remedy the error.

Disclaimer: The users of the eIDAS-Node sample implementation remain fully responsible for
its integration with back-end systems (Service Providers and Identity Providers), testing,
deployment and operation. The support and maintenance of the sample implementation, as well
as any other auxiliary services, are provided by the European Commission according to the
terms defined in the European Union Public License (EUPL) at
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node security headers – 7

2 eIDAS-Node security headers

This section describes the HTTP response headers that the eIDAS-Node can send in order to
increase its security.

The web security model is based on the same origin policy. Code from
https://EidasNode:8080/EidasNode/ should only have access to
https://EidasNode:8080/EidasNode/ data, while an attacker from https://evil.eidasNode.com
should certainly never be allowed the access. Each origin is kept isolated from the rest of the
web, giving developers a safe sandbox in which to build and play. While being a good concept
in theory, in practice, attackers have found different ways to subvert the system.

Cross-site scripting (XSS) attacks, for instance, bypass the same origin policy by tricking a site
into delivering malicious code along with the intended content.

For more information on the security HTTP header parameters, please refer to Additional
configuration — Security section in the eIDAS-Node Installation and Configuration Guide.

2.1 Available security headers

2.1.1 Content Security Policy

security.header.CSP.enabled

Content Security Policy (CSP) is a W3C standard that imposes restrictions on the origin of
content. CSP prevents a wide range of attacks, including cross-site scripting (XSS) and other
cross-site injections. It requires careful tuning and precise definition of the policy. If enabled,
CSP has significant impact on the way the browser renders pages (e.g. inline JavaScript is
disabled by default and must be explicitly allowed in a policy).

CSP can significantly reduce the risk and impact of XSS attacks in modern browsers. Its
mechanism is based principally on the definition of whitelists for the sources of content
(applicable to a variety of resources: scripts, fonts, stylesheets, media, images, frames).

The implementation made in the eIDAS-Node applies a set of CSP policies on all HTTP
responses returned by server.

Note: Setting security.header.CSP.enabled also enables cache control.

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node security headers – 8

Content-Security-Policy: default-src 'none'; object-src 'self'; style-src

'self'; img-src 'self'; font-src 'self'; connect-src 'self';script-src

'self';script-nonce

4520d9d148c4a9cbcec68e56c625943bd33551683f017b056fafad01526f5ed4;report-

uri http://localhost:8080/EidasNodeConnector/cspReportHandler;report-to

http://localhost:8080/EidasNodeConnector/cspReportHandler;frame-ancestors

'none'

X-Content-Security-Policy: default-src 'none'; object-src 'self'; style-

src 'self'; img-src 'self'; font-src 'self'; connect-src 'self';script-src

'self';script-nonce

4520d9d148c4a9cbcec68e56c625943bd33551683f017b056fafad01526f5ed4;report-

uri http://localhost:8080/EidasNodeConnector/cspReportHandler; report-to

http://localhost:8080/EidasNodeConnector/cspReportHandler;frame-ancestors

'none'

X-WebKit-CSP: default-src 'none'; object-src 'self'; style-src 'self';

img-src 'self'; font-src 'self'; connect-src 'self';script-src

'self';script-nonce

4520d9d148c4a9cbcec68e56c625943bd33551683f017b056fafad01526f5ed4;report-

uri http://localhost:8080/EidasNodeConnector/cspReportHandler;report-to

http://localhost:8080/EidasNodeConnector/cspReportHandler;frame-ancestors

'none'

x-xss-protection: 1; mode=block

x-content-type-options: nosniff

X-Frame-Options: SAMEORIGIN

Strict-Transport-Security: max-age=600000; includeSubdomains

Cache-Control: no-cache, no-store, max-age=0, must-revalidate, private

Pragma: no-cache

Expires: 0

X-Robots-Tag: noindex, nofollow

X-Powered-By:

Server:

Figure 1: Sample CSP header in an HTTP response header of the eIDAS-Node

When security.header.CSP.enabled is set to true, which is the default value, the
headers Content-Security-Policy, X-Content-Security-Policy and X-WebKit-CSP will be
included, if false those headers will not be included.

For backward compatibility with older browser versions and CSP implementations, the headers
X-Content-Security-Policy and X-WebKit-CSP are also added.

An action cspReportHandler has been defined for logging all the CSP violations.

If it is necessary to report/log CSP violation, the property "security.header.CSP.report.uri" has to
be set explicitly in eidas.xml.

2.1.2 X-XSS protection

security.header.CSP.XXssProtection.block

This header enables the XSS filter built into most recent web browsers. It is usually enabled by
default, meaning that the role of this header is to re-enable the filter for this particular website if
it was disabled by the user. This header is supported in IE 8+, and in Chrome. The anti-XSS
filter was added in Chrome 4.

X-XSS-Protection:1; mode=block

Figure 3: Sample header in an HTTP response header of the eIDAS-Node

2.1.3 Strict-Transport-Security

security.header.HSTS.includeSubDomains

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node security headers – 9

HTTP Strict-Transport-Security (HSTS) instructs the browser to prefer secure connections to
the server (HTTP over SSL/TLS) over insecure ones. This reduces the impact of bugs in web
applications like leaking session data through cookies and external links, and defends against
man-in-the-middle attacks. HSTS also disables the ability for users to ignore SSL certificate
warnings.

For using this, the transport protocol needs to be https, and the following configuration has to be
added in web.xml.

Note that the web.xml configuration of secure and http-only cookies has only been introduced
with Servlet 3.0. For older platforms, this can be configured through proprietary mechanisms,
such as application server specific web descriptors.

<cookie-config>

 <secure>true</secure>

 <http-only>true</http-only>

</cookie-config>

Figure 4: Configuring HSTS in web.xml

Strict-Transport-Security: max-age=600000; includeSubdomains

Figure 5: Sample HTTP response header of the eIDAS-Node

2.1.4 X-Frame-Options

security.header.XFrameOptions.sameOrigin

These options prevent the application from rendering in a frame or iframe, which in turns
protects against key logging, clickjacking and similar attacks. Values: deny - no rendering within
a frame, sameorigin - no rendering if origin mismatch, allow-from: DOMAIN - allow rendering if
framed by frame loaded from DOMAIN.

This option will limit the possibilities to frame the eIDAS-Node. The header value used by the
eIDAS-Node is sameorigin. Therefore only applications hosted on the same origin will be
allowed to frame the eIDAS node.

X-Frame-Options: SAMEORIGIN

Figure 6: X-Frame-Options — Sample header in an HTTP eIDAS-Node response header

2.1.5 X-Content-Type-Options

security.header.XContentTypeOptions.noSniff

The only defined value, 'nosniff', prevents Internet Explorer and Google Chrome from 'MIME-
sniffing', that is, from trying to infer the actual MIME type of a response (which might be different
from the declared content type) by inspecting its bytes. This also applies to Google Chrome,
when downloading extensions. This header reduces the exposure to drive-by download attacks
and sites serving user uploaded content that, by clever naming, could be treated as executable
or dynamic HTML files.

X-Content-Type-Options: nosniff

Figure 7: X-Content-Type-Options — Sample header in an HTTP eIDAS-Node response
header

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node security headers – 10

2.1.6 Cache control – pragma expiration

Browsers can store information for purposes of caching and history. Caching is used to improve
performance, so that previously displayed information does not need to be downloaded again.
History mechanisms are used for user convenience, so the user can see exactly what they saw
at the time when the resource was retrieved. If sensitive information is displayed to the user
(e.g. their address, credit card details, Social Security Number, or username), then this
information could be stored for purposes of caching or history, and therefore retrievable through
examining the browser's cache or by simply pressing the browser's Back button.

The cache control is enabled when security.header.CSP.enabled parameter is set.

The following is an example of a good header.

Cache-Control: no-cache, no-store, max-age=0, must-revalidate, private

Pragma: no-cache

Expires: <past date or illegal value (e.g., 0)>

2.1.7 X-Robots-Tag

The X-Robots-Tag instructs search engine robots how the page should be indexed. In order not
to expose the Node's components, search engines are instructed with this tag not to index any
page of the Node. As such, the value for this tag is defined as 'noindex, nofollow'. This prevents
both the indexing of the pages and the following of any links on the page.

X-Robots-Tag: noindex, nofollow

2.2 Development guidelines

The core issue exploited by XSS attacks is the browser's inability to distinguish between scripts
that are intended to be part of your application, and scripts that have been maliciously injected
by a third party. Instead of making browsers trust blindly everything that a server delivers, CSP
defines the Content-Security-Policy HTTP header that allows the application owner to create a
whitelist of sources for trusted content, and instructs the browser to only execute or render
resources from those sources.

Even if an attacker can find a hole through which to inject scripts, the origin of the script will not
match the whitelist, and therefore will not be executed. In the eIDAS-Node, we specify 'self' as
the only valid source of scripts. With this policy defined, the browser will simply throw an error
instead of loading scripts from any other source. If an attacker does manage to inject code into
the site, he will run into an error message, rather than having the success he was expecting.

The policy applies to a wide variety of resources:

• script-src limits the origins from which you can load scripts;

• connect-src limits the origins to which you can connect (via XHR, WebSockets, and
EventSource);

• font-src specifies the origins that can serve web fonts;

• frame-src lists the origins that can be embedded as frames. For example: frame-src
https://youtube.com would enable embedding YouTube videos, but no other origins;

• img-src defines the origins from which images can be loaded;

• media-src restricts the origins allowed to deliver video and audio;

• object-src allows control over Flash and other plugins; and

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node security headers – 11

• style-src is the counterpart of script-src for stylesheets.

In the eIDAS-Node, the 'self' source is used that matches only the current origin and not its
subdomains.

As a consequence, inline JavaScript and CSS are not allowed, and neither are eval
expressions.

To give an example of the impact, the following inline JavaScript

<body onload="document.redirectForm.submit();">

will need to be replaced by a JavaScript file as shown below.

<script src="js/redirectOnload.js"></script>

This file would contain the following.

function submitRedirectFormAction() {

 document.getElementsByName('redirectForm')[0].submit();

}

window.addEventListener('load', submitRedirectFormAction);

References:

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

https://owasp.org/www-community/controls/Content_Security_Policy

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://owasp.org/www-community/controls/Content_Security_Policy

eID Internal – eIDAS-Node Security Considerations v2.8

eIDAS-Node configuration recommendations for production – 12

3 eIDAS-Node configuration recommendations for
production

The eIDAS-Node parameters allow for more flexible settings than what is restricted by the
eIDAS Technical Specifications. To be compliant with the eIDAS Technical Specifications, there
are several things to consider when installing the software in a production environment. For
more information on this subject please see the eIDAS-Node compliance section in the eIDAS-
Node Installation and Configuration Guide.

These details are more related to the environment and the application server configuration than
the configuration of the application itself.

The following check list shows the features to consider:

• Follow the settings recommended in section 7.4. eIDAS-Node compliance of eIDAS-
Node Installation and Configuration Guide, such as disallow.self.signed.certificate,
metadata.restrict.http, and response.encryption.mandatory.

• Protect your application server from fingerprinting: Consult your application server
documentation for further details.

• Restrict access to admin interfaces on the production server: Administrator interfaces
may be present in the application or on the application server to allow certain users to
undertake privileged activities on the site, access needs to be restricted (see your
server documentation).

• If the application is not intended to use frames, set the protection against framing by
activating the 'X-Frame-Options' header or CSP 'frame-ancestors' directive in the
eidas.xml file (see section 2.1.4 — X-Frame-Options).

• In the application web.xml, enable secure flag on cookies and HTTP Strict Transport
Security (HSTS) header (see section 2.1.3 — Strict-Transport-Security).

• Set the logging detail to INFO for audit trails (see the eIDAS-Node Error and Event
Logging guide for further information).

• Configure the different caches (e.g., anti-replay cache) for production (see the eIDAS-
Node Installation and Configuration Guide and eIDAS-Node National IdP and SP
Integration Guide).

• Restrict the HTTP operations of your application only to the ones needed (i.e. GET and
POST).

• Apply the required protection to the setting files for keystores.

• Apply the required protection to the eIDAS-Node logs.

• Apply the required protection to Ignite and TLS (see chapter Ignite and TLS).

The following features should be checked in the eIDAS Technical Specifications documents as
the specifications evolve:

• Configure the application to use the correct version of TLS;

• Use cipher suites that follow the recommendations and provide perfect forward secrecy
(PFS);

• Ensure that the algorithms used for signing and encryption are configured in the
whitelist and that they conform to the eIDAS Technical Specifications.

• Ensure that the Metadata location whitelist for your node is populated and use. This is
important in order to detect if the issuer in SAML messages was manipulated.

eID Internal – eIDAS-Node Security Considerations v2.8

Event logging – 13

4 Event logging

eIDAS-Node produces log files with different levels of details. The detail of the logs and their
formatting are described in the eIDAS-Node Error and Event Logging guide.

eIDAS-Node does not protect the log files it produces therefore it is recommended that they be
protected according to own security operations requirements. A list of Operations
considerations related to handling audit logging data is described in eIDAS-Node Error and
Event Logging guide.

Moreover, note that the eIDAS-Node logs may contain person identification data, hence
these logs should be handled and protected appropriately in accordance with the
European privacy regulations [Dir. 95/46/EC] and [Reg. 2016/679].

[Reg. 2016/679] REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC.

[Dir. 95/46/EC] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data.

eID Internal – eIDAS-Node Security Considerations v2.8

LightRequest/LightResponse interface – 14

5 LightRequest/LightResponse interface

eIDAS-Node provides LightRequest and LightResponse interface for background
communication between Specific Connector and Generic Connector on the one hand, and
between Specific Proxy Service and Generic Proxy Service on the other hand.

For details of this interface, on the format of LightRequest and LightResponse objects, and on
implementation options, please refer to section Integration possibilities in the eIDAS-Node
National IdP and SP Integration Guide.

5.1 LightToken

The communication between the Specific and Generic parts is done via Shared caches (e.g.
Ignite) by means of a LightToken. The integrity protection of the LightToken uses a passphrase
shared between the two communicating parties, Specific and Generic. One should take
appropriate measures to protect the passphrase. It is recommended that the default passphrase
be changed and use reasonably long character string composed of random characters.

5.2 Simple Protocol

The eIDAS-Node integration package comes with the implementation of a Simple Protocol to
exemplify the communication between a demo SP and Specific Connector, and the
communication between Specific Proxy Service and a demo IdP. The Simple Protocol must not
be used in production as it does not include security features.

When eIDAS-Node is integrated in MS's infrastructure it is expected that the Simple Protocol
demo be replaced with the protocol used in MS's eID, e.g. SAML, OpenIDConnect.

The LightRequest comprises different elements to construct the eIDAS SAML AuthnRequest
such as spType and levelOfAssurance. The LightRequest also contains the relayState (This is a
feature proper to SAML, supported in all the eIDAS specified bindings). element. The Specific
part can use this element to propagate some state, that will be returned with the LightResponse.
However, it is not recommended to use it for correlation, or to expose internal state information,
especially as this field is protected only by the transport layer.

Note: The Consent page implemented in the Specific part is provided only for demo purposes,
thus no special protection is integrated.

eID Internal – eIDAS-Node Security Considerations v2.8

Security components' interfaces – 15

6 Security components' interfaces

eIDAS-Node software implements the various interfaces defined for the main security
components. One may choose to replace the implementation of certain interfaces in order to
have different solutions or approach.

The interfaces of the main security components are listed below.

• eu.eidas.auth.engine.core.SAMLEngineSignI

• eu.eidas.auth.engine.core.SAMLEngineEncryptionI

• eu.eidas.auth.engine.core.ProtocolSignerI

• eu.eidas.auth.engine.metadata.MetadataSignerI

• eu.eidas.auth.engine.core.ProtocolProcessorI

• eu.eidas.auth.engine.metadata.MetadataFetcherI

• eu.eidas.auth.engine.metadata.MetadataSignerI

• eu.eidas.auth.engine.SamlEngineClock

For further details on this subject, please refer to the eIDAS-Node and SAML guide.

eID Internal – eIDAS-Node Security Considerations v2.8

Keystores – 16

7 Keystores

eIDAS-Node keeps the keys it uses in Java keystores.

Different keystores are defined in configuration files, per Node instance, such as:

• EncryptModule_Connector.xml

• SignModule_Connector.xml

• SignModule_Service.xml

These configuration files contain keyPassword and keyStorePassword elements. eIDAS-Node
does not protect these files.

It is recommended that:

1. The default passwords be changed and be reasonably long, e.g., 14, or longer
character string, composed of random lowercase and uppercase letters, numbers, and
special characters.

2. The configuration files be protected according to own security operations requirements.

3. The signing metadata certificate be configured in a separated keystore of the one
containing the signing message certificate.

4. The content of the keystore should be as restrictive as possible. eIDAS-Node will use
any private key present in the keystore to decrypt an eIDAS-Response.

Starting eIDAS-Node version 2.6, the eIDAS-Node supports integration with SunPKCS11
provider implementations (i.e., Yubico HSM).

For further details on the configuration files, please refer to the eIDAS-Node and SAML guide.

Note: The keys and certificates provided with the eIDAS-Node release are for demo purpose
only. They should not be used in production.

eID Internal – eIDAS-Node Security Considerations v2.8

Additional considerations – 17

8 Additional considerations

8.1 Caches configuration

eIDAS-Node uses three types of caches: messages anti-replay, messages correlation, and
metadata caching. There are anti-replay and correlation caches both for the messages between
eIDAS nodes as well as for the messages between Specific and Generic parts. Different
implementations of Jcache are provided for these caches, which can be configured. By default,
the eIDAS-Node is set up to use distributed caches with different expiration values.

This implementation is provided for correlating request and reply pairs both for
AuthenticationRequests and LightRequests.

Ignite caches are intended to be used in production environments. The development
environment may use lighter cache implementations, which are activated by setting parameters.

In order to improve the resilience of the application, we strongly recommend using the Ignite
services. However, the default setting values (e.g., expiration values) should be reviewed and
adapted, if necessary, before using these caches in production. Furthermore, the default
certificates should be changed.

Regarding Ignite, one should use the expiryPolicyFactory property to specify the amount of time
that must pass before an entry is considered expired.

For installation details on this subject, please refer to the section Advanced configuration for
production environments and to the appendix Ignite proposed configuration in the eIDAS-Node
Installation, and Configuration Guide and eIDAS-Node National IdP and SP Integration Guide.

Note: The REST API profile is not enabled by default in Ignite. Enabling this profile adds
several dependencies which may be affected by CVE's whose impact was not investigated by
the eID team.

Note: It is possible to replace Ignite with alternative solutions by implementing the provided
interfaces.

8.2 Metadata used in the eIDAS-Node

8.2.1 Metadata exchange

To provide an uninterrupted chain of trust to securely identify the eIDAS-Nodes, two
communication relationships are defined in the eIDAS Technical Specifications: eIDAS-Node
Connectors with eIDAS-Node Proxy Services, and eIDAS-Node Connectors with Middleware-
Services.

Concerning the relationship eIDAS-Node Connectors and Middleware-Services, as there is a
one-to-one correspondence between the two entities, the certificates can be exchanged directly
between the nodes.

This section focuses on metadata exchanges between eIDAS-Node Connectors and eIDAS-
Node Proxy Services via the URLs and trust anchors. Trust anchors are to be exchanged
bilaterally between MS.

Support for both dynamic and static use of metadata is provided. The switch parameter
metadata.http.retrieval is available to activate the dynamic retrieval of metadata information
using HTTP/HTTPS.

If the dynamic retrieval is disabled, the application will process all the files contained in a
defined folder. If the static metadata is expired, the application will try to reach the remote
location. Note that, the files containing the static metadata will not be updated.

When the metadata is loaded in the application, its validity is checked. An error will be printed in
the logs if the metadata has expired.

eID Internal – eIDAS-Node Security Considerations v2.8

Additional considerations – 18

8.2.2 Revocation of no longer entitled nodes

The eIDAS Technical Specifications do not specify the way the eIDAS-Nodes, and ultimately
the certificates, should be revoked. However, some pointers are provided; see the excerpt from
$6.2 of eIDASInteropArch:

"No longer entitled (e.g. due to compromise) nodes must be revoked. This can be for
example done by revoking the metadata signing certificate (which revokes all nodes whose
metadata are signed with that certificate) or by using short lifetimes of metadata and not
resigning them in case of revocation (see also section 6.4.1)."

The eIDAS Node is able to check the metadata signing certificates for revocation. To enable
this functionality, the configuration parameter enable.certificate.revocation.checking must be set
to true, which is its default value.
More information on this functionality can be found in Appendix A: Certificate Revocation
Validation of document eIDAS-Node and SAML v2.8

8.3 Clock

The clock is obtained with the implementation of a dedicated interface
eu.eidas.auth.engine.SamlEngineClock. The default implementation uses the system time.

8.4 Skew time

The skew time gives the eIDAS-Node Connector the possibility to set a tolerance window for
validating the timestamps in the SAML Responses that are sent by the eIDAS-Node Proxy
Service, based on experienced clock drifts that may occur.

However, it is recommended that the clocks be synchronised between the servers responsible
for authentication, thus avoiding using the skew time (with large values, or at all).

8.5 Crypto dependencies

By default, the project is built using Java SDK version 11. Running the project on Java 11
increases the TLS capabilities, e.g. support for GCM-based TLS ciphers.

eIDAS-Node Connector and eIDAS-Node Proxy Service depend on the security/crypto libraries
below:

• OpenSAML

• JCE Unlimited Strength Jurisdiction Policy

• BouncyCastleProvider (in most of the cases)

For installation details on this subject, please refer to the section Configuring the JVM in the
eIDAS-Node Installation and Configuration Guide.

For the complete list of dependencies, please refer to the address below (the dependencies are
listed separately for each release):

https://ec.europa.eu/digital-building-blocks/wikis/x/DWcZAg

8.6 Ignite and TLS

By default, TLS protection is enabled for Ignite communication in eIDAS-Node.

https://ec.europa.eu/digital-building-blocks/wikis/x/DWcZAg

eID Internal – eIDAS-Node Security Considerations v2.8

Additional considerations – 19

In demo configuration files of the Ignite: (igniteNode.xml and igniteSpecificCommunication.xml
from eIDAS Connector Config repository and eIDAS Proxy Config repository) it is necessary to
set the following environment variables to a hard-to-guess value and to recreate their
corresponding certificates. The default values (preceded by ':') can be omitted after this step.

• IGNITE_NODE_CONNECTOR_KEY_STORE_PASSWORD

• IGNITE_NODE_CONNECTOR_TRUST_STORE_PASSWORD

• IGNITE_SPECIFIC_CONNECTOR_KEY_STORE_PASSWORD

• IGNITE_SPECIFIC_CONNECTOR_TRUST_STORE_PASSWORD

• IGNITE_NODE_PROXY_KEY_STORE_PASSWORD

• IGNITE_NODE_PROXY_TRUST_STORE_PASSWORD

• IGNITE_SPECIFIC_PROXY_KEY_STORE_PASSWORD

• IGNITE_SPECIFIC_PROXY_TRUST_STORE_PASSWORD

<!-- Ssl/Tls context. -->

 <!-IMPORTANT: THIS IS JUST A DEMO CONFIGURATION AND DEMO KEYSTORES,

NEEDS TO BE CHANGED FOR PRODUCTION ALSO THE KEYS IN THE KEYSTORES NEED TO

BE CREATED AS WELL->

 <property name="sslContextFactory">

 <bean class="org.apache.ignite.ssl.SslContextFactory">

 <!--uncomment the below keyAlgorithm when IBM JRE is used e.g.

websphere 8.5.5-->

 <!--<property name="keyAlgorithm" value="IBMX509" />-->

 <property name="keyStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/server.jks"/>

 <property name="keyStorePassword"

value="${IGNITE_NODE_CONNECTOR_KEY_STORE_PASSWORD:123456}"/>

 <property name="trustStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/trust.jks"/>

 <property name="trustStorePassword"

value="${IGNITE_NODE_CONNECTOR_TRUST_STORE_PASSWORD:123456}"/>

 <property name="protocol" value="TLSv1.2"/>

 </bean>

 </property>

eID Internal – eIDAS-Node Security Considerations v2.8

Additional considerations – 20

<!-- Ssl/Tls context. -->

 <!-IMPORTANT: THIS IS JUST A DEMO CONFIGURATION AND DEMO KEYSTORES,

NEEDS TO BE CHANGED FOR PRODUCTION ALSO THE KEYS IN THE KEYSTORES NEED TO

BE CREATED AS WELL->

 <property name="sslContextFactory">

 <bean class="org.apache.ignite.ssl.SslContextFactory">

 <!--uncomment the below keyAlgorithm when IBM JRE is used e.g.

websphere 8.5.5-->

 <!--<property name="keyAlgorithm" value="IBMX509" />-->

 <property name="keyStoreFilePath"

value="${EIDAS_PROXY_CONFIG_REPOSITORY}/ignite/KeyStore/server.jks"/>

 <property name="keyStorePassword"

value="${IGNITE_NODE_PROXY_KEY_STORE_PASSWORD:123456}"/>

 <property name="trustStoreFilePath"

value="${EIDAS_PROXY_CONFIG_REPOSITORY}/ignite/KeyStore/trust.jks"/>

 <property name="trustStorePassword"

value="${IGNITE_NODE_PROXY_TRUST_STORE_PASSWORD:123456}"/>

 <property name="protocol" value="TLSv1.2"/>

 </bean>

 </property>

It is also recommended that you protect these configuration files according to your own security
requirements.

Please also check/follow the TLS requirements stated at eIDAS technical specification, more
exactly the ones stated at eIDAS Cryptographic Requirement for the Interoperability Framework
TLS and SAML Version 1.2.

For more details, please refer to section Enable TLSv1.2 Ignite nodes in the eIDAS-Node
Installation and Configuration Guide.

8.7 IP Address in SAML Assertion

By default, eIDAS-ProxyService does not add the attribute Address in the element
SubjectConfirmationData of SAML Assertion it creates. One can enable the addition of this
attribute with a dedicated configuration property:
enable.address.attribute.subject.confirmation.data

Note: When this property is enabled, the IP address is obtained from x-forwarded-for HTTP
header or, if this is not present, from the IP address of the HTTP Request sender. Given the fact
that the use of this HTTP header may not be fully trusted, enabling adding Address in SAML
Assertions should be used with caution.

8.8 Security provider installation

By default BouncyCastle provider is not installed and in most cases must be installed/configured
at the JVM level. The procedure is described in the eIDAS-Node installation and configuration
guide.

Concerning the SunEC security provider defined by default at java.security file
(security.provider.3=SunEC), it should be moved to the end of the list of available providers.
The reason for this is that the SunEC implementations for the recommended Brainpool elliptic
curves in the eIDAS technical specification are not secure enough, as mentioned at e.g.
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html#GUID-091BF58C-
82AB-4C9C-850F-1660824D5254 and therefore should not be used in runtime. However, it
cannot be removed since it is required by Ignite with TLS enabled.

https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html#GUID-091BF58C-82AB-4C9C-850F-1660824D5254
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html#GUID-091BF58C-82AB-4C9C-850F-1660824D5254

eID Internal – eIDAS-Node Security Considerations v2.8

Additional considerations – 21

8.9 Key agreement

The support for key agreement encryption with ECDH is implemented in the eIDAS-Node using
OpenSAML library.

Note: By default, the key agreement sets the values of the attributes AlgorithmID, PartyUInfo,
and PartyVInfo in xenc11:ConcatKDFParams to "0000". Nevertheless, the library provides the
means to use other values, if need be.

8.10 Software stack update practices

It is recommended that eIDAS-Node deployments follow the general best practices with regard
to updates of the entire software stack surrounding the eIDAS-Node (i.e., OS, Middleware,
JDK), and especially with regard to security patches.

eID Internal – eIDAS-Node Security Considerations v2.8

Known limitations – 22

9 Known limitations

This section lists the main known limitations in eIDAS-Node related to security. They represent
a subset of the overall eIDAS-Node limitations kept up to date at the address below (the
limitations are listed separately for each release).

https://ec.europa.eu/digital-building-blocks/wikis/x/DWcZAg

It is recommended to regularly check this list for any eventual new reported limitations.

As part of our regular security scanning activities, we run dependency checks. At the address
below the eID team announces the reported vulnerabilities.

https://ec.europa.eu/digital-building-blocks/wikis/x/CwB2Ag

It is recommended to regularly check this list for any eventual new reported vulnerabilities and
the outcome of investigation (made by the eID team) of their eventual impact.

It is also encouraged that MS run vulnerability and dependency checks on their eIDAS
integration and eventually report findings to the eID team.

Note: The investigation of eventual impact of reported vulnerabilities is being done considering
the way and the context the dependencies and the related code are used in eIDAS-Node, as
released. Subsequent changes in usage, context, or behaviour made to the eIDAS-Node
releases by eIDAS-Node implementers should to be assessed considering any related reported
vulnerabilities.

9.1 Algorithms for signing

Regarding the algorithms to be used for signing, eIDAS Cryptographic Requirement specifies
the algorithm families RSASSA-PSS and ECDSA.

From the two algorithm families, the current eIDAS-Node supports the algorithm identifiers listed
below.

RSASSA-PSS

http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1

http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1

http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1

ECDSA

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

The current eIDAS-Node 2.7 no longer accepts the algorithm identifiers listed below, as being
considered less secure.

RSASSA-PKCS1-v1_5

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

RSA-RIPEMD160

http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160

https://ec.europa.eu/digital-building-blocks/wikis/x/DWcZAg
https://ec.europa.eu/digital-building-blocks/wikis/x/CwB2Ag
http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1

eID Internal – eIDAS-Node Security Considerations v2.8

Known limitations – 23

9.2 Key rollover

Currently, metadata is loaded into the application when the eIDAS-Node is started. Thus,
updates in metadata and keys will not be used by the application until the application is
restarted.

In order to facilitate the rollover for metadata signing key, a node may have metadata with more
than one KeyDescriptor for the same usage. However, the eIDAS-Node reads only one
KeyDescriptor for the same usage.

9.3 eIDAS Connector and eIDAS ProxyService should be
deployed separately

As of version 2.7, the eIDAS Connector and eIDAS ProxyService are built as separate .war
files.

In a production environment, it is recommended to run Connector and ProxyService on different
application servers (ideally on separate hosts). This approach limits the ability to interfere with
the other module in a malicious way.

(Example: recommendation found in Security Considerations of Apache Tomcat)

eID Internal – eIDAS-Node Security Considerations v2.8

References – 24

10 References

• eIDASCryptoReq: eIDAS - Cryptographic Requirements for the Interoperability
Framework

• eIDASInteropArch: eIDAS - Interoperability Architecture

