

Date: 23-06-2023

EUROPEAN COMMISSION

DIGIT
Digital Europe Programme

Service Metadata Publisher

Software Architecture Document

DomiSMP 5.0

Version [2.1]

Status [Final]

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 2 / 59

Document Approver(s):

Approver Name Role

Marco SAMPAIO Project Manager

Document Reviewers:

Reviewer Name Role

BERRAH Chaouki Technical Writer

Summary of Changes:

Version Date Created by Short Description of Changes

V0.1 05/04/2018 Paweł GUTOWSKI Initial version

V0.5 20/07/2018 Jože RIHTARŠIČ Changes after comments from Yves ADAM

V1.0 27/07/2018 Jože RIHTARŠIČ Changes after comments from Marcio
SAMPAIO

V1.1 30/07/2018 CEF Support Final version

V1.2 30/09/2018 Caroline AEBY No more standby service

V1.3 29/10/2018 Jože RIHTARŠIČ Updates for 4.1.0.RC release

V1.4 28/11/2018 Jože RIHTARŠIČ Updates for 4.1.0.FR release

V1.5 07/10/2019 Jože RIHTARŠIČ Updates for 4.1.1. release

V1.6 03/05/2022 Caroline AEBY No more CEF references + links update

V1.7 19/05/2022 Caroline AEBY eDelivery support email changed to EC-
EDELIVERY

V1.8 02/06/2022 Jože RIHTARŠIČ
Caroline AEBY

Typos and SMP 4.2 RC1

V1.9 28/06/2022 Jože RIHTARŠIČ
Caroline AEBY

SMP 4.2 FR version

V2.0 05/05/2023 Jože RIHTARŠIČ Updates for 5.0 RC1 release

V2.1 22/06/2023 Caroline AEBY Updates for DomiSMP 5.0 FR

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 3 / 59

Table of Contents

1. INTRODUCTION ... 6

1.1. Purpose .. 6

1.2. References ... 6

1.3. Definitions ... 7

2. OVERVIEW OF THE SOLUTION .. 10

3. FUNCTIONAL VIEW .. 11

3.1. Identifiers .. 11

3.1.1. Identifiers encoding .. 11

3.1.2. ebCore party identifier ... 12

3.1.3. Identifier's case sensitivity ... 12

3.2. BDMSL integration... 13

3.3. Domain Multitenancy .. 13

3.4. Roles .. 13

3.5. Domain, Group and Resources .. 14

3.6. Extensions .. 15

3.7. UC01 – Manage Administrators .. 18

3.7.1. Prerequisites ... 18

3.7.2. Description ... 18

3.8. UC02 – PUT ServiceGroup (create or update) ... 20

3.8.1. Prerequisites ... 20

3.8.2. Description ... 20

3.8.3. ServiceGroup-Owner HTTP header - Specifying Owner User ... 22

3.8.4. Domain HTTP header - Specifying Domain ... 22

3.9. UC03 - DELETE ServiceGroup ... 23

3.9.1. Prerequisites ... 23

3.9.2. Description ... 23

3.10. UC04 – PUT ServiceMetadata (create or update) ... 25

3.10.1. Prerequisites ... 25

3.10.2. Description ... 25

3.11. UC05 – DELETE ServiceMetadata .. 28

3.11.1. Prerequisites ... 28

3.11.2. Description ... 28

3.12. UC06 – GET ServiceGroup ... 30

3.12.1. Prerequisites ... 30

3.12.2. Description ... 30

3.12.3. Reference URLs... 31

3.13. UC07 – GET ServiceMetadata .. 32

3.13.1. Prerequisites ... 32

3.13.2. Description ... 32

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 4 / 59

4. IMPLEMENTATION VIEW .. 35

4.1. Source code and modules overview.. 35

4.2. Application skeleton - Spring annotations context setup ... 36

4.3. Layers overview ... 37

4.3.1. Spring MVC - REST interface layer .. 37

4.3.2. Business Services layer ... 38

4.3.3. Case (in)sensitivity support, as functionally described in §4.3.2.2 –"ebCore party
identifier .. 39

4.3.4. Data layer ... 40

4.4. Exception handling .. 43

4.4.1. Error handling mechanism implementation .. 44

4.4.2. ErrorMappingControllerAdvice .. 44

4.4.3. ErrorResponseBuilder ... 45

4.4.4. ErrorBusinessCode ... 45

4.4.5. SpringSecurityExceptionHandler .. 46

5. CONFIGURATION ... 47

5.1. Environment specific configuration .. 47

5.1.1. WebLogic .. 47

5.1.2. Tomcat .. 47

5.1.3. Oracle ... 48

5.1.4. MySql .. 48

6. SECURITY ... 49

6.1. Authentication ... 49

6.1.1. Username and password authentication (Basic Authentication forUI) 49

6.1.2. Access token authentication (Basic Authentication for web-services) 49

6.1.3. Client certificate authentication ... 49

6.1.4. SSO Central Authentication service with EU-LOGIN .. 51

6.2. Authorization ... 52

6.2.1. Authorities .. 52

6.2.2. Authorities execution ... 53

7. QUALITY .. 54

7.1. Unit tests ... 54

7.2. Integration tests .. 54

7.3. SoapUI integration tests .. 55

7.4. Sonar source code statistics .. 55

8. TECHNICAL REQUIREMENTS ... 56

8.1. Hardware ... 56

8.1.1. Recommended stack .. 56

8.1.2. Operating Systems ... 56

8.1.3. Java Virtual Machines ... 56

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 5 / 59

8.1.4. Java Application Servers ... 56

8.1.5. Databases ... 56

8.1.6. Web Browsers .. 56

9. LIST OF FIGURES .. 57

10. LIST OF LISTINGS .. 58

11. CONTACT INFORMATION ... 59

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 6 / 59

1. INTRODUCTION

1.1. Purpose

Service metadata publishing (SMP) was introduced to eDelivery network by PEPPOL project [REF7].
The purpose of the SMP is similar to an address book or business registry. eDelivery participants
(message senders and receivers) use SMP to publish their transport/service capabilities and to
discover partner's transport/service capabilities as: delivery addresses, supported business processes
and document types, etc. The PEPPOLs SMP specification was submitted as input to the OASIS BDXR
TC (Business Document Exchange Technical Committee) with the intent of defining a standardized
and federated document transport infrastructure for business document exchange. It resulted into a
new specification: OASIS Service Metadata Publishing Specification (OASIS SMP specification) [REF1].

The eDelivery Service Metadata Publisher Profile (eDelivery SMP profile) [REF2] provides a set of
implementation guidelines for the OASIS SMP specification [REF1]. It is designed to be used in
eDelivery with the dynamic receiver (and sender) discovery functionality.

The eDelivery Service Metadata Publisher application (DomiSMP) is the sample implementation of
the eDelivery SMP profile (thus OASIS SMP spec as well).

This document is the Software Architecture Document of the DomiSMP application. It is intended to
provide detailed information about the project:

• An overview of the solution

• A description of business and administration functions implemented in the DomiSMP

• A description of the application architecture and its modules

• An overview of code organization and code quality measurements

• An overview of technical requirements

1.2. References

Ref. Document Content outline

[REF1] OASIS SMP Specification, Version 1.0 Defines documents and REST binding of SMP
public interface

[REF2] eDelivery SMP profile eDelivery profile of [REF1] specification

[REF3] eDelivery SMP Administration Guide
(pdf)

See Documentation section of SMP
Software

SMP Administration Guide

http://docs.oasis-open.org/bdxr/bdx-smp/v1.0/bdx-smp-v1.0.html
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+SMP
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SMP
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SMP

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 7 / 59

Ref. Document Content outline

[REF4] Interface Control Document (pdf)

See Documentation section of SMP
Software

Defines interface of eDelivery SMP – extends
OASIS SMP specification

[REF5] SML Administration Guide (pdf)

See Documentation section of SML
Software

Provides comprehensive details on eDelivery
SML installation, configuration and
maintenance.

[REF6] eDelivery BDMSL (SML) Application offered by eDelivery in SaaS
model. Facilitates write access to the DNS
zone needed for dynamic discovery of
Participants. Exposes SOAP interface that is
consumed by SMP in order to (un)register
participant DNS entries.

[REF7] PEPPOL The Pan-European Public Procurement On-
Line (PEPPOL) project was a pilot project
funded jointly by the European Commission
and the PEPPOL Consortium members. After
successful completion of the project new
organization OpenPEPPOL Association was
established. The organization is now
responsible for the governance and
maintenance of the PEPPOL specifications.

[REF8] OASIS Service Metadata Publishing
(SMP) specification, Version 2.0

This document describes the version 2.0 of the
Oasis SMP standard.

[REF9] OASIS ebCore Party Id Type Technical
Specification Version 1.0

This document describes the OASIS ebCore
Party Id Type

1.3. Definitions

Definition Description

SMP Service Metadata Publisher - REST service application providing set of
CRUD operations for two web resources: ServiceGroup and

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SMP
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SMP
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML
http://www.peppol.org/
http://docs.oasis-open.org/bdxr/bdx-smp/v2.0/csprd01/bdx-smp-v2.0-csprd01.html
http://docs.oasis-open.org/bdxr/bdx-smp/v2.0/csprd01/bdx-smp-v2.0-csprd01.html
http://docs.oasis-open.org/ebcore/PartyIdType/v1.0/PartyIdType-1.0.html
http://docs.oasis-open.org/ebcore/PartyIdType/v1.0/PartyIdType-1.0.html

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 8 / 59

Definition Description

ServiceMetadata. SMP is eDelivery implementation of [REF1] and [REF4].

Identifier The identifier uniquely identifies DomiSMP entities such as resources and
subresources. An identifier consists of a schema (namespace) and a value.
An identifier has rules about how it is represented in the URL
(concatenated format) and how it is written in the resource document.
(See the chapter: 3.1 Identifiers)

ParticipantIdentifier The ParticipantIdentifier is an entity that uniquely identifies receiver or
sender (participants) in eDelivery process. Examples of identifiers are
company registration and VAT numbers, DUNS numbers, GLN numbers,
email addresses etc.

Resource The DomiSMP URL resource is associated with a specific Participant
Identifier. The resource can be Service Group (see below) or any other
document type supported by the DomiSMP extensions.

ServiceGroup The ServiceGroup contains list of services associated with a specific
Participant Identifier that is handled by a Service Metadata Publisher.
ServiceGroup XML representation is defined by XML Schema attached to
[REF1].

Subresource The DomiSMP URL (sub)resource is the subdocument of the resource. The
resource can be ServiceMetadata (see below or any other document type
supported by the DomiSMP extensions).

ServiceMetadata The ServiceMetadata contains all necessary metadata (endpoint URLs,
certificate for encryption, document types, etc) about a specific service
that a participant (service requestor) needs to know in order to send a
message to that service. ServiceMetadata XML representation is defined
by an XML Schema included into [REF1].

SignedServiceMetadata ServiceMetadata signed by Service Metadata Publisher (SMP).

DocumentIdentifier represents document types in a service. It also contains scheme type
which represents format of the identifier itself. XML representation is
defined by an XML Schema included into [REF1] as part of
ServiceMetadata.

BDMSL (SML) Application offered by eDelivery in SaaS model. Facilitates write access to
the DNS zone needed for dynamic discovery of Participants. Exposes a
WSDL interface that is consumed by SMP in order to (un)register

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 9 / 59

Definition Description

participants' DNS entries.

Domain The Domain indicates the purpose of the exchange network, such as the E-
Invoice exchange, eHealth record exchange, etc.
If the domain network uses the delegated dynamic discovery service, the
domain has its own DNS zone handled by the BDML application. For
eDelivery SML the domains are:

• acc.edelivery.tech.ec.europa.eu: acceptance domain for testing
SMP instances and subdomains.

• delivery.tech.ec.europa.eu: production domain.

Group The domain participant group. The Domain can have one or more groups
where the Group admin is responsible for the particular group of
participants for creating and deleting the domain resources. For example,
the domain groups allow the Domain's resources (e.g., service groups) to
be segmented into different countries, regions, etc. and managed by the
responsible group admin

Subdomain Subdomain defines business domains handled by BDML application in
particular DNS zone. Examples of subdomain (business domain) are:
peppol, ehealth, generalerds and they are all in part of domain (DNS zone)
edelivery.tech.ec.europa.eu domain.

Dynamic Discovery Dynamic Discovery is process of discovering participants's service
metadata.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 10 / 59

2. OVERVIEW OF THE SOLUTION

The eDelivery Service Metadata Publisher (DomiSMP) enables the participants of an eDelivery
Messaging Infrastructure network to dynamically discover each other's capabilities (Legal,
Organisational, and Technical). For this to happen, each participant must publish into an SMP its
capabilities and settings (including but not limited to):

• business processes that the participant supports

• the security setup (public key certificate)

• the transport protocol (AS2 or AS4)

• the location of the receiver's access point

The SMP usually serves multiple participants to publish theirs exchange capabilities. But in eDelivery
network/business domain can coexist in multiple SMPs. Because of this distributed architecture, each
participant must have a unique ID in a particular subdomain. A central component, called Business
Document Metadata Service Location (BDMSL) [REF6], uses these IDs to create URLs that, when
resolved, direct the eDelivery Access Points towards the specific SMP of the participant.

The SMP software component described in this document implements the eDelivery SMP profile
[REF2] based on the OASIS Service Metadata Publishing (BDX SMP) [REF1] specifications.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 11 / 59

3. FUNCTIONAL VIEW

This section describes interactions, data flows and dependencies between SMP and other integrated
applications in dynamic discovery process. All use cases refer to the ICD document (cf. [REF4]), where
they are presented with more interface-specific details.

Use cases UC06 – GET ServiceGroup and UC07 – GET ServiceMetadata are implementation of service
defined in OASIS SMP Specification [REF1]. All the others use cases cover
administration/maintenance services which are not part of the specifications.

The Use cases cover RESTful CRUD operations for following SMP business objects:

ServiceGroup, under relative URL:
/{ParticipantIdentifierScheme}::{ParticipantIdentifierValue}

ServiceMetadata, under relative URL:
/{ParticipantIdentifierScheme}::{ParticipantIdentifierValue}/services/{DocTypeIdentifierSche
me}::{DocTypeIdentifierValue}

3.1. Identifiers

The identifier uniquely identifies DomiSMP entities such as resources (e.g., ServiceGroups) and
subresources (e.g., ServiceMetadata). The identifiers are being used in the URL requests as part of
the URL request path segment, and also in the (sub)resource documents.

Example of the URL request (scheme: ‘oasis:names:tc:ebcore:partyid-type:iso6523:0088’, value:
‘4035811991021’) concatenated with single-colol ‘:’

http://my-app.example.eu/smp/urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088:4035811991021

Example of the document element with the participant identifier split to sheme attribute and
element value:

<ParticipantIdentifier scheme=”urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088”>4035811991021</ParticipantIdentifier>

3.1.1. Identifiers encoding

According to OASIS SMP Specification [REF1] and [REF8] above, SMP deals with two types of
identifiers: participant and document identifier. The specification [REF1] prescribes that both are
built out of scheme and value, delimited by special character(s) such a double-colon separator "::" or
single-colon separator ":" as defined in the OASIS ebCoreParty Id: [REF3] and [REF9]

ServiceGroup identifier, from business perspective known as Participant Identifier
ServiceGroup identifier := {ParticipantIdentifierScheme}::{ParticipantIdentifier}

ServiceMetadata Identifier, from business perspective known as Document Type Identifier
ServiceMetadata identifier := {DocTypeIdentifierScheme}::{DocTypeIdentifier}

http://my-app.example.eu/smp/urn:oasis:names:tc:ebcore:partyid-type:iso6523:0088:4035811991021
http://my-app.example.eu/smp/urn:oasis:names:tc:ebcore:partyid-type:iso6523:0088:4035811991021

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 12 / 59

All identifiers that are included in the URL of the REST request must be URL-encoded (note also the
double-colon separator "::").

Example: the participant identifier (ServiceGroup identifier) built out of:

• ParticipantIdentifierScheme ="participant#domain#scheme"

• ParticipantIdentifier ="participant#id"

must be encoded in URL request to:

• participant%23domain%23scheme%3A%3Aparticipant%23id

Moreover, in some cases (all PUT requests), the identifiers are present in the URL and in the XML
body of the request. In these cases, only identifiers in URL must be URL-encoded.

3.1.2. ebCore party identifier

The eDelivery SMP has the feature to support handling participant identifiers as described in
eDelivery SMP profile [REF3] in the chapter “Use with eDelivery ebCore Party Identifiers”. In this
case, the participant starts with the: urn:oasis:names:tc:ebcore:partyid-type: following by the
words: unregistered or iso6523.

All ebCore party identifiers in the REST request must be URL-encoded using only one double-colon
separator ":", as in below example:

• urn:oasis:names:tc:ebcore:partyid-type:iso6523:0088:4035811991021

URL-encoded example:

• urn%23oasis%23names%23tc%23ebcore%23partyid-
type%23iso6523%230088%234035811991021

The eDelivery SMP has the option to serialize ebCore party Id to XML according to the OASIS SMP
Specification [REF1] as separate values, as in below example:

<ParticipantIdentifier scheme=”urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088” >4035811991021</ParticipantIdentifier>

or according to the eDelivery SMP profile [REF2] as concatenated value:

<ParticipantIdentifier>urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088:4035811991021</ParticipantIdentifier>

The behaviour can be configured and is explained in more details in §5 – "Configuration".

3.1.3. Identifier's case sensitivity

SMP can handle identifiers (scheme and value) in case sensitive or in a non-case-sensitive way. The
behaviour can be configured: more details can be found in §5 – "Configuration".

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 13 / 59

When the SMP is configured as non-case-sensitive the SMP normalizes the identifiers extracted from
the requests. Identifiers within incoming requests are considered as case insensitive and converted
to lowercase. Further processing like the storage and querying in the database is performed using
lowercase letters only. If the case-sensitivity configuration is modified, the database records must be
updated manually.

When the SMP is configured as case-sensitive then Identifiers are not modified during the whole
request processing.

3.2. BDMSL integration

Creation or removal of ServiceGroup within SMP triggers a synchronous (un)registration of relevant
record(s) in DNS. This process is required to allow Dynamic Discovery of SMPs to store Participant's
metadata.

Write access to DNS zone is facilitated by BDMSL (SML), a centralized application that exposes a
SOAP interface for that purpose (cf. [REF6]). SMP is a consumer of the SML services. SML
authorization of SMP is based on mutual HTTPS authentication. Therefore, SMP client TLS certificate
with private key needs to be configured on SMP side.

If SMP serves data in only one domain, then a single certificate is needed. Otherwise, if the SMP is
configured to work in multi-domain mode, the System Administrator will need to setup one
certificate per subdomain. More details can be found in chapter §3.3 – "Domain Multitenancy" and
§5 – "Configuration".

3.3. Domain Multitenancy

A SML subdomain can be considered as a set of an inter-network of eDelivery components: SML,
SMPs and Access Points for a business domain. All these members communicate with each other
within that subdomain and exchange messages according to the strict rules defined for that business
domain. One network can be used to exchange invoices between participants, another one could
exchange health information between hospitals and insurance companies, etc.

In most scenarios there will be multiple SMPs in a single business domain and each of them will
handle ServiceMetadata sets of multiple participants from the same subdomain. The business
domain authority can set its own SMP to administrate its participants and the SMP is used only in
one domain. But an SMP could be used in more than one business domain at the same time. Because
of SML restrictions such setup implies the following SMP functionality:

• The SMP must use a different SMP ID and a different certificate to authenticate for a
particular SML subdomain.

• The SMP must be able to sign ServiceMetadata responses using a different certificate for
each domain (one certificate per domain).

3.4. Roles

Roles are documented with more details in the ICD document (cf. [REF4]). The table below explains
their meaning from a functional perspective:

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 14 / 59

Role alias Description

Anonymous Any user that has not provided any authentication details. This
user can query for public resources e.g.: ServiceGroup and
subresources: e.g.: ServiceMetadata.

User

User with the role can login to the DomiSMP and has access and
edit rights to resources according to memberships on resources,
groups and domain. For example, user who is a member of the
resource with Admin membership can perform administrative
actions update service group extension data and
add/update/delete service metadata for the service group.

User who is member of the Group with Group Admin membership
role is allowed to execute create and resource for the group.

User who is member of the Domain with Domain Admin
membership role, can create/delete groups for Domain and
manage the domain memberships.

System Admin System user who can administer domains, users, application
properties, truststore and keystore on the DomiSMP.

3.5. Domain, Group and Resources

The DomiSMP supports 3-layer security realms.

- The most basic unit is the Resource. The Resource is identified by the unique ID, which is part of
the URL of the resource as example:

 http://localhost/smp/resource-identifier

An example of the Resource is the “Service Group” document from the Oasis SMP specification.
The user can be a Resource member with Admin or Viewer membership roles. If the user has an
Admin membership role, it can modify resource document(s) and manage the resource
memberships. If the user has role Viewer, it can view/read the Resource if the Resource has
visibility set to: “Private”.

- The Group is a cluster of resources managed by the dedicated group administrators. The group
admin(s) can create and delete the resource, but only the resource admins can modify
data/documents for the resource. The user can be a Group member with Admin or Viewer
membership roles. With Admin group membership, the user can create and delete group
resources. If the user has group role Viewer, it can view/read the Resources if the Group has
visibility set to: “Private”.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 15 / 59

- The top layer is the Domain. It indicates the business purpose of the network of participants,
such as invoice exchange, Health Records message exchanges, etc. The Domain usually has a
domain owner who handles participant interoperability, defining message types, network
authentication, and authorization methods such as Certificate PKI, Identity Service providers,
etc. In DomiSMP 5.0, the user with a Domain Admin role can create domain groups and assign
users to them.

Figure 1 - Example of Domain/Group/Resource overview

3.6. Extensions

To increase security, the eDelivery SMP offers the possibility of registering custom extensions for
security scanning/validations of all binary documents such as the certificates and the keystores. The
certificates can be uploaded by the users when setting the user certificate for authentication. The
keystores binaries can be uploaded by the System Administrators when managing the SMP keystore.

When the user loads one of the mentioned payloads, the eDelivery SMP validation framework is
activated. At this point, the payload binary data is passed to all registered spring beans, which
implement the PayloadValidatorSpi interface below:

package eu.europa.ec.smp.spi;

import eu.europa.ec.smp.spi.exceptions.PayloadValidatorSpiException;

import java.io.InputStream;

/**
 *
 * SMP Service provider interface (SPI) for uploaded payload validation.
 * This SPI interface is intended to allow antivirus validation using third-party
antivirus software.
 */
public interface PayloadValidatorSpi {

 /**
 * Validates the SMP payload. If the payload is invalid the method MUST
 * throw PayloadValidatorSpiException
 *
 * @param payload The payload data to be validated
 * @param mimeType The payload mime type
 * @throws PayloadValidatorSpiException in case the validation does not pass
 */
 void validatePayload(InputStream payload, String mimeType) throws
PayloadValidatorSpiException;
}

Listing 1: PayloadValidatorSpi interface

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 16 / 59

The implementers of the extension must implement the method validatePayload for payload
validation. In the event of malware detection, the method MUST throw the
PayloadValidatorSpiException to terminate the future payload handling by the eDelivery SMP.

A simple example of the PayloadValidatorSpi implementation can be found in the SMP project
module smp-examples/smp-spi-example/ (See chapter §4.1).

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 17 / 59

To register the extension in the eDelivery SMP, the interface implementation class must be

• located under the java package eu.europa.ec.smp.spi,

• tagged with spring bean annotation @Component or @Service,

as in below example:

package eu.europa.ec.smp.spi.example;

import eu.europa.ec.smp.spi.exceptions.PayloadValidatorSpiException;
import org.springframework.stereotype.Service;
import java.io.InputStream;

`@Service
public class ExamplePayloadValidatorSpiImpl implements PayloadValidatorSpi {
 public void validatePayload(InputStream payload, String mimeType) throws
PayloadValidatorSpiException {

 . . .
 }
 }

Listing 2: PayloadValidatorSpi implementation example

To prepare the extension for the deployment in the eDelivery SMP, the code must be compiled and
stored in the java archive file format known as the JAR.

In the eDelivery SMP, the property libraries.folder must be configured in the smp.conf.properties to
point to the folder where extension libraries are located. The SMP classloader loads the libraries in
the folder at the startup of the SMP and registers the PayloadValidatorSpi beans.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 18 / 59

3.7. UC01 – Manage Administrators

3.7.1. Prerequisites

• User (system admin) has rights to modify content of SMP configuration tables.

3.7.2. Description

This use case does not involve SMP application, instead the user's management is implemented as a
simple manual SQL queries. Users and its roles are not cached by the SMP, so they can be used
immediately after the corresponding SQL transaction is committed. Sample SQLs inserting users
authenticated by password or certificate are presented below. More details on users can be found in
§4.3.4 – "Data layer" and §6 - "Security".

-- user authenticated with password (oracle dialect)

insert into SMP_USER (ID, USERNAME, ACTIVE, APPLICATION_ROLE, EMAIL, CREATED_ON,
LAST_UPDATED_ON) values

(SMP_USER_SEQ.NEXTVAL, 'smp_admin', 1, 'SYSTEM_ADMIN', 'system@mail-example.local',
sysdate, sysdate);

insert into SMP_CREDENTIAL (FK_USER_ID, CREDENTIAL_ACTIVE, CREDENTIAL_NAME,
CREDENTIAL_VALUE, CREDENTIAL_TYPE, CREDENTIAL_TARGET, CREATED_ON, LAST_UPDATED_ON)
values

((select id from SMP_USER where USERNAME='smp_admin'),1, 'smp_admin',
'$2a$10$olcGeWKGEoRia2DPuFqRNeca0IEdRSmOrljLz57BAjf1jlC9SohrS',
'USERNAME_PASSWORD','UI', sysdate, sysdate);

Listing 3 Sample User creation SQL

If the system administrator user is already configured, the system administrator can use the
eDelivery SMP UI tool to further manage users.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 19 / 59

Figure 2: The SMP UI tool for user management

Please note that for Invoking PUT or DELETE Use cases described in sections below, credentials such
as Access token or Client certificate must be used for the authentication. Please read chapter §6 -
”Security" for more details.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 20 / 59

3.8. UC02 – PUT ServiceGroup (create or update)

3.8.1. Prerequisites

• The authenticated user has the role of "Admin SMP".

• If the ServiceGroup is managed remotely, the "Resource Admin" must have been created
before in the "Administrator" table.

• If the SMP is serving multiple domains, the header field "Domain" must be populated and
refer to one of the domains served by the SMP.

3.8.2. Description

"PUT ServiceGroup" is an idempotent1 create/update REST action. If the SMP is configured to be
integrated with BDMSL, then additional synchronous request is performed to register the newly
created Participant in the DNS. A sample request is presented below, with the following conventions:

Dark-grey HTTP headers are optional.
Identifiers present in the body of the request and in the URL marked in yellow must match.

Successful responses:

HTTP 200 (OK) – ServiceGroup was updated
HTTP 201 (Created) – New ServiceGroup was created

PUT http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: text/xml;charset=UTF-8

Authorization: Basic c21wX2FkbWluOmNoYW5nZWl0

ServiceGroup-Owner: anotherownerusername

Domain: domain2

Content-Length: 284

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ServiceGroup xmlns="http://docs.oasis-open.org/bdxr/ns/SMP/2016/05">

 <ParticipantIdentifier scheme="participant-domain-scheme">participant-
id</ParticipantIdentifier>

 <ServiceMetadataReferenceCollection/>

</ServiceGroup>

Listing 4 Sample PUT ServiceGroup request

1 as no additional effect if it is called more than once with the same parameters

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 21 / 59

The DomiSMP group administrator can also register a ServiceGroup with the DomiSMP UI tool for
Service group management (see [1] on the picture below). The ServiceGroup is registered by
activating/clicking the save button (see [3] on the picture below) after all the necessary data are
entered.

Figure 3: eDelivery SMP UI tool for ServiceGroups management – create/edit

If BDMSL integration is enabled and configured for the selected domain, the SML request is
submitted when the ServiceGroup is created.

Figure 4 PUT ServiceGroup flow

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 22 / 59

3.8.3. ServiceGroup-Owner HTTP header - Specifying Owner User

Only the DomiSMP Group administrator has permission to register (or delete) the ServiceGroup. The
Group administrator usually creates a ServiceGroup for the end-user with the "Resource Admin" role,
which has only the permission to update the ServiceGroup service metadata.

By default, the Admin of the ServiceGroup is the user who created the ServiceGroup. But this can be
changed at creation time by setting the ServiceGroup-Owner HTTP header with a different owner's
identifier. The identifier of the service owner can be the username, the users access token identifier,
or the certificate identifier.

Below are examples of HTTP header ServiceGroup-Owner:

ServiceGroup-Owner: anotherownerusername

Non-ASCII characters must be URL-encoded, i.e. user Żółty Jérôme should be encoded in this way:

ServiceGroup-Owner: %C5%BB%C3%B3%C5%82ty%20J%C3%A9r%C3%B4me

Users authenticated by certificate can become owners as well, i.e. user CN=new
owner,O=EC,C=BE:000000000000100f should be encoded:

ServiceGroup-Owner: CN%3Dnew%20owner,O%3DEC,C%3DBE%3A000000000000100f

3.8.4. Domain HTTP header - Specifying Domain

This feature is used only when the SMP is setup in multi-domain mode. When creating new
ServiceGroup the Domain HTTP header must be specified in the PUT ServiceGroup request

Domain: domain2

More details on Multitenancy can be found in §3.3 – "Domain Multitenancy".

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 23 / 59

3.9. UC03 - DELETE ServiceGroup

3.9.1. Prerequisites

• The authenticated user has the role of "Admin SMP".

• If the ServiceGroup is managed remotely, the "Resource Admin" must have been created
before in the "Administrator" table.

• If the SMP is serving multiple domains, the header field "Domain" must be populated and
refer to one of the domains served by the SMP.

3.9.2. Description

This action removes the specified ServiceGroup from SMP's database including all related
ServiceMetadata.

If the SMP is configured to integrate the BDMSL, then an additional synchronous request is issued in
order to unregister the Participant from the DNS.

Successful responses:
HTTP 200 (OK) – ServiceGroup was removed

DELETE http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id HTTP/1.1

Accept-Encoding: gzip,deflate

Authorization: Basic c21wX2FkbWluOmNoYW5nZWl0

Content-Length: 0

Listing 5 Sample delete ServiceGroup request

The Group Admin can delete a ServiceGroup with the DomiSMP UI tool for group administration [1]
management. The ServiceGroup can be deleted by selecting the ServiceGroup row [2], clicking the
Delete button (see [3] in the figure below).

Figure 5: eDelivery SMP UI tool for ServiceGroups management – delete

If BDMSL integration is enabled and configured for the selected domain, the SML delete request is
submitted when the ServiceGroup is deleted.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 24 / 59

Figure 6 DELETE ServiceGroup flow

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 25 / 59

3.10. UC04 – PUT ServiceMetadata (create or update)

3.10.1. Prerequisites

• The authenticated user has the role of "Resource Admin" (or "Admin SMP").

• Resource Admin user initiating the request is linked to the specified ServiceGroup

• The certificate of the "Resource Admin" is valid.

• The certificate information of the "Resource Admin" was previously stored in the
configuration.

3.10.2. Description

"PUT ServiceMetadata" is an idempotent create/update REST action. A sample request is presented
below. Note that Identifiers present in the body of the request and in the URL marked in yellow must
match.

ServiceMetadata is processed and stored as the whole unaltered XML document represented as
string (including original whitespaces and comments between nodes). ServiceMetadata can be
signed by ServiceGroup owner and e-signature can be placed in <Extension> node. To preserve
integrity of signed metadata, SMP does not perform any transformation, canonicalization, or
decomposing XML document into separate database records. While querying for the metadata (UC07
– GET ServiceMetadata) original XML document is returned.

Successful responses:
HTTP 200 (OK) – ServiceMetadata was updated
HTTP 201 (Created) – New ServiceMetadata was created

PUT http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id/services/doc-
type-scheme%3A%3Adoc-type-id HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: text/xml;charset=UTF-8

Authorization: Basic c21wX2FkbWluOmNoYW5nZWl0

Content-Length: 2152

<ServiceMetadata xmlns="http://docs.oasis-open.org/bdxr/ns/SMP/2016/05">

 <ServiceInformation>

 <ParticipantIdentifier scheme="participant-domain-scheme">participant-
id</ParticipantIdentifier>

 <DocumentIdentifier scheme="doc-type-scheme">doc-type-
id</DocumentIdentifier>

 <ProcessList>

 <Process>

 <ProcessIdentifier scheme=”process-scheme">"process-
id</ProcessIdentifier>

 <ServiceEndpointList>

 <Endpoint transportProfile="busdox-transport-start">

 <EndpointURI>https://poland.pl/theService</EndpointURI>

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 26 / 59

 <RequireBusinessLevelSignature>true
</RequireBusinessLevelSignature>

 <ServiceActivationDate>2003-01-
01T00:00:00</ServiceActivationDate>

 <ServiceExpirationDate>2020-05-
01T00:00:00</ServiceExpirationDate>

 <Certificate>SAMPLEBASE64ENCODEDCERT</Certificate>

 <ServiceDescription>Sample description of invoicing
service</ServiceDescription>

 <TechnicalContactUrl>https://example.com
</TechnicalContactUrl>

 </Endpoint>

 </ServiceEndpointList>

 </Process>

 </ProcessList>

 </ServiceInformation>

</ServiceMetadata>

Listing 6 A sample of PUT ServiceMetadata request

The Resource Admin, can register a ServiceMetadata with the DomiSMP UI tool for Service group
management (see [1] in picture below). To add ServiceMetadata, click first on tool Edit Resources
(see [1] in picture below), choose the resource and select tab Subresources [2]. Click Create [3] and
enter the ServiceMetadata identifiers in the dialog and click Create button [4].

Figure 7 - Create ServiceMetadata record

Once the record is created, click the edit button to enter the document editor for adding the
ServiceMetadata XML (see the image below). To generate the ServiceMetadata click the button
Generate [1] and then save button [3] below.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 27 / 59

Figure 8 - Edit service metadata document

Figure 9 PUT ServiceMetadata flow

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 28 / 59

3.11. UC05 – DELETE ServiceMetadata

3.11.1. Prerequisites

• Resource Admin initiating the request is linked to the specified ServiceGroup (or is "Admin
SMP").

• The authenticated user has the role of "Resource Admin".

• The referenced ServiceMetadata exists.

3.11.2. Description

This action removes the specified ServiceMetadata from the SMP's database. The SMP validates the
request and deletes corresponding records.

Successful responses:
HTTP 200 (OK) – ServiceGroup was removed

DELETE http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id/services/doc-
type-scheme%3A%3Adoc-type-id HTTP/1.1

Accept-Encoding: gzip,deflate

Authorization: Basic c21wX2FkbWluOmNoYW5nZWl0

Content-Length: 0

Listing 7 Sample DELETE ServiceMetadata request

The Resource Admin, can delete a ServiceMetadata with the DomiSMP UI tool for Editing the
Resource s (see [1] in picture below). To delete ServiceMetadata, select the resource which contains
the ServiceMetadata [2]. Then in subresources table select the service metadata for the deletion [3].
Finally click the delete button [4].

Figure 10: eDelivery SMP UI tool for ServiceMetadata management – delete

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 29 / 59

Below is the ServiceMedatada delete flow:

Figure 11 DELETE ServiceMetadata flow

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 30 / 59

3.12. UC06 – GET ServiceGroup

3.12.1. Prerequisites

• ServiceGroup exists.

3.12.2. Description

The SMP retrieves the details of the specified ServiceGroup from its database including references to
all associated ServiceMetadata and returns them in XML format.

GET http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id HTTP/1.1

Accept-Encoding: gzip,deflate

Listing 8 Sample GET ServiceGroup request

Successful response:

HTTP/1.1 200

Content-Type: text/xml;charset=UTF-8

Content-Length: 496

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ServiceGroup xmlns="http://docs.oasis-open.org/bdxr/ns/SMP/2016/05">

 <ParticipantIdentifier scheme="participant-domain-scheme">participant-
id</ParticipantIdentifier>

 <ServiceMetadataReferenceCollection>

 <ServiceMetadataReference href="http://smp.eu/participant-domain-
scheme%3A%3Aparticipant-id/services/doc-type-scheme%3A%3Adoc-type-id"/>

 </ServiceMetadataReferenceCollection>

</ServiceGroup>

Listing 9 Sample GET ServiceGroup response

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 31 / 59

Figure 12 Get ServiceGroup flow

3.12.3. Reference URLs

The URL references inside the <ServiceMetadataReferenceCollection> node refers to the same SMP
and can be immediately used by the client to retrieve ServiceMetadata details. Because the SMP is
usually deployed behind a ReverseProxy, when the load balancer or the router redirects the request
to the backend system, it adds below listed X-Forwarded-* parameters when constructing the URLs:

• X-Forwarded-Host: identifying the original host requested by the client in the Host HTTP
request header, since the host name and/or port of the reverse proxy (load balancer) may
differ from the origin server handling the request.

• X-Forwarded-Proto: identifying the originating protocol of an HTTP request, since a reverse
proxy (or a load balancer) may communicate with a web server using HTTP even if the
request to the reverse proxy is HTTPS.

The ReverseProxy can also hide application root context, for instance, if the application is deployed
on the server: http://localhost/smp/. Depending on the ReverseProxy configuration, the application
can be accessed from internet without root context: http://smp.eu/ or with root context:
http://smp.eu/smp/. To properly build the URL, the parameter contextPath.output must be set
accordingly (see chapter §5 –"Configuration").

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 32 / 59

3.13. UC07 – GET ServiceMetadata

3.13.1. Prerequisites

ServiceMetadata exists in the database.

3.13.2. Description

Service returns details of specified ServiceMetadata from the database. ServiceMetadata is signed
and wrapped into the SignedServiceMetadata node.

GET http://smp.eu/participant-domain-scheme%3A%3Aparticipant-id/services/doc-
type-scheme%3A%3Adoc-type-id HTTP/1.1

Accept-Encoding: gzip,deflate

Listing 10 Sample GET ServiceMetadata request

Successful sample response with SMP's XMLDSIG signature marked in dark-grey:

HTTP/1.1 200

Content-Type: text/xml;charset=UTF-8

Content-Length: 4939

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<SignedServiceMetadata xmlns="http://docs.oasis-open.org/bdxr/ns/SMP/2016/05">

 <ServiceMetadata>

 <ServiceInformation>

 <ParticipantIdentifier scheme="participant-domain-scheme">participant-
id</ParticipantIdentifier>

 <DocumentIdentifier scheme="doc-type-scheme">doc-type-
id</DocumentIdentifier>

 <ProcessList>

 <Process>

 <ProcessIdentifier scheme="cenbii-procid-
ubl">urn:www.cenbii.eu:profile:bii04:ver1.0</ProcessIdentifier>

 <ServiceEndpointList>

 <Endpoint transportProfile="busdox-transport-start">

 <EndpointURI>https://poland.pl/theService</EndpointURI>

 <RequireBusinessLevelSignature>true
</RequireBusinessLevelSignature>

 <ServiceActivationDate>2003-01-
01T00:00:00</ServiceActivationDate>

 <ServiceExpirationDate>2020-05-
01T00:00:00</ServiceExpirationDate>

 <Certificate>BASE64ENCODEDSAMPLECERT</Certificate>

 <ServiceDescription>Sample description of invoicing
service</ServiceDescription>

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 33 / 59

 <TechnicalContactUrl>https://example.com
</TechnicalContactUrl>

 </Endpoint>

 </ServiceEndpointList>

 </Process>

 </ProcessList>

 </ServiceInformation>

 </ServiceMetadata>

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256"/>

 <Reference URI="">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/>

 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <DigestValue>BASE64SAMPLEDIGEST</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>BASE64SAMPLESIGNATUREVALUE</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509SubjectName>Certificate subject name</X509SubjectName>

 <X509Certificate>BASE64CERTUSEDFORSIGNING</X509Certificate>

 </X509Data>

 </KeyInfo>

 </Signature>

</SignedServiceMetadata>

Listing 11 Sample GET ServiceMetadata response

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 34 / 59

Figure 13 GET ServiceMetadata flow

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 35 / 59

4. IMPLEMENTATION VIEW

4.1. Source code and modules overview

The SMP is a Java REST application packaged in a WAR file. Dependencies and build are organised
with Maven 3. Below is description of maven submodules.

Module Description

smp-api Module contains OASIS SMP response schemas and administration API
schemas. Module purpose is to generate java API classes from predefined
XML schemas. Module also contains utility classes used for conversion
and validation. This module is used by the SMP REST service
implementation and can also be used for building SMP client.

smp-parent-pom Parent POM contains dependency and plugin management used in sub-
modules.

smp-angular Angular web fragment for UI.

smp-server-library SMP core library. Covers database access and business logic. This module
does not have any HTTP/REST dependencies.

smp-resource-extension The module contains the default resource extensions for Oasis SMP 1.0
and Oasis SMP 2.0 standard.

smp-soapui-tests Module contains Soap UI tests for regression testing in CI server.

smp-ui-tests Module contains regression tests for ui.

smp-webapp REST interface over the core library. Defines REST binding, adds web-
specific validations and security. Module also build SMP artefact for
deploying to application server and package SMP setting examples, its
output is WAR application and ZIP file smp_setup.zip with configuration
files and Soap UI test project.

smp-docker Module contains files for building docker images for weblogic/oracle and
mysql/tomcat setup. Project also contains compose files to start the
setups. The main purpose of the module is to prepare the environment
for API and UI integrational testing.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 36 / 59

smp-examples The module contains SMP examples of API and SPI implementations.
Currently, SPI payload validation example.

4.2. Application skeleton - Spring annotations context setup

The SMP application is built with SpringFramework, the context is setup by classes with
@Configuration annotations which are organized hierarchically. List of configuration classes, sample
classes defining dependencies, scanning rules in packages and importing another context
configuration are presented below.

Figure 14 List of context configuration classes

@Configuration

@ComponentScan(basePackages = {

 "eu.europa.ec.edelivery.smp.validation",

 "eu.europa.ec.edelivery.smp.services",

 "eu.europa.ec.edelivery.smp.sml",

 "eu.europa.ec.edelivery.smp.conversion"})

@Import(DatabaseConfig.class)

public class SmpAppConfig {}

Listing 12 Sample context configuration class

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 37 / 59

4.3. Layers overview

Figure 15 SMP layers structure

4.3.1. Spring MVC - REST interface layer

The top layer, implemented within the smp-webapp module, uses Spring MVC's framework. Both
resources (ServiceGroup, ServiceMetadata) have a dedicated Controller implementation. Each
controller has 3 public methods (GET, PUT, and DELETE) which share the same URL defined by
@RequestMapping annotation at the Controller class level.

A sample method definition, utilizing also metadata transferred in the request headers is presented
below.

This layer is responsible for: REST binding, security validation (more details in §6 – "Security"),
request data validation, forwarding request to services layer and forwarding response back to the
caller and for error handling.

@RestController

@RequestMapping("/{serviceGroupId}")

public class ServiceGroupController {

 @PutMapping

 @Secured("ROLE_SMP_ADMIN")

 public ResponseEntity saveServiceGroup(

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 38 / 59

 @PathVariable String serviceGroupId,

 @RequestHeader(name = "ServiceGroup-Owner", required = false) String
serviceGroupOwner,

 @RequestHeader(name = "Domain", required = false) String domain,

 @RequestBody String body) throws XmlInvalidAgainstSchemaException,
UnsupportedEncodingException { /* . . . */ }

Listing 13 Sample method implementing REST action

4.3.2. Business Services layer

The business logic is implemented within the smp-server-library module. Business logic is
implemented as ServiceGroup and ServiceMetadata Services. Module contains additional classes for
Integration with BDMSL, signing messages and transaction handling with use of Spring
@Transactional annotation and TransactionManager.

Because the SMP is a small application without need of polymorphism, the implementation does not
use interface patterns for its services.

Sample Service method definition is presented below:

@Service

public class ServiceMetadataService {

 @Transactional

 public boolean saveServiceMetadata(ParticipantIdentifierType serviceGroupId,
DocumentIdentifier documentId, String xmlContent) { /* . . . */ }

Listing 14 Sample transactional Service method

4.3.2.1. BDMSL Integration

The BDMSL integration used by ServiceGroupService is implemented by BDMSLConnector.
Participant's (un)registration is called synchronously as the last action Service's method to make sure
that any potential RuntimeException causes rollback of the whole transaction, including database
changes.

To support multiple domains functionality (See chapter §3.3 – "Domain Multitenancy")
BDMSLClientFactory was introduced. Its responsibility is to create and preconfigure client
(BDMSLConnector) to set up needed HTTP headers, configure proxy, manage client X509 Certificate,
for each domain.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 39 / 59

Figure 16 BDMSLConnector needs a dedicated client depending on the Domain used

4.3.2.2. Case (in)sensitivity normalisation

4.3.3. Case (in)sensitivity support, as functionally described in §4.3.2.2 –"ebCore party identifier

The eDelivery SMP has the feature to support handling participant identifiers as described in
eDelivery SMP profile [REF3] in the chapter “Use with eDelivery ebCore Party Identifiers”. In this
case, the participant starts with the: urn:oasis:names:tc:ebcore:partyid-type: following by the
words: unregistered or iso6523.

All ebCore party identifiers in the REST request must be URL-encoded using only one double-colon
separator ":", as in below example:

• urn:oasis:names:tc:ebcore:partyid-type:iso6523:0088:4035811991021

URL-encoded example:

• urn%23oasis%23names%23tc%23ebcore%23partyid-
type%23iso6523%230088%234035811991021

The eDelivery SMP has the option to serialize ebCore party Id to XML according to the OASIS SMP
Specification [REF1] as separate values, as in below example:

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 40 / 59

<ParticipantIdentifier scheme=”urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088” >4035811991021</ParticipantIdentifier>

or according to the eDelivery SMP profile [REF2] as concatenated value:

<ParticipantIdentifier>urn:oasis:names:tc:ebcore:partyid-
type:iso6523:0088:4035811991021</ParticipantIdentifier>

The behaviour can be configured and is explained in more details in §5 – "Configuration".

Identifier's case sensitivity" and §5 – "Configuration" is implemented by the
CaseSensitivityNormalizer bean. Normalization is performed at the very beginning of each service
method processing. Moreover, by separating this to a dedicated bean, normalization can be used as
well for permissions verification in connection with Spring Security's @PreAuthorize anotation:

@PreAuthorize("hasAnyAuthority('ROLE_SMP_ADMIN',
@caseSensitivityNormalizer.normalizeParticipantId(#serviceGroupId))")

Listing 15 Sample use of CaseSensitivityNormalizer inside of the @PreAuthorize annotation

4.3.4. Data layer

The SMP stores data in a relational database. MySQL and Oracle DDL scripts are released with the
application in smp-setup.zip file. The database object relations are presented in the following figure:

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 41 / 59

Figure 17 Database ERD diagram

Besides all the necessary metadata used by the DomiSMP business logic, the database is also used to
store XML documents in table (oracle: blob, mysql: TEXT type). The Resources and Subresources
store versions of the document into the table SMP_DOCUMENT_VERSION. The documents are stored
as a binary data because it could be electronically signed by Resource owner. Decomposing and
composing XML could compromise the xml signature. When a user is querying for the
resource/subresource, the original xml is returned with a valid xml signature.

The Java data access layer is implemented within the smp-server-library module. DataSource,
EntityManager and TransactionManager are configured and registered into Spring context in the
DatabaseConfig class.

Java classes located in eu.europa.ec.edelivery.smp.data.model package define the Model with the
use of JPA2 annotations. All model classes implement the BaseEntity interface. Separate
@Embeddable classes are defined for all composite primary keys:

@Entity

@Table(name = "smp_service_group")

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 42 / 59

public class DBServiceGroup implements BaseEntity {

 @EmbeddedId

 @Override

 public DBServiceGroupId getId() { return serviceGroupId; }

/* . . . */

}

Listing 16 Part of sample JPA2 Model class with embedded composite PK

@Embeddable

public class DBServiceGroupId implements Serializable {

 @Column(name = "businessIdentifierScheme", nullable = false, length =
MAX_IDENTIFIER_SCHEME_LENGTH)

 public String getBusinessIdentifierScheme() { return participantIdScheme; }

 @Column(name = "businessIdentifier", nullable = false, length =
MAX_IDENTIFIER_VALUE_LENGTH)

 public String getBusinessIdentifier() { return participantIdValue; }

/* . . . */

}

Listing 17 Part of sample @Embeddable composite PK

All DAO classes located in the eu.europa.ec.edelivery.smp.data.dao package extend the BaseDao
generic abstract class that already provides most common DAO operations (find, remove, etc.).

@Repository

public class ServiceGroupDao extends BaseDao<DBServiceGroup> {}

Listing 18 Sample of the simplest DAO that does not need to provide additional methods

public abstract class BaseDao<E extends BaseEntity> {

 @PersistenceContext

 protected EntityManager em;

 private final Class<E> entityClass;

 public BaseDao() {

 entityClass = (Class<E>)
GenericTypeResolver.resolveTypeArgument(getClass(), BaseDao.class);

 }

 public E find(Object primaryKey) {

 return em.find(entityClass, primaryKey);

 }

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 43 / 59

/* . . . */

}

Listing 19 Significant part of the generic BaseDao

4.4. Exception handling

Detailed functional description of all errors that might occur is presented in the Interface Control
Document (cf. [REF4]). This section presents a generalized view on error groups and focuses on
implementation perspective.

eDelivery SMP utilizes HTTP error codes according to the best RESTful recommendations, i.e., given
codes are always returned for:

• 200 (OK) or 201 (Created) – successful responses (resource created, updated, retrieved, or
deleted)

• 4xx (Bad request) – invalid or unauthenticated request

• 5xx (Server Error) – SMP technical issue, could be related to configuration, internal
networking, integration with BDMSL or DB, etc.

OASIS SMP specification (cf. [REF1]) does not specify error messages, thus eDelivery SMP introduces
its own simple XSD with XML namespace: ec:services:SMP:1.0. This one describes the structure of
error response messages as the sample below:

<ErrorResponse xmlns="ec : services:SMP:1.0">

 <BusinessCode>NOT_FOUND</BusinessCode>

 <ErrorDescription>ServiceMetadata not found, ServiceGroupID: 'x ::y',
DocumentID: 'a::b'</ErrorDescription>

 <ErrorUniqueId>2018-03-27T15 :07 :35.470CEST :d3ba543a-7233-4e69-9f34-
655e3998cb3c</ErrorUniqueId>

</ErrorResponse>

Listing 20 Sample error response

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 44 / 59

4.4.1. Error handling mechanism implementation

All classes for processing errors are located in package eu.europa.ec.edelivery.smp.error:

Figure 18 Classes implementing error handling mechanism

4.4.2. ErrorMappingControllerAdvice

All backend exceptions are mapped to REST responses within one single class registered in Spring
context with @RestControllerAdvice and by its many handler-methods annotated with
@ExceptionHandler. The class uses ErrorResponseBuilder and is responsible for:

• mapping exceptions to HTTP response codes and ErrorBusinessCodes

• logging user errors as WARN level and technical errors as ERROR level including
uniqueErrorId for easier maintenance and debugging

Class declaration, sample handler-method (one of many) and internal re-used buildAndWarn
method:

@RestControllerAdvice

public class ErrorMappingControllerAdvice {

 @ExceptionHandler(NotFoundException.class)

 public ResponseEntity handleNotFoundException(NotFoundException ex) {

 return buildAndWarn(NOT_FOUND, ErrorBusinessCode.NOT_FOUND,
ex.getMessage(), ex);

 }

/* . . . */
 private ResponseEntity buildAndWarn(HttpStatus status, ErrorBusinessCode
businessCode, String msg, Exception exception) { /* . . . */ }

}

Listing 21 Essential parts of ErrorMappingControllerAdvice class

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 45 / 59

4.4.3. ErrorResponseBuilder

ErrorResponseBuilder implementing builder pattern is responsible for building Spring's
ResponseEntity, based on provided HTTP status code, ErrorBusinessCode and text message. Produced
response not only is compliant with introduced dedicated XSD, but contains a uniqueErrorId that in
future problem investigation can be easily found out in log files once user provides error message
details.

Every uniqueErrorId is built out of:

• Timestamp – this information facilitates support and development by specifying when the
error occurred and in which rolled log file more details can be found.

• UUID – helps in uniquely locating the error stack trace.

2018-03-27T15:07:35.470CEST:d3ba543a-7233-4e69-9f34-655e3998cb3c

Listing 22 Sample uniqueErrorId built out of timestamp and UUID

4.4.4. ErrorBusinessCode

ErrorBusinessCode is a simple Enum with given values, used by other error-handling classes:

Business error code Description

XSD_INVALID Bad request, XML document provided by the user does not pass schema
validation

WRONG_FIELD Bad request, one of the request fields is wrong, e.g., specified Domain
does not exist.

OUT_OF_RANGE Bad request, e.g., specified dates from-to are overlapped.

FORMAT_ERROR Bad request, e.g., provided identifier format does not comply to OASIS
SMP specifications (cf. [REF1])

UNAUTHORIZED Unauthorized (HTTP 401), the user has no permission to access
requested resource.

NOT_FOUND Bad request, the requested resource does not exist (GET or DELETE).

USER_NOT_FOUND Bad request, e.g., the newly created ServiceGroup cannot be owned by a
user that does not exist.

TECHNICAL Technical problem on SMP or infrastructure side (BDMSL integration,
database etc.). This error is always returned with HTTP 500 "Internal

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 46 / 59

Server Error" code. The specific cause of this error is not communicated
in the response since Exceptions' messages might eventually reveal
sensitive information.

4.4.5. SpringSecurityExceptionHandler

SpringSecurityExceptionHandler is a glue code that allows exceptions thrown by SpringSecurity to be
processed by a common exception-handling mechanism. As a result, all security error responses
follow the same pattern than other error responses.

SpringSecurity is implemented as a filter chain at the very beginning of the processing of HTTP
requests.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 47 / 59

5. CONFIGURATION

SMP configuration (database, keystore, authentication type …) is placed in the property file
smp.config.properties. File with default values is already included in deployment war package. To
override custom values the copy of smp.config.properties with updated values must be placed in the
application server classpath. More details on configuring classpath can be found in the
Administration Guide (cf. [REF3]) and in the §5.1 – "Environment specific configuration".

When the SMP is used in multi-tenancy as described in chapter §3.3 – "Domain Multitenancy", the
configuration properties for domain (SMP ID, BDMSL authentication data) are located in database
table: SMP_DOMAIN. One record represents one domain, columns represent configuration
parameters which are applied for that specific domain. More details on domain configuring can be
found in the Administration Guide (cf. [REF3])

5.1. Environment specific configuration

Detailed configuration steps for Windows and UNIX systems are covered in the SMP Administration
Guide [REF3]. This section is focused explaining the motivation behind particular configuration rather
than configuration steps themselves.

5.1.1. WebLogic

Classpath:

The SMP requires configuration file: smp.config.properties to be placed in the classpath. On
weblogic server custom classpath folder (e.g. /conf_dir_path) can be set by modifying CLASSPATH
variable in scripts setDomainEnv.sh:

EXPORT CLASSPATH="$CLASSPATH${CLASSPATHSEP}/conf_dir_path"

Listing 23 Adding SMP configuration dir to classpath

Authentication:

WebLogic by default validates username/password (BasicAuth) credentials if such are present in any
incoming request. Because SMP handles BasicAuth with SpringSecurity this feature must be turned
off. This is achieved by changing enforce-valid-basic-auth-credentials property in config.xml file to
false.

5.1.2. Tomcat

Classpath:

The SMP requires configuration file: smp.config.properties to be placed in the classpath. On tomcat
server custom classpath folder (e.g. /conf_dir_path) can be set by modifying the starting scripts in
the same way as for WebLogic, or by adding this entry in context.xml file:

<Resources className="org.apache.catalina.webresources.StandardRoot"
cachingAllowed="true" cacheMaxSize="100000" >

 <PreResources className="org.apache.catalina.webresources.DirResourceSet"

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 48 / 59

 base="/conf_dir_path"

 internalPath="/"

 webAppMount="/WEB-INF/classes" />

</Resources>

Listing 24 Sample part of Tomcat's context.xml file presenting how to include configuration file into classpath

5.1.3. Oracle

NLS_CHARACTERSET must be set to AL32UTF8, otherwise SMP will face issues with non-ASCII
characters.

Figure 19 Oracle NLS_CHARACTERSET must be set to AL32UTF8

5.1.4. MySql

Character set, collation and especially JDBC connection protocol encoding – all must be set to UTF-8,
otherwise SMP will face issues with non-ASCII characters.

Figure 20 MySQL character encoding must be set to UTF8

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 49 / 59

6. SECURITY

The SMP is secured with the SpringSecurity. The spring security configuration is executed at the
eDelivery startup in the following classes:

• WSSecurityConfigurerAdapter.java: class that handles the webservice endpoint security

configuration,

• UISecurityConfigurerAdapter.java: class that handles the UI endpoint security configuration,

• SMPCasConfigurer.java: class that handles the UI Cas configuration.

6.1. Authentication

The Authentication Manager (id = smpAuthenticationManager) utilizes two Authentication One
handles basic username/ password authentication and the second is SpringSecurity implementation
PreAuthenticatedAuthenticationProvider class configured to handle X509Certificate and BlueCoat
authentication. The pre-authenticated scenarios take precedence over basic authentication. That
means if a client provided a valid certificate and also valid username and password, then he is logged
in using his certificate and username/password is ignored.

6.1.1. Username and password authentication (Basic Authentication forUI)

Standard SpringSecurity mechanism is used to verify username and BCrypt hashed passwords using
the SMPAuthenticationProvider. Username/Password authentication can be used for the UI
authentication.

6.1.2. Access token authentication (Basic Authentication for web-services)

eDelivery SMP uses different credentials for UI and for WebService authentication.
The access token is randomly generated access token id and access token value. Together they are
used as HTTP basic authentication when invoking the web-services.

6.1.3. Client certificate authentication

Client Certificate authentication can be used only for authentication when invoking the REST API
services. The purpose of the certificate authentication is to support mutual 2-way TLS authentication
for machine-to-machine integration.

SMP supports two types of Client Certificate authentications: X509 certificate authentication and
Authentication behind Reverse Proxy. Both scenarios are performed in 2 steps:

1. Certificate details are extracted to the eDelivery-specific text format. This step is handled by
two custom filters: x509AuthFilter and blueCoatReverseProxyAuthFilter, separately for both
scenarios.

2. PreauthAuthProvider verifies that if certificate-defined user exists in the database.

X509Certificate and Certificates HTTP Client-Cert header are validated with the following attributes:

• Valid from: if “current date” is smaller than “valid from” date, then authentication is rejected

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 50 / 59

• Valid to: if “current date” is greater than “certificates valid to” date, then authentication is

rejected

• Revocation List: certificates are validated by CRL which is downloaded and cached till the CRL

“valid to” date. CRL URL endpoint is defined in SMP_CERTIFICATE.CRL_URL column and is

used for HTTP Client-Cert authentication and for X509Certificate authentication. If the CRL is

not reachable, SMP silently ignores the CRL verification, if the configuration attribute

“smp.certificate.crl.force” is set to false. If the attribute is set to true, then Client is not

authenticated due to technical issues.

• Truststore: If the SMP truststore is not empty, then formatted issuer or subject is verified if it

exists in the truststore. If none of the values exists in the truststore, then certificate

authentication is rejected.

Users that are authenticated by certificate are stored in the SMP_USER table, together with users
authenticated by password. The USERNAME value of certificate authenticated users is a string value
created from parts of certificate distinguish name (DN) and serial number by the following pattern
(eDelivery format):

CN={common name},O={organisation},C={country}:{16-digit-zero-padded-hex-serial}

e.g.:

CN=CEF eDelivery,O=European Commission,C=BE:000000000000c41f

Application distinguished certificate authenticated users from password-authenticated user by an
empty PASSWORD column.

Most eDelivery projects supporting client certificate authentication, utilize the same client certificate
text representation and BlueCoat Client-Cert HTTP header patterns. For this reason custom Java code
responsible for client certificate authentication has been extracted and released within a separate
JAR library; maven dependency gropuId/artifactId: eu.europa.ec.edelivery/edelivery-springsecurity-
2-way-ssl-auth.

6.1.3.1. X509 certificate authentication

The client X509 certificate authentication uses server's (Tomcat or WebLogic) certificate
authentication settings. After the request passes the server validation successfully, x509AuthFilter
extract certificate details and then authentication proceeds in the way as described above.

The filter itself (class EDeliveryX509AuthenticationFilter) is a simple extension of SpringSecurity's
X509AuthenticationFilter class, which is a ready-to-use implementation handling
java.security.cert.X509Certificate.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 51 / 59

Figure 21 2-way-TLS scenario with truststore configured within J2EE container

6.1.3.2. Authentication behind Reverse Proxy

In this setup the basic certificate validation is configured in the BlueCoat reverse proxy. After
certificate validation passed successfully, the BlueCoat reverse proxy adds a "Client-Cert" HTTP
header and forwards the request to the SMP over HTTP(S). The spring filter
blueCoatReverseProxyAuthFilter extracts the header, converts it from Bluecoat's to the eDelivery
format specified above and then authentication proceeds in the way as described above.

The filter itself (class BlueCoatAuthenticationFilter) is based on the SpringSecurity's
RequestHeaderAuthenticationFilter, dedicated for similar scenarios.

Figure 22 2-way-SSL scenario with BlueCoat reverse proxy

6.1.4. SSO Central Authentication service with EU-LOGIN

CAS authentication can be used only for the UI authentication, and it was made with intention to
integrate with ECAS also called EU-Login. ECAS is based on the Central Authentication Service (CAS)
version 2 developed at Yale University1. It is an authentication service to protect Web-based
applications. SMP was tested only with ECAS, but it should also work with any CAS 2.0
implementation,

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 52 / 59

When the SMP does not find a service ticket granting access it redirects to EU login page for
user authentication. After user is authenticates on EU-login, the response redirects page back to SMP
UI page with granting ticket. SMP validates ticket with ECAS. If validation is successful, the SMP
authorize access to the user according to user authorization defined on SMP user configuration.

6.2. Authorization

6.2.1. Authorities

Authorities in SMP are organized into a two-dimensional space, with Roles as first dimension and
Error! Reference source not found. as the second one.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 53 / 59

6.2.1.1. Roles

Roles are documented with more details in ICD (cf. [REF4]). The table below explains their meaning
from the implementation perspective:

Role alias Description

ROLE_ANONYMOUS Any user that has not provided any
authentication details

ROLE_USER Any authenticated user that exists in the
database and it does not have system admin
permissions. Such user is supposed to be a
member of the Domain, Group or Resource.

ROLE_SYSTEM_ADMIN Role for UI enables administration of domains
and users.

ICD mentions "System Admin" role, but it's rather a sysadmin, not the business role to be considered
in SMP source code.

6.2.2. Authorities execution

Authorities' verification is very flexible thanks to loading all granted authorities to the security
context.

6.2.2.1. HTTP methods: GET/PUT/DELETE

The first level of verification is made on HTTP method level. GET is allowed to everybody, while all
modifying actions are allowed only to authenticated users, which is configured in spring-security.xml
file:

<intercept-url method="PUT" access=" ! isAnonymous()" pattern="/*"/>

<intercept-url method="DELETE" access=" ! isAnonymous()" pattern="/*"/>

6.2.2.2. Business object and action level

Once all granted authorities are present in the security context, they are validated at the business
methods level with SpringSecurity's annotations and Spring Expression Language (SpEL):

@Secured("ROLE_SMP_ADMIN")

- action allowed only for Group Admin, or:

@PreAuthorize("hasAnyAuthority('ROLE_SMP_ADMIN',
 @caseSensitivityNormalizer.normalizeParticipantId(#serviceGroupId))")

- action allowed either for Group Admin or Resource admin owing the "serviceGroupId" provided as
methods' parameter.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 54 / 59

7. QUALITY

SMP quality is supervised by Code Reviews and Continuous Integration processes, which are out of
the scope of this document. The quality measurement details presented below focus on technical
and source-code point of view.

7.1. Unit tests

All utility classes that do not interact with many other classes, which are mostly responsible for
conversions, mappings, etc., are unit tested with using Junit and Mockito libraries. Test class name
pattern in this case is: {testedClassName}Test.java. Tests are run at application build time.

7.2. Integration tests

Service classes that combine multiple application modules and in most of the cases require database
access are tested in classes with name pattern: {testedClassName}IntegrationTest.java. Tests are
executed with JUnit library and configured Spring test context. Also, database instance must be
created and defined in maven project files with the following properties:

Property Description

jdbc.driver
Database Configuration: Driver
MySQL:
 - com.mysql.jdbc.Driver
Oracle Database:
 - oracle.jdbc.OracleDriver

jdbc.url
Database Configuration: url
- MySQL:
 jdbc:mysql://dbhost:dbport/smp_database
- Oracle Database:

jdbc:oracle:thin:@dbhost:dbport:smp_database
or
 jdbc:oracle:thin:@dbhost:dbport/smp_service

jdbc.password

Database User/Password Configuration: User

jdbc.password Database User/Password Configuration:
Password

target-database
Target Database Backend type/Brand:
For MySQL, use: MySQL
For Oracle Database, use: Oracle

jdbc.read-connections.max

Database Configuration: Max Read Connection

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 55 / 59

Example:

<properties>

 <jdbc.driver>com.mysql.jdbc.Driver</jdbc.driver>

 <jdbc.url>jdbc:mysql://localhost/smp</jdbc.url>

 <jdbc.user>smp</jdbc.user>

 <jdbc.password>smp</jdbc.password>

 <target-database>MySQL</target-database>

 <jdbc.read-connections.max>10</jdbc.read-connections.max>

</properties>

7.3. SoapUI integration tests

All functionalities are covered with SoapUI integration tests that run REST requests against the SMP
and in some cases access the database directly with SQL statements. The SoapUI project can be
found in submodule smp-soapui-tests\soapui\SMP4.0-Generic-soapui-project.xml file. These tests are
bound to maven build and can be activated at build time with maven profile -Prun-soapui switch.

7.4. Sonar source code statistics

Maven build is configured to collect standard Sonar code statistics (code test coverage, static code
analysis, etc.). Apart from that, code test coverage is gathered also when running SoapUI tests. This
requires manual install of Jacoco Agent in JRE with J2EE container where the SMP is deployed and
pointing to this agent when running a build by adding these attributes to maven run:
 -DjacocoRemotePort=65000 –DjacocoRemoteAddress.

Once build with SoapUI tests is done, statistics from all the sources are gathered by sonar plugin by
running mvn sonar:sonar goal.

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 56 / 59

8. TECHNICAL REQUIREMENTS

This chapter describes the minimum and recommended system requirements to operate the SMP
component.

8.1. Hardware

Type Minimum Recommended

Processor 1 CPU core 4 CPU core

Memory (RAM) 2GB 8GB or more

Disk space 5GB Depends on usage

8.1.1. Recommended stack

Ubuntu 22.04 LTS 64 bits
Oracle Java EE 8
MySQL 8

8.1.2. Operating Systems

Any operating system that is compliant with the supported JVM.

8.1.3. Java Virtual Machines

Oracle Java JRE 8/11

8.1.4. Java Application Servers

Apache Tomcat 9.x
Oracle WebLogic Server 12.2c or 14.1C

8.1.5. Databases

MySQL 8
Oracle Database 19c

8.1.6. Web Browsers

n/a

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 57 / 59

9. LIST OF FIGURES

Figure 1 - Example of Domain/Group/Resource overview ... 15
Figure 2: The SMP UI tool for user management .. 19
Figure 3: eDelivery SMP UI tool for ServiceGroups management – create/edit 21
Figure 4 PUT ServiceGroup flow .. 21
Figure 7: eDelivery SMP UI tool for ServiceGroups management – delete .. 23
Figure 8 DELETE ServiceGroup flow .. 24
Figure 7 - Create ServiceMetadata record .. 26
Figure 8 - Edit service metadata document .. 27
Figure 10 PUT ServiceMetadata flow .. 27
Figure 11: eDelivery SMP UI tool for ServiceMetadata management – delete 28
Figure 12 DELETE ServiceMetadata flow ... 29
Figure 13 Get ServiceGroup flow .. 31
Figure 14 GET ServiceMetadata flow .. 34
Figure 15 List of context configuration classes ... 36
Figure 16 SMP layers structure ... 37
Figure 17 BDMSLConnector needs a dedicated client depending on the Domain used 39
Figure 18 Database ERD diagram .. 41
Figure 19 Classes implementing error handling mechanism .. 44
Figure 20 Oracle NLS_CHARACTERSET must be set to AL32UTF8 ... 48
Figure 21 MySQL character encoding must be set to UTF8 .. 48
Figure 22 2-way-TLS scenario with truststore configured within J2EE container 51
Figure 23 2-way-SSL scenario with BlueCoat reverse proxy ... 51

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 58 / 59

10. LIST OF LISTINGS

Listing 1: PayloadValidatorSpi interface .. 15
Listing 2: PayloadValidatorSpi implementation example.. 17
Listing 3 Sample User creation SQL ... 18
Listing 4 Sample PUT ServiceGroup request ... 20
Listing 5 Sample delete ServiceGroup request .. 23
Listing 6 A sample of PUT ServiceMetadata request .. 26
Listing 7 Sample DELETE ServiceMetadata request .. 28
Listing 8 Sample GET ServiceGroup request ... 30
Listing 9 Sample GET ServiceGroup response ... 30
Listing 10 Sample GET ServiceMetadata request .. 32
Listing 11 Sample GET ServiceMetadata response ... 33
Listing 12 Sample context configuration class .. 36
Listing 13 Sample method implementing REST action .. 38
Listing 14 Sample transactional Service method .. 38
Listing 15 Sample use of CaseSensitivityNormalizer inside of the @PreAuthorize annotation 40
Listing 16 Part of sample JPA2 Model class with embedded composite PK ... 42
Listing 17 Part of sample @Embeddable composite PK .. 42
Listing 18 Sample of the simplest DAO that does not need to provide additional methods 42
Listing 19 Significant part of the generic BaseDao .. 43
Listing 20 Sample error response .. 43
Listing 21 Essential parts of ErrorMappingControllerAdvice class .. 44
Listing 22 Sample uniqueErrorId built out of timestamp and UUID ... 45
Listing 23 Adding SMP configuration dir to classpath ... 47
Listing 24 Sample part of Tomcat's context.xml file presenting how to include configuration file into

classpath ... 48

 DomiSMP 5.0 Software Architecture Document

Software Architecture Document – Service Metadata Publisher Page 59 / 59

11. CONTACT INFORMATION

eDelivery Support Team

By email: EC-EDELIVERY-SUPPORT@ec.europa.eu

Standard Service: 8am to 6pm (Normal EC working Days)

	1. Introduction
	1.1. Purpose
	1.2. References
	1.3. Definitions

	2. Overview of the solution
	3. Functional View
	3.1. Identifiers
	3.1.1. Identifiers encoding
	3.1.2. ebCore party identifier
	3.1.3. Identifier's case sensitivity

	3.2. BDMSL integration
	3.3. Domain Multitenancy
	3.4. Roles
	3.5. Domain, Group and Resources
	3.6. Extensions
	3.7. UC01 – Manage Administrators
	3.7.1. Prerequisites
	3.7.2. Description

	3.8. UC02 – PUT ServiceGroup (create or update)
	3.8.1. Prerequisites
	3.8.2. Description
	3.8.3. ServiceGroup-Owner HTTP header - Specifying Owner User
	3.8.4. Domain HTTP header - Specifying Domain

	3.9. UC03 - DELETE ServiceGroup
	3.9.1. Prerequisites
	3.9.2. Description

	3.10. UC04 – PUT ServiceMetadata (create or update)
	3.10.1. Prerequisites
	3.10.2. Description

	3.11. UC05 – DELETE ServiceMetadata
	3.11.1. Prerequisites
	3.11.2. Description

	3.12. UC06 – GET ServiceGroup
	3.12.1. Prerequisites
	3.12.2. Description
	3.12.3. Reference URLs

	3.13. UC07 – GET ServiceMetadata
	3.13.1. Prerequisites
	3.13.2. Description

	4. Implementation View
	4.1. Source code and modules overview
	4.2. Application skeleton - Spring annotations context setup
	4.3. Layers overview
	4.3.1. Spring MVC - REST interface layer
	4.3.2. Business Services layer
	4.3.2.1. BDMSL Integration
	4.3.2.2. Case (in)sensitivity normalisation

	4.3.3. Case (in)sensitivity support, as functionally described in §4.3.2.2 –"ebCore party identifier
	4.3.4. Data layer

	4.4. Exception handling
	4.4.1. Error handling mechanism implementation
	4.4.2. ErrorMappingControllerAdvice
	4.4.3. ErrorResponseBuilder
	4.4.4. ErrorBusinessCode
	4.4.5. SpringSecurityExceptionHandler

	5. Configuration
	5.1. Environment specific configuration
	5.1.1. WebLogic
	5.1.2. Tomcat
	5.1.3. Oracle
	5.1.4. MySql

	6. Security
	6.1. Authentication
	6.1.1. Username and password authentication (Basic Authentication forUI)
	6.1.2. Access token authentication (Basic Authentication for web-services)
	6.1.3. Client certificate authentication
	6.1.3.1. X509 certificate authentication
	6.1.3.2. Authentication behind Reverse Proxy

	6.1.4. SSO Central Authentication service with EU-LOGIN

	6.2. Authorization
	6.2.1. Authorities
	6.2.1.1. Roles
	6.2.1.1. Roles

	6.2.2. Authorities execution
	6.2.2.1. HTTP methods: GET/PUT/DELETE
	6.2.2.2. Business object and action level

	7. Quality
	7.1. Unit tests
	7.2. Integration tests
	7.3. SoapUI integration tests
	7.4. Sonar source code statistics

	8. Technical requirements
	8.1. Hardware
	8.1.1. Recommended stack
	8.1.2. Operating Systems
	8.1.3. Java Virtual Machines
	8.1.4. Java Application Servers
	8.1.5. Databases
	8.1.6. Web Browsers

	9. List of Figures
	10. List of Listings
	11. Contact Information

