

eIDAS-Node National IdP and SP
Integration Guide v2.7

eIDAS-Node National IdP and SP Integration Guide v2.7

Table of Contents – 2

Table of Contents

1 Introduction .. 5
1.1 Purpose .. 5
1.2 Document aims ... 5
1.3 Document structure .. 5
1.4 Other technical reference documentation .. 6

2 The eID Building Block .. 7
2.1 eIDAS-Node software ... 7
2.2 Architecture of a typical eID solution .. 8

3 Designing Integration .. 10
3.1 eIDAS-Node Connector and eIDAS-Node Proxy Service in one application instance 10
3.2 Deployment models .. 10
3.2.1 Standard Deployment method .. 10
3.2.2 Monolithic Deployment method ... 11
3.3 Required profile and flows .. 11
3.3.1 High-level flow ... 11
3.4 Requirements from MS ... 13

4 Integration Possibilities ... 14
4.1 Provided stack .. 14
4.2 Using the provided SpecificCommunication API .. 15
4.2.1 Use of LightTokens ... 17
4.2.2 Use of LightRequest/LightResponse ... 17
4.2.3 Service interface and implemented beans .. 21
4.2.4 Back-end communication with Ignite ... 22
4.2.5 Back-end communication with an alternative to Ignite .. 24
4.2.6 Overriding default communication cache names .. 24
4.2.7 Back-end communication in Monolithic Deployment ... 24
4.2.8 Incoming Light Request Validation .. 25
4.2.9 Incoming Light Response Validation ... 25
4.3 Re-implementing SpecificCommunication .. 25
4.4 Integrating the provided Generic with custom implementation of communication 26
4.4.1 Implementing the LightToken .. 26
4.4.2 Implementing LightRequest / LightResponse .. 28

5 Appendix A: Diagrams and Schemas .. 32
5.1 Attribute Registry .. 32
5.1.1 Hardcoded attributes ... 32
5.1.2 Class-related attribute registries ... 33
5.2 XSD Schemas for Light Objects ... 35
5.2.1 LightRequest schema ... 35
5.2.2 Light Response schema .. 39

6 Appendix B: Examples .. 44
6.1 LightToken QED ... 44
6.2 Python's Ignite Thin client Specific Connector POC .. 45
6.3 Ignite's Rest API ... 48

7 Appendix C: Ignite advanced configurations.. 49
7.1 SSL/TLS ... 49

8 Appendix D: Ignite Proposed Configuration ... 50

eIDAS-Node National IdP and SP Integration Guide v2.7

Introduction – 3

Document history

Version Date Modification reason Modified
by

1.0 16/10/2017 Origination DIGIT

2.0 10/04/2018 Document rewritten particularly in relation to separation of
Generic and Specific Parts.

DIGIT

2.0.1 19/04/2018 Correction to Figure captioning EID-609.
Corrected example of LightToken generation section 4.4.1
EID-611.

DIGIT

2.1 09/07/2018 Reuse of document policy updated and version changed to
match the corresponding Release. Document describes how to
migrate to eIDAS-Node v2.1.

DIGIT

2.3 20/06/2019 Adapted text and figures to new Cache and Ignite. DIGIT

2.4 06/12/2019 Minor update. DIGIT

2.5 11/12/2020 eIDAS-Node 2.5 release DIGIT

2.6 15/04/2022 eIDAS-Node 2.6 release DIGIT

2.7 01/09/2023 eIDAS-Node 2.7 release DIGIT

Disclaimer
This document is for informational purposes only and the Commission cannot be held
responsible for any use which may be made of the information contained therein. References to
legal acts or documentation of the European Union (EU) cannot be perceived as amending
legislation in force or other EU documentation.

The document contains a brief overview of a technical nature and is not supplementing or
amending terms and conditions of any procurement procedure; therefore, no compensation
claim can be based on the contents of the present document.

 © European Union, 2023
Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on
the reuse of Commission documents

List of abbreviations

The following abbreviations are used within this document.

Abbreviation Meaning

eIDAS electronic Identification and Signature. The Regulation (EU) N°910/2014
governs electronic identification and trust services for electronic transactions in
the internal market to enable secure and seamless electronic interactions
between businesses, citizens and public authorities.

IAM Identity and Access Management.

IdP Identity Provider. An institution that verifies the citizen's identity and issues an
electronic ID.

LoA Level of Assurance (LoA) is a term used to describe the degree of certainty that
an individual is who they say they are at the time they present a digital
credential.

MW Middle Ware. Architecture of the integration of eIDs in services, with direct
communication between SP and the citizen's PC without any central server. The

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG

eIDAS-Node National IdP and SP Integration Guide v2.7

Introduction – 4

Abbreviation Meaning

term also refers to the piece of software of this architecture that executes on the
citizen's PC.

MS Member State

SAML Security Assertion Markup Language

SAT Solution Architecture Template

SP Service Provider

List of definitions

The following definitions are used within this document.

Term Meaning

Basic Setup The basic configuration and Demo tools provided in a package to setup and run
an eIDAS-Node strictly for demo purposes only.

Demo tools Demo tools comprise the Demo SP and Demo IDP included in the package.
These components are not production ready and should not be deployed or
used in production environments.

eIDAS-Node An eIDAS-Node consists of two different components. See eIDAS-Node
Connector and eIDAS-Node Proxy Service.

eIDAS-Node
Connector

The eIDAS-Node component located in the Service Provider's Member State.
In a scenario with a Service Provider asking for authentication, the eIDAS-Node
Connector receives the authentication request from the Service Provider and
forwards it to the eIDAS-Node Proxy Service of the citizen's country. This was
formerly known as S-PEPS.

eIDAS-Node
Proxy
Service

The eIDAS-Node component located in the citizen's Member State. The eIDAS-
Node Proxy Service receives authentication requests from an eIDAS-Node of
another MS (their eIDAS-Node Connector). The eIDAS-Node Proxy-Service also
has an interface with the national eID infrastructure and triggers the identification
and authentication for a citizen at an identity and/or attribute provider. This was
formerly known as C-PEPS.

Table of contents

eIDAS-Node National IdP and SP Integration Guide v2.7

Introduction – 5

1 Introduction

This document is intended for a technical audience consisting of architects, developers, and
those requiring detailed technical information on how an eIDAS-Node can be integrated into the
National eID infrastructure.

1.1 Purpose

The purpose of this document is to describe how Member States can integrate the eIDAS-Node
into their national infrastructure, which can be done in a number of ways.

This document provides guidance by recommending one way in which it can be done.

1.2 Document aims

The aims of this document are to:

• provide details of how to develop and tailor the parts that are specific to your country
(Specific parts);

• describe implementation into web-based infrastructure; an

• provide information on the Protocol Engine architecture which is at the heart of all
protocol related operations in the eIDAS-Node.

1.3 Document structure

This document is divided into the following sections:

• Chapter 1 − Introduction this section.

• Chapter 2 − The eID Building Block describes interoperability aspects of eID.

• Chapter 3 − Designing Integration describes considerations of the eIDAS-Node physical
architecture to be taken into account when developing your integration strategy.

• Chapter 4 − Integration Possibilities describes the recommended integration
approaches, starting with that requiring the least changes.

• Appendix A − Diagrams and Schemas contains diagrams covering some parts of the
software architecture that are mentioned in this document.

• Appendix B − Examples for the: LightToken QED, Python's Ignite Thin client Specific
Connector POC and Ignite's Rest API .

• Appendix C – Ignite Advanced Configurations elaborates on Ignite advanced
configurations, e.g. TLS configuration.

• Appendix D – Ignite Proposed Configuration recommended default configuration for
ignite.

• Appendix E – Message Logging features

1.4 Other technical reference documentation

We recommend that you also familiarise yourself with the following eID technical reference
documents (as appropriate to your role) which are available on Digital Home > eID :

eIDAS-Node National IdP and SP Integration Guide v2.7

Introduction – 6

• eIDAS-Node Installation, Configuration and Integration Quick Start Guide describes
how to quickly install a Service Provider, eIDAS-Node Connector, eIDAS-Node Proxy
Service and IdP from the distributions in the release package. The distributions provide
preconfigured eIDAS-Node modules for running on each of the supported application
servers.

• eIDAS-Node Installation and Configuration Guide describes the steps involved when
implementing a Basic Setup and goes on to provide detailed information required for
customisation and deployment.

• eIDAS-Node Demo Tools Installation and Configuration Guide describes the installation
and configuration settings for Demo Tools (SP and IdP) supplied with the package for
basic testing.

• eIDAS-Node and SAML describes the W3C recommendations and how SAML XML
encryption is implemented and integrated in eID. Encryption of the sensitive data
carried in SAML 2.0 Requests and Assertions is discussed alongside the use of AEAD
algorithms as essential building blocks.

• eIDAS-Node Error and Event Logging provides information on the eID implementation
of error and event logging as a building block for generating an audit trail of activity on
the eIDAS Network. It describes the files that are generated, the file format, the
components that are monitored and the events that are recorded.

• eIDAS-Node Security Considerations describes the security considerations that should
be taken into account when implementing and operating your eIDAS-Node scheme.

• eIDAS-Node Error Codes contains tables showing the error codes that could be
generated by components along with a description of the error, specific behaviour and,
where relevant, possible operator actions to remedy the error.

Other useful resources on eID, eIDAS and how the eID Building Block can be used while
preserving all the characteristics and qualities that makes it a Building Block (e.g.: sustainability,
reusability and replaceable parts):

• What is eID? helps to understand the need and purpose of eID ─
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/What+is+eID).

• SAT for eID and supporting links will help to understand the architectural framework
that supports the eID Building Block ─ https://joinup.ec.europa.eu/release/eid-sat/v101.

Disclaimer: The users of the eIDAS-Node sample implementation remain fully responsible for
its integration with back-end systems (Service Providers and Identity Providers), testing,
deployment and operation. The support and maintenance of the sample implementation, as well
as any other auxiliary services, are provided by the European Commission according to the
terms defined in the European Union Public License (EUPL) at
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/What+is+eID
https://joinup.ec.europa.eu/release/eid-sat/v101
https://joinup.ec.europa.eu/sites/default/files/custom-page/attachment/eupl_v1.2_en.pdf

eIDAS-Node National IdP and SP Integration Guide v2.7

The eID Building Block – 7

2 The eID Building Block

The eID Building Block helps public administrations and private online service providers to
extend the use of their online services to citizens from other EU Member States by enabling
cross-border authentication, in a secure, reliable and trusted way, by making national
electronic identification systems interoperable.

Once this Building Block is deployed in a Member State, the mutual recognition of national eIDs
becomes possible between participating Member States, in line with the eIDAS (electronic
Identification and Signature) legal framework and with the privacy requirements of all the
participating countries. Mutual recognition of national eIDs allows citizens of one Member State
to access online services provided by public and private organisations of other participating
Member States, using their own national eID.

The advantages of adopting this approach are:

• Sustainability;

• Greater Security;

• Better Scalability; and

• More Flexibility.

The eID Building Block is primarily intended for authentication and is not intended for
authorisation, document transfers, etc.

2.1 eIDAS-Node software

The eIDAS-Node software is a sample implementation of the eID eIDAS Profile. It is developed
by the European Commission with the help of Member States collaborating in the technical sub-
committee of the eIDAS Expert Group. The eIDAS-Node software contains the necessary
modules to help Member States to communicate with other eIDAS-compliant counterparts in a
centralised or distributed fashion.

The sample implementation is composed of the following:

• eIDAS-Node: an implementation of the eID eIDAS Profile able to communicate with
other nodes of the eIDAS Network. The eIDAS-Node can either request (via an eIDAS-
Node Connector) or provide (via an eIDAS-Node Proxy Service) cross-border
authentication;

• Testing tools (demo Service Provider and demo Identity Provider): additional tools
for setting up a demo environment for testing purposes.
Note: The testing tools should be used for testing purposes only and should not be
deployed in a production environment.

Each eIDAS-Node Connector and eIDAS-Node Proxy Service consists of two parts:

• Generic part; and

• Specific part.

Generic part
A sample implementation of the Generic part, conforming to the eIDAS Technical
Specifications, is developed by DIGIT. Code in the Generic part (modules EIDAS-Node-
Connector, EIDAS-Node-Proxy, EIDAS-Metadata, EIDAS-SAMLEngine) is developed to
communicate with other eIDAS-Nodes in other Member States (Connectors and Proxy
Services) using the strictly defined eIDAS protocol. This ensures compatibility and
interoperability between eIDAS-Nodes in the eIDAS network.

Specific part
The Specific part is designed and implemented by individual Member States to suit their
specific national requirements. This custom Specific part communicates with the Generic part
by defined interfaces.

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eIDAS+eID+Profile

eIDAS-Node National IdP and SP Integration Guide v2.7

The eID Building Block – 8

This separation of functionality between the Generic part and the Specific part defines a clear
domain boundary and provides independence where, for example, Service Providers are not
aware of the technology used in cross-border transactions.

Because of this separation, some functions that are required by the Interoperability
Specifications must be implemented by Member States in their Specific part (or in the Member
State 'Hub', see Figure 1), these are:

• MS Selection provided by the Connector solution; and

• Scheme selection provided by the Proxy Service solution.

Note: The integration package includes a sample Specific part for demonstration only. This is
not production-ready and should not be seen as a template for how functionality should be
implemented.

Disclaimer: The users of the eIDAS-Node sample implementation remain fully responsible for
its integration with back-end systems (Service Providers and Identity Providers), testing,
deployment and operation. The support and maintenance of the sample implementation, as well
as any other auxiliary services, are provided by the European Commission according to the
terms defined in the European Union Public Licence (EUPL).

2.2 Architecture of a typical eID solution

The following diagram, based on eID Solution Architecture Template (SAT 1.0.1), illustrates the
application-level approach for a typical eID/authentication solution.

Figure 1: Architecture of a typical eID solution with MS IAM

This is a very high-level ArchiMate® abstract, introducing only a concept, and not the physical
level solution.

The packaging component (Interoperable European Solution) implements an Application
Service using eID Authentication, therefore realising an eID Authenticated Application Service.

For example, opening a bank account requires identification of the person, which can be done
with eID-based authentication. For the above architecture, strictly for the authentication (so not
including any other processes like Anti-Money-Laundering) it is indifferent to whether the eID is
local or foreign. The solution (like the online bank account) uses the local authentication
ecosystem offered by eGovernment services.

This is the Member State Hub responsible for hiding the cross-border nature, but making the
necessary conversion and routing between the two different implementations: eIDAS-Node

https://ec.europa.eu/digital-building-blocks/wikis/download/attachments/46992716/eupl1.1.-licence-en.pdf?api=v2&modificationDate=1496243904284&version=1

eIDAS-Node National IdP and SP Integration Guide v2.7

The eID Building Block – 9

Connector and (the existing) government Identity and Access Management (IAM) services. The
Member State Hub is abstract, it is not necessarily a physical component, it is a service
(composed of functions like conversion and routing), that can be centralised or decentralised.

The important message from this diagram is the concept that eIDAS cross-border authentication
is an alternative to the locally provided IAM services.

Reducing the solution to a cross-border-only service scenario results in this diagram:

Figure 2: Architecture of a cross-border-only service

eIDAS-Node National IdP and SP Integration Guide v2.7

Designing Integration – 10

3 Designing Integration

There are multiple ways the eIDAS-Node can be integrated with a national network. Before
going into detail, there is a need to understand the architecture of the system and set the
integration strategy accordingly. Therefore, this section describes the general architecture
considerations.

3.1 eIDAS-Node Connector and eIDAS-Node Proxy Service in
one application instance

It is not recommended to run both the EidasNodeConnector.war and EidasNodeProxy.war in
the same application instance, and it is better to have two different instances for the following
main reasons:

• the roles are very different, and since the eIDAS-Node Proxy Service issues identities,
the security level is higher;

• besides the security level, uptime and business continuity requirements will be different,
especially if bilaterally agreed; and

• there can be, and most likely there will be, multiple eIDAS-Node Connectors in the
future for different purposes and sectors.

3.2 Deployment models

There are two deployment methods supported:

• Standard deployment; and

• Monolithic deployment.

3.2.1 Standard Deployment method

The Standard Deployment is the recommended approach for most Member States because it
offers more flexibility. This is the default build target for the provided MAVEN Project Object
Model.

Using the Standard Deployment the eIDAS-Node is built as a separate, independent, ready-to-
use web application, that can be deployed directly. In this deployment model, the Specific part
may not exist at all, as the Node can be integrated closely into a domestic identity management
infrastructure. There are several advantages to choosing this method:

• It is platform independent, using the provided Ignite technology stack (an alternative to
Ignite can be used, see section 4.2.6 ─ Back-end communication with alternative to
although reconfiguration and repackaging will be required). Integration with C++, .NET,
or custom infrastructure is also possible.

• Seamless upgrade to new versions. Upgrade of minor eIDAS-Node versions, where the
interface does not change does not affect MS' Specific or infrastructure. Compatibility
with major version change may also be better, just needing to adjust the background
data communication.

• The impact of Java library dependencies is less in the case when reusing some of the
provided and supported libraries (like EIDAS-Commons), and may not exist at all if
integrating with XML directly.

eIDAS-Node National IdP and SP Integration Guide v2.7

Designing Integration – 11

3.2.2 Monolithic Deployment method

The Monolithic Deployment is similar to the architecture delivered in eIDAS Node v1.4 and
earlier versions. The Specific application parts (Specific Connector and Specific Proxy Service)
are built as part of the application, as included JAR files. However, the communication interface
is the same as in the Standard Deployment. By default the Monolithic Deployment method
results in a non-distributed application at the communication interface level, as the
communication cache does not default to a shared map, it uses internal memory cache.
However, it can be changed by editing the Maven build profile.

The Monolithic Deployment method is offered for testing and familiarisation but can be useful for
those who plan to operate the eIDAS-Node as one standalone application, and accept the
following restrictions:

• All Java libraries included in the Generic part are also dependencies of the Specific, so
upgrade or replacement possibilities are very limited.

• Any change in these commonly used libraries introduced in future eIDAS releases
forces the implementer to do an impact analysis and to take the necessary actions
before upgrading.

• The overall performance of the application is dependent on Specific implementation,
therefore eID support possibilities may be limited.

• Troubleshooting and problem-solving by eID Team is limited. All incidents must be
investigated locally to make sure, only those issues are being escalated to eID support,
that originate from the provided software, and not the customised or added parts.

3.3 Required profile and flows

The eIDAS protocol is based on SAML2, implemented with a web profile, so whatever is used in
the national infrastructure, the eIDAS-Node will require an HTTP request, and will do Redirects
or form Posts containing SAML messages. It requires a client browser capable of understanding
HTTP, but does not require cookies or JavaScript support by default.

Control and Data flows are decoupled. The control is done by the user agent (browser) on the
public Internet, while the data is happening in the background between back-end interfaces.

3.3.1 High-level flow

The following diagram demonstrates the high-level flow during an originated Request
(Receiving MS) scenario, assuming there is a Specific Connector (can be anything in the MS
infrastructure, including a Hub), and the eID provided SpecificCommunication API is used for
the background communication.

eIDAS-Node National IdP and SP Integration Guide v2.7

Designing Integration – 12

Figure 3: High-level flows

The scope is restricted to the invocation of cross-border eID authentication services. The
highlighted area contains the flows described in the next sections.

3.3.1.1 Outbound from MS
This invocation pattern restricts the requester to the use of HTTP. To invoke operation on the
eIDAS Network (both issuing and consuming identities), the eIDAS-Node will require a browser
hit (HTTP GET or POST) from an endpoint located in the national infrastructure.
The HTTP request needs to contain a reference token to a data package that is exchanged in
the background. See section 4.4.1 ─ Implementing the LightToken for details on this token.

The incoming HTTP request is held, while processing is performed (synchronous way). The
token-referenced data package (LightRequest/LightResponse) will be retrieved by the Node and
an eIDAS SAML Request/Response is created based on the provided information. This SAML
message is placed into the HTTP response to the corresponding HTTP request coming with the
initial control flow. The user agent is redirected to the intended eIDAS Node (Proxy-Service) in
the Network.

If it is a Request, originating from the MS, the Node will cache the Request in order to correlate
with the incoming Response.

If it is a Response, then the Node will recover the original Request from its internal cache, to do
the correlation.

3.3.1.2 Inbound to MS
When the eIDAS Network initiates an invocation (either response or request), the Node receives
and processes the eIDAS SAML message. The incoming user agent HTTP request is held.

The resulting LightRequest/LightResponse is placed on the background communication bus,
and a referencing token is created and written to the HTTP response of the initial user agent
HTTP request. Then the agent is redirected to a configuration-specified URL, that is interpreted
as the URL of the MS-Specific.

If the incoming eIDAS message is a Response, the original Request is recovered for correlation
from the internal cache.

If the incoming eIDAS message is a Request, it is stored to be recovered from the cache when
the MS-based authentication is done, and the control flow returns with the response.

3.4 Requirements from MS

As seen in section 3.3 ─ Required profile and flows the eIDAS-Node requires the MS
implementation to handle Service Provider requests to:

• supply a user-agent redirect to Connector Node with a Request referencing token;

• push the referenced Request data object via back-end communication to the Connector
Node;

• supply an HTTP endpoint where the eIDAS Node redirects the user-agent with a
Response referencing token; and

• pull the referenced Response data object from the Connector Node via background
communication.

The pattern is the same for implementing cross-border identity issuing in the Proxy Service.
Here the MS is responsible for:

• supplying an HTTP endpoint where the eIDAS Node redirects the user-agent with a
Request referencing token;

• pulling the referenced Request data object from the Proxy Service Node via
background communication;

eIDAS-Node National IdP and SP Integration Guide v2.7

Designing Integration – 13

• supplying a user-agent redirect to the Proxy Service Node with a Response referencing
token; and

• pushing the referenced Response data object via back-end communication to the Proxy
Service Node.

The technical details and possibilities are described in the following section.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 14

4 Integration Possibilities

This section describes the recommended integration approaches, starting with the most
straightforward.

4.1 Provided stack

The eIDAS-Node includes a sample, demo implementation of a Member State Specific Part,
that is designed to help the understanding of the recommended integration pattern. The stack
itself is customisable by implementing the provided/required interfaces.

The following diagram shows the complete delivery structure (including sample modules) with
dependencies. Note that the modules shown in red are labelled 'DO NOT USE' in the legend,
this means they are not intended to be reused in your Member State Specific Part.

EIDAS-SpecificCommunicationDefinition module contains Classes or xsd schemas that define
the Light Interface. The light interface connects the eIDAS-Node with the (demo) Member State
Specific Part.

Figure 4: Delivery structure with dependencies

The dependencies can be seen starting from the top; everything that is below the component is
a dependency, i.e. the eIDAS-Node is dependent on the full stack, the EIDAS-Metadata is only
dependent on Encryption, EIDAS-Commons and EIDAS-Light-Commons.

The recommended stack shown in blue is for Java developers and is realised mostly in Specific-
Communication-v2.0. This module provides all the necessary functions to communicate with an
eIDAS-Node. The provided Sample Specifics (Sample Specific Connector and Specific Proxy
Service) demonstrate how to use this API. It is also detailed in the following chapters. The API
can be redefined, in which case it must also be done in the Generic part.

The Jcache-Ignite-Specific-Communication (light blue) is supported and provided. However it is
also customisable, any shared map/cache/distributed database product can be used, that fulfils
certain technical requirements set by the Member State, and can be integrated with the eIDAS-
Node software. For example, enterprise WebLogic users may favour the use of Coherence, but
Redis or Memcached could equally be alternatives. This option is detailed in section 4.2.6 ─
Back-end communication with alternative to Ignite.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 15

4.2 Using the provided SpecificCommunication API

The provided EIDAS-SpecificCommunicationDefinition module offers tools for developing the
control and data flows. To use it, the Specific part must import the modules:

• EIDAS-Light-Commons; and

• EIDAS-Commons.

from the source delivery, or the binary built JAR files. Therefore, it must be a Java application
built for a supported JVM version (listed in the eIDAS-Node Installation and Configuration
Guide).

For a Standard Deployment, a possible component layout is shown below:

Figure 5: Standard Deployment ─ possible component layout

The diagram shows how the Specific component in the delivered sample demo chain works. In
the Specific Connector, there is a service layer that takes care of the necessary transformation
of protocols, while a servlet layer helps with the HTTP connections.

The diagram is simplified regarding the control flow; there is no direct connection between the
servlet layer, everything here is user-agent based. The actual control flow is visible in the
following sequence diagram:

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 16

Figure 6: Simplified control flow

The entities shown on the diagram are those referenced as 'reference token' and 'data object' in
the previous chapters, which are:

• LightToken is the 'referencing token', There is a unique id inside this token used as the
internal key of referenced data object (see section 4.4.1 ─ Implementing the
LightToken.

• LightRequest is the 'referenced data object' either a Java POJO or XML, containing all
the necessary information to compose an eIDAS SAML Request, or alternatively, all
business information that can be extracted from a standard eIDAS SAML Request (see
section 4.4.2 ─ Implementing LightRequest / LightResponse).

• LightResponse is the same as the LightRequest but represents an eIDAS SAML
Response (see section 4.4.2 ─ Implementing LightRequest / LightResponse).

The control flow is done by placing a LightToken in an HTTP Request and redirecting the user-
agent to the eIDAS Node Generic. The URLs for the redirects are shown in the following table.

Table 1: Generic redirect URLs

Action Relative context URL of
Generic

Specific Connector sends Request to the Connector /SpecificConnectorRequest

Specific Proxy Service sends Response to the Proxy
Service

/SpecificProxyServiceResponse

This URL can be changed by updating the web.xml in the EIDAS-Node-Connector and EIDAS-
Node-Proxy modules. The parameter (form input field name) for the LightToken is 'token', and
can be customised by renaming in eu.eidas.auth.commons.EidasParameterKeys.TOKEN.

When the Generic Node wants to initiate a communication to the Specific, it will do the same,
redirect the user-agent to configured Specific URLs, with the LightToken:

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 17

Table 2: Specific redirect URLs

Action Relative context URL of
Specific

Forward a Request from the eIDAS Network to Specific
Proxy Service

/ProxyServiceRequest

Forward a Response from the eIDAS Network to Specific
Connector

/ConnectorResponse

These required URLs can be configured differently by changing eu.eidas.node.
NodeSpecificViewNames.SPECIFIC_SP_RESPONSE and IDP_REQUEST fields.

4.2.1 Use of LightTokens

The LightToken itself is a BASE64 encoded message token. The format is detailed in section
4.4.1 ─ Implementing the LightToken.

LightTokens are automatically created by the API itself, when LightRequest/LightResponse data
is supplied to the background communication. The call returns with a BinaryLightObject, that is
an HTTP transport ready representation of the LightToken. The BinarylightToken has a digest
and is BASE64 encoded.

For the digest, algorithm(s) and password(s) must be supplied to the API as described in
section 4.4.1 ─ Implementing the LightToken.

Since the LightToken implementation is internal to the Specific–Generic communication, the
format can be changed, but the Generic Node must be compiled and built with the changed API.

4.2.2 Use of LightRequest/LightResponse

The main responsibility of the Specific (or the component responsible for invoking the Generic
provided interface) is the composition of LightRequest and LightResponse objects.

The following diagram shows the interfaces and implementing classes in the EIDAS-
LightCommons module.

Figure 7: Interfaces and implementing classes in EIDAS-LightCommons

When constructing such an object the Builder pattern needs to be used (for a sample, please
see the sample Specific or Generic code).

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 18

4.2.2.1 LightRequest
The LightRequest can be constructed by creating a LightRequest.Builder object using the
LightRequest.builder() method.

The fields should be populated as shown below.

Table 3: LightRequest properties

Field name Type Description

id String A unique id that is used internally to correlate with the
Response.

issuer String Not used in version 2.0. It is the issuer of the previous
hop, like the Connector provided for the Specific
Proxy. Please do not rely on this information.

citizenCountryCo
de

String Country code of the requesting citizen. In version 2.0
and prior, for Specific Proxy it is derived from the last
part of domain string of subject of the certificate used
for signing. ISO ALPHA-2 format.

levelsOfAssuranc
e

List List of
eu.eidas.auth.commons.light.ILevelOfAssurance
ILevelOfAssurance are represented with a type and a
value.Types can only be "notified" or "nonNotified",
default type if none is given is "notified".
Values defined in enumeration class
eu.eidas.auth.commons.protocol.eidas.
NotifiedLevelOfAssurance can be used for notified
Assurance levels.
Non-notified Assurance levels cannot have the same
URI prefix as the notified ones.

nameIdFormat String Optional string sent to the IdP regarding the identifier
format requested (if supported). Maps to
NameIDPolicy in eIDAS SAML. Values can be used
from
eu.eidas.auth.commons.protocol.impl.SamlNameIdFo
rmat enumeration.

providerName String Almost free format text identifier of the Service
Provider initiating the request. The text must fit into
an XML element value (all XML formatting elements
must be escaped).

spType String Optional element specifying the sector of the SP or
the Connector. Must not be used if the sector of the
Connector is set up in the Metadata. Possible values
are from
eu.eidas.auth.commons.protocol.eidas.SpType
enumeration.

spCountryCode String Optional element sent to the specific proxy, specifying
the country code of the relying party, SP. ISO
ALPHA-2 format.

requesterId String Optional element specifying the Id of the SP in the
Connector MS
The Connector validates if it is an URI and has max
length of 1024 characters.
Note that the requester ID has to be unique within the
MS but the Connector does not validate the

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 19

Field name Type Description

uniqueness of the requester ID or set/update its
value.

relayState String The Specific can use this value to propagate an
internal state or similar with the Request, that will be
returned with the Response (LightResponse).
However it is not recommended to use it for
correlation, or to expose internal state information,
especially as this field is protected only by the
transport layer.
This is a feature proper to SAML supported in all the
eIDAS specified bindings.

requestedAttribut
es

ImmutableAttributeM
ap

The list of requested attributes. It also supports
values. When populating, the Attributes from an
AttributeRegistry must be used. The AttributeRegistry
of the Specific and the Generic must be
synchronised. For detailed information on the
AttributeRegistry, please see Appendix A.1.

Once the fields are populated, the build() method produces the final object to be passed to the
interface.

4.2.2.2 LightResponse
The LightResponse is similar.to the LightRequest in terms of construction and usage.

The fields should be populated as shown in the following table.

Figure 8: LightResponse properties

Field name Type Description

id String A unique id.

inResponseToId String A unique id that is used internally to correlate with the
original LightRequest pair.

issuer String The name of the issuer of the Light Response.

consent String The consent of the principal of the LightResponse

ipAddress String The IP address of the user agent as seen on IdP. If
specified, the Proxy Service Node replaces it with an
address detected there, and uses it in
SubjectConfirmation of the eIDAS SAML Response.

levelOfAssurance String Assurance level. Values defined in enumeration class
eu.eidas.auth.commons.protocol.eidas.NotifiedLevelOf
Assurance can be used.

subjectNameIdFor
mat

String Format of the identifier attribute. Values can be used
from
eu.eidas.auth.commons.protocol.impl.SamlNameIdFor
mat enumeration.

subject String Subject of the Assertion for the eIDAS SAML
Response. It is recommended to use the (natural
person) unique identifier attribute value here that is
also provided in the attribute set. Theoretically, it can
be different, e.g. an email address.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 20

Field name Type Description

status Complex Complex element to provide status information from
IdP. Detailed below.

status.failure boolean Set this to true if the authentication was a failure. Also,
on the receiving side expect this is always true, if the
authentication is a failure.

status.statusCode String Enforced by the SAML2 specifications. Please refer to
the EIDASStatusCode enumeration for values. The
value must be in alignment with the "failure" flag.

status.subStatusC
ode

String Optional, defined by the SAML2 specifications. Please
refer to the EIDASSubStatusCode enumeration for
values.

status.statusMess
age

String An optional status message. It is transformed by the
Proxy Service Node, a generic error code is appended
if it is recognised as an error existing in the eIDAS-
Node Error Codes document. If not, then a "null – "
string is added as prefix.

relayState String According to the SAML specification, if there was a
value to this field in the Request, the Specific Proxy
Service must return it, but if it was empty, it can be
used to propagate new information to the receiving
party.

attributes ImmutableAttribute
Map

The list of attributes in the Assertion. It also supports
typed values. When populating, the Attributes from an
AttributeRegistry must be used. The AttributeRegistry
of the Specific and the Generic must be synchronised.
For detailed information on the AttributeRegistry,
please see Appendix A.1.

Please note that the relayState and inResponseToId need to be treated according to the
information the Specific Proxy Service received in the LightRequest. The relayState must be
populated from the relayState received in the Request (if it was not empty), and the
inResponseToId must be the same as the Id field from the LightRequest pair. This means an
implicit requirement to store the information in the Specific to make the correlation.

4.2.3 Service interface and implemented beans

To use the provided API, simply use the provided methods of interface
SpecificCommunicationService.

Figure 9: SpecificCommunicationService interface

In the Specific Connector, calls to the putRequest() and the getAndRemoveResponse()
methods are necessary, while the Specific Proxy Service must invoke getAndRemoveRequest()
and putResponse().

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 21

Placing a LightRequest/LightResponse with the 'put' operation results in a LightToken, that can
be used to pass the control flow.

The methods getAndRemove expect the LightToken from the HTTP Request (BASE64
encoded), and an AttributeDefinition list (from AttributeRegistry) in order to be able to
serialize/deserialize attributes to XML based on the identifier, the nameURI. The result is the
Light data object.

The implementation of this interface is based on the generic pattern used in the eIDAS-Node.
There are two classes, SpecificConnectorCommunicationServiceImpl and
SpecificProxyserviceCommunicationServiceImpl, that encapsulate all the LightToken encoding
operations (see Figure 10). They can be initialised by Spring or in a programmatic way, you can
find an example of the former in the sample demo Specific implementation.

Upon initialisation, the following parameters are set (by the constructor).

Table 4: LightToken operations

Field name Type Usage

lightToken[X]IssuerName String A custom identifier of the calling service is placed in the
LightToken (like EUPROXYSERVICE)

lightToken[X]Secret String A secret (passphrase), which is used to create the digest. This
must be shared between the communicating parties (i.e.
Specific Connector and Generic Connector).

lightToken[X]Algorithm String A digest algorithm for the LightToken, depending on the
capabilities of the underlying Java security MessageDigestSpi
implementation. At least SHA256 is recommended.

The [X] can be either Request or Response, so settings can differ for handling the different
directions.

Figure 10: SpecificCommunicationService

The sample demo Specific implementation uses Spring to instantiate these classes as Beans.
Configuration is via a configuration file through the application context, so it is reloadable.

4.2.4 Back-end communication with Ignite

The provided API uses Ignite by default to communicate between the Generic and Specific
parts, and to replicate eIDAS sessions between Nodes of the same type (Generic-Generic and
Specific-Specific) to achieve high availability. With this choice neither HTTP Session nor
enterprise bean replication are needed.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 22

The communication is via Shared Caches, with dedicated identifiers. These default files are
loaded by the Spring application context. These caches need to be declared in the Ignite
configuration. The following shows the default values used by the communication API.

Table 5: Ignite shared caches

Cache name Role

specificNodeConnectorRequestCache Stores Requests sent from Specific Connector to
Generic Connector

nodeSpecificConnectorResponseCache Stores Responses sent from Generic Connector to
Specific Connector.

nodeSpecificProxyserviceRequestCache Stores Requests sent from Generic Proxy Service
to Specific Proxy Service

specificNodeProxyserviceResponseCache Stores Responses sent from Specific Proxy Service
to Generic Proxy Service

Note that the cache names in Ignite configuration corresponding to the above caches are
respectively: specificNodeConnectorRequestCache, nodeSpecificProxyserviceRequestCache,
specificNodeProxyserviceResponseCache and nodeSpecificConnectorResponseCache.

All parameters are system dependent, mostly affecting the performance. Setting
expiryPolicyFactory property to limit the duration for the caches using Ignite configuration has
an extra security importance. This parameter should be set to a minimum value sufficient
enough for the user-agent to be redirected to the next component in the control flow. Below is
an example to set it for 5 minutes for the specificNodeConnectorRequestCache:

<bean class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name" value="specificNodeConnectorRequestCache" />

 <property name="atomicityMode" value="ATOMIC" />

 <property name="backups" value="1" />

 <property name="expiryPolicyFactory">

 <bean class="javax.cache.expiry.CreatedExpiryPolicy" factory-

method="factoryOf">

 <constructor-arg>

 <bean class="javax.cache.expiry.Duration">

 <constructor-arg value="MINUTES" />

 <constructor-arg value="5" />

 </bean>

 </constructor-arg>

 </bean>

 </property>

</bean>

To override the default values the following entries must be defined e.g in
specificCommunicationDefinitionConnector.xml

<entry

key="specific.node.connector.request.cache.name">specificNodeConnectorRequ

estCacheExternal</entry>

<entry

key="node.specific.connector.response.cache.name">nodeSpecificConnectorRes

ponseCacheExternal</entry>

and in specificCommunicationDefinitionProxyService.xml

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 23

<entry

key="node.specific.proxyservice.request.cache.name">nodeSpecificProxyservi

ceRequestCacheExternal</entry>

<entry

key="specific.node.proxyservice.response.cache.name">specificNodeProxyserv

iceResponseCacheExternal</entry>

It is also necessary to update the cache names in igniteSpecificCommunication.xml so that
those match the external ones. For example, to change the cache name related to
specificNodeConnectorRequestCache one needs to modify the property name as follows:

<bean class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name"

value="specificNodeConnectorRequestCacheExternal"/>

 <property name="atomicityMode" value="ATOMIC"/>

 <property name="backups" value="1"/>

 <property name="expiryPolicyFactory" ref="7_minutes_duration"/>

</bean>

Note that the default values are declared in files
specificCommunicationDefinitionConnector.xml and
specificCommunicationDefinitionProxyService.xml in EIDAS-
SpecificCommunicationDefinition/src/main/resources/default.

Please go to Ignite documentation for more details.

This implementation limits the possibility for a takeover of the flow by a third party (even though
other security countermeasures and mechanisms applied to eIDAS authentication will prevent it
happening).

Physical communication between the shared maps is via XML. This allows integration with the
Generic part using your own implementation rather than the provided API, or even to use
technology other than Java. See section 4.4 ─ Integrating the provided Generic with custom
implementation of communication for details.

4.2.5 Back-end communication with an alternative to Ignite

It is possible to replace Ignite with an alternative, like Oracle Coherence, Redis, etc. without
impacting the SpecificCommunicationService. In this case, the API needs no modification, and
instead of using ConcurrentCacheService implementation from EIDAS-Commons, another
implementation can be packaged. This must implement the CommunicationCache interface,
and for the internal session correlation, a ConcurrentCacheService interface. The hard-coded
identifier of Maps must be retained.

4.2.6 Overriding default communication cache names

In advanced configurations, it is possible to override the default communication cache names
for Ignite caches. The names can be defined in
specificCommunicationDefinitionConnector.xml and in
specificCommunicationDefinitionProxyService.xml by using the configuration keys as
outlined in the tables below.

In specificCommunicationDefinitionConnector.xml

Key Description

specific.node.connector.request.cache.name Name for cache that stores Requests sent from
Specific Connector to Generic Connector

node.specific.connector.response.cache.name Name for cache that Stores Responses sent
from Generic Connector to Specific Connector

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 24

In specificCommunicationDefinitionProxyService.xml

Key Description

node.specific.proxyservice.request.cache.name Name for cache that stores Requests sent
from Generic Proxy Service to Specific Proxy
Service

specific.node.proxyservice.response.cache.name Name for cache that stores Responses sent
from Specific Proxy Service to Generic Proxy
Service

4.2.7 Back-end communication in Monolithic Deployment

By default the Monolithic Deployment does not provide a distributed map, only an in-memory
Guava cache, so high availability can be achieved by using advanced load balancing, for
example sticky sessions. This is a build-time restriction only, so it is possible to unlock the
shared map.

The following diagram shows the basic component layout for the Monolithic Deployment.

Figure 11: Basic component layout for Monolithic Deployment

4.2.8 Incoming Light Request Validation

The incoming Light Request from MS specific is currently validated for:

Key Description

incoming.lightRequest.max.number.ch
aracters

Maximum size in characters for incoming Light Request
The default is 65535 External Configuration File
/specificConnector/specificCommunicationDefinitionCo
nnector.xml

4.2.9 Incoming Light Response Validation

The incoming Light Response from MS specific is currently validated for:

Key Description

incoming.lightRequest.max.number.character
s

Maximum size in characters for incoming Light
Request The default is 65535 External
Configuration File /specificConnector/

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 25

Key Description

specificCommunicationDefinitionProxyservice.x
ml

4.3 Re-implementing SpecificCommunication

It is possible to re-implement the EIDAS-SpecificCommunicationDefinition, and use a very
different integration approach/pattern. It means rewriting the parts responsible for the data flow
and/or the control flow.

The best way to do this is by retaining the SpecificCommunicationService interface, so that
there is less impact to the Generic part (most likely the application context-driven injections
need to be adjusted).

4.4 Integrating the provided Generic with custom
implementation of communication

Those who prefer not to use the provided API in their Specific solution can integrate with the
Generic Node by implementing the control and data flows, fulfilling the same requirements given
by the eID API implementation. The pattern, which is the same through the whole
communication process, is shown on the following diagram.

Figure 12: Integrating the provided Generic with custom implementation of
communication

4.4.1 Implementing the LightToken

The basic concepts of LightTokens are described in section 4.2.1 ─ Use of LightTokens, and
the communication is described in section 4.2 ─ Using the provided SpecificCommunication
API. The LightToken needs to be placed in the 'token' parameter of the HTTP Request.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 26

The physical form is composed of the following fields.

Table 7: LightToken format

Field Description

Issuer
name

A simple text string that helps identify (debug) which component is sending the
redirect (e.g. EIDASPROXY)

ID A unique identifier. This identifier is used to reference the real data object
(LightRequest/LightResponse) in the backend communication. It must be unique
within the eviction period defined for the data object.

Creation
timestamp

A timestamp showing when the LightToken was created. Together with the ID it
makes the token unique and prevents reuse, it also provides a first line of check
when discarding an expired request. It also helps debugging. The format is: yyyy-
MM-dd HH:mm:ss SSS (see https://www.joda.org/joda-
time/apidocs/org/joda/time/format/DateTimeFormat.html).

Digest This is a custom digest encoded in BASE64. It guarantees a minimum level of
integrity and a minimum level of assurance that the token has originated from a
trusted component. It is there to help the first-line detection and discarding of
requests in a denial of service attack.

These four fields must be concatenated with a vertical bar character ('|', ASCII 124) without any
trailing spaces, and encoded in BASE64.

Example:

specificCommunicationDefinitionConnectorRequest|852a64c0-8ac1-445f-b0e1-
992ada493033|2017-12-11 14:12:05
148|7M8p+uP8CKXuMi2IqSda1tg452WlRvcOSwu0dcisSYE=

In BASE64 encoded:

c3BlY2lmaWNDb21tdW5pY2F0aW9uRGVmaW5pdGlvbkNvbm5lY3RvclJlcXVlc3R8ODUy
YTY0YzAtOGFjMS00NDVmLWIwZTEtOTkyYWRhNDkzMDMzfDIwMTctMTItMTEgMTQ6MT
I6MDUgMTQ4fDdNOHArdVA4Q0tYdU1pMklxU2RhMXRnNDUyV2xSdmNPU3d1MGRjaXN
TWUU9

To create the message digest, the fields must be concatenated together into the following
sequence: 2, 1 then 3 (id, issuer, timestamp) with the vertical bar separating. Append with
another vertical bar and finally the secret shared between the communicating parties (i.e.,
Specific Connector and Generic Connector) (see lightToken[X]Secret in Table 4. The digest is
calculated from the binary representation of this string.

Example before calculating the digest:

852a64c0-8ac1-445f-b0e1-
992ada493033|specificCommunicationDefinitionConnectorRequest|2017-12-11 14:12:05
148|mySecretConnectorRequest

Finally, the secret needs to be replaced with the calculated digest value, in a BASE64 encoded
form, so it results in the first example. Then the whole token must be encoded in BASE64
before going with the HTTP request.

By default, the token is limited to 1024 bytes, which can be changed in
LightTokenEncoder.MAX_TOKEN_SIZE.

When receiving a LightToken, it must be processed in the reverse way to how it was
constructed.

First, there are some validations & checks to be performed:

• Compare the actual size to a reasonable maximum (maximum not defined, at your
discretion).

https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html+
https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html+

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 27

• Decode from BASE64.

• Split into a number of parts (with a limit of four possible parts).

• Using the parts, verify the digest.

• Sanitise the parts, and validate formats.

• Optionally check the timestamp for expiration.

At the end of this process, the ID to recover the Light data object can be used.

4.4.2 Implementing LightRequest / LightResponse

The provided eIDAS-Node uses XML for background communication. The custom Specific
implementation should compose and parse LightRequest and LightResponse objects according
to the following schema definitions. The resulting xml must include a (default) namespace in the
root node (xmlns=”http://cef.eidas.eu/LightRequest” or
xmlns=”http://cef.eidas.eu/LightResponse”).

4.4.2.1 The XML LightRequest
The following figure shows a simplified schema diagram representing the schema for
LightRequest XMLs.

http://cef.eidas.eu/LightRequest
http://cef.eidas.eu/LightResponse

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 28

Figure 13: XML LightRequest schema:

The following schema definition can be found in Appendix A.2.1 (there is a copy of this schema
files in EIDAS-SpecificCommunicationDefinition/src/main/resources/xsds folder of the source
code delivery).

Usually, the Request does not contain any attribute values, just references for the requested
ones. In case it is needed, please read the next section where the use of values is described
with the LightResponse.

The XML element requestedAttributes is oversimplified in the schema document. The XSD
accepts generic xs:string typed values, however – in real life – the marshalling logic expects
types according to the XML type definitions defined to the AttributeRegistry. The mapping is
done through the AttributeRegistry with the nameUri identifier, in other words, the name of the
attribute.

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 29

When the AttributeRegistry is referencing a certain type, that type must be supplied in the value
elements. Since the current implementation is using the same marshallers/unmarshallers for
constructing SAML messages and processing Light XML objects, the value format is the same
as in the eIDAS SAML Attribute Profile v1.1_2 Technical specification.

4.4.2.2 The XML LightResponse
The following schema diagram shows the simplified XML LightResponse object:

Figure 14: Simplified XML LightResponse schema

The schema file is included in the folder EIDAS-
SpecificCommunicationDefinition/src/test/resources of the source delivery, also available in
Appendix A.2.2.

The 'attributes' element (also the requestedAttributes in the LightRequest) is not fully defined in
the XSD.

When an attribute needs to be presented to this list in the Light object, there is a sequence
which must be followed.

First, the 'definition' element should be created. The text value content of this element must
exactly match one nameUri from the AttributeRegistry (either from the normal eIDAS Profile or
from the "additional attributes"). For example:

<definition>http://eidas.europa.eu/attributes/naturalperson/PersonIdentifi

er</definition>

The CommunicationDefinition uses this element to identify the appropriate AttributeRegistry
element, including the marshaller/unmarshaller methods. This also means, that any value
appended to the list MUST follow the declared XMLType and MUST meet with the format
expected by the serialisation.

The PersonIdentifier for example is serialized with the LiteralStringAttributeValueMarshaller
class, so it can be a free format String, such as:

<value>Vivaldi-987654321</value>

So the whole attribute element would look as follows:

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 30

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/CurrentGivenNa

me</definition>

 <value>Antonio</value>

 <value>Lucio</value>

 <value>Vivaldi</value>

</attribute>

The supported built-in types of EIDAS-Commons are described in the following sections. These
can be extended if necessary.

4.4.2.3 DateTimeAttribute
This type of attribute value is in the format:

YYYY + "-" + MM + "-" + DD (as defined for xsd:date)

Example:

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/DateOfBirth</d

efinition>

 <value>2018-02-28</value>

</attribute>

4.4.2.4 BooleanAttribute
Boolean values need to follow a simple choice of string values:
"true" or "false".

Not used in standard eIDAS Profile.

4.4.2.5 IntegerAttribute
This element supports a signed Integer between Integer.MIN_VALUE and
Integer.MAX_VALUE.

Not used in standard eIDAS Profile.

4.4.2.6 LiteralStringAttribute
The most common generic String type contains a simple string.

4.4.2.7 GenderAttribute
This attribute can have one of three values:

"Male", "Female" and "Unspecified"

Example:

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/Gender</defini

tion>

 <value>Male</value>

</attribute>

4.4.2.8 PostalAddressAttribute
This is the most complex attribute value with several subfields. The structure follows the Core
ISA Vocabulary definition, however when it gets serialized, to maintain a flat format it is
encoded in BASE64.

In the unencoded format, the PostalAddress XML fragment should look like:

eIDAS-Node National IdP and SP Integration Guide v2.7

Integration Possibilities – 31

<AddressId>http://address.example/id/be/eh11aa</AddressId>

<PoBox>1234</PoBox>

<LocatorDesignator>28</LocatorDesignator>

<LocatorName>DIGIT building</LocatorName>

<CvAddressArea>Etterbeek</CvAddressArea>

<Thoroughfare>Rue Belliard</Thoroughfare>

<PostName>ETTERBEEK CHASSE</PostName>

<AdminUnitFirstLine>BE</AdminUnitFirstLine>

<AdminUnitSecondLine>ETTERBEEK</AdminUnitSecondLine>

<PostCode>1040</PostCode>

<FullCvaddress>Rue Belliard 28\nBE-1040 Etterbeek</FullCvaddress>

For the description of the fields, please consult the Core ISA Vocabulary. It may be sufficient to
use only the fullCvaddress.

Encoded, and in final form, it would look as follows:

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/CurrentAddress

</definition>

<value>PEFkZHJlc3NJZD5odHRwOi8vYWRkcmVzcy5leGFtcGxlL2lkL2JlL2VoMTFhYTwvQWR

kcmVzc0lkPg0KPFBvQm94PjEyMzQ8L1BvQm94ID4NCjxMb2NhdG9yRGVzaWduYXRvcj4yODwvT

G9jYXRvckRlc2lnbmF0b3I+DQo8TG9jYXRvck5hbWU+RElHSVQgYnVpbGRpbmc8L0xvY2F0b3J

OYW1lPg0KPEN2QWRkcmVzc0FyZWE+RXR0ZXJiZWVrPC9DdkFkZHJlc3NBcmVhPg0KPFRob3Jvd

WdoZmFyZT5SdWUgQmVsbGlhcmQ8L1Rob3JvdWdoZmFyZT4NCjxQb3N0TmFtZT5FVFRFUkJFRUs

gQ0hBU1NFPC9Qb3N0TmFtZT4NCjxBZG1pblVuaXRGaXJzdExpbmU+QkU8L0FkbWluVW5pdEZpc

nN0TGluZT4NCjxBZG1pblVuaXRTZWNvbmRMaW5lPkVUVEVSQkVFSzwvQWRtaW5Vbml0U2Vjb25

kTGluZT4NCjxQb3N0Q29kZT4xMDQwPC9Qb3N0Q29kZT4NCjxGdWxsQ3ZhZGRyZXNzPlJ1ZSBCZ

WxsaWFyZCAyOFxuQkUtMTA0MCBFdHRlcmJlZWs8L0Z1bGxDdmFkZHJlc3M+

 </value>

</attribute>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 32

5 Appendix A: Diagrams and Schemas

5.1 Attribute Registry

AttributeRegistry is a catalogue of attributes defined for the eIDAS-Node. The attribute registry
is implemented in the class eu.eidas.auth.commons.attribute.AttributeRegistry. An attribute
registry can be instantiated programmatically with the AttributeRegistry class or loaded from a
file.

The attribute registry file is composed of attribute definitions. They represent the
eu.eidas.auth.commons.attribute.AttributeDefinition class.

An attribute definition is composed of the following properties:

• NameUri : [mandatory]: the name URI of the attribute (full name and must be a valid
URI).

• FriendlyName : [mandatory]: the friendly name of the attribute (short name);

• PersonType : [mandatory]: either NaturalPerson, LegalPerson,
RepresentativeNaturalPerson or RepresentativeLegalPerson.

• Required : [optional]: whether the attribute is required by the specification (and is part
of the minimal data set which must be requested).

• TransliterationMandatory : [optional]: whether the attribute values must be
transliterated if provided in non-LatinScript variants.

• UniqueIdentifier : [optional]: whether the attribute is a unique identifier of the person
(at least one unique identifier attribute must be present in authentication responses).

• XmlType.NamespaceUri : [mandatory]: the XML namespace URI for the attribute
values, for example: http://www.w3.org/2001/XMLSchema for an XML Schema string.

• XmlType.LocalPart : [mandatory]: the name of the XML type for the attributes values,
for example: 'string' for an XML Schema string.

• XmlType.NamespacePrefix : [mandatory]: the name of the XML namespace prefix for
the attributes values, for example: 'xs' for an XML Schema string.

• AttributeValueMarshaller : [mandatory]: the name of a class available in the classpath
which implements the eu.eidas.auth.commons.attribute.AttributeValueMarshaller
interface.

Each attribute definition in the properties file is assigned a unique ID followed by a dot (.) which
allows the parser to associate properties to one given attribute definition. The unique ID can be
any string not containing a period. A convention can be to use numbers as unique IDs as in the
example above.

All properties used by the parser can be found in
eu.eidas.auth.commons.attribute.AttributeSetPropertiesConverter.Suffix.

5.1.1 Hardcoded attributes

In the eIDAS-Node, the eIDAS standard attributes are hard coded in classes
NaturalPersonSpec, LegalPersonSpec, RepresentativeNaturalPersonSpec and
RepresentativeLegalPersonSpec. The reasons for hard coding is that they change only when
the Technical Specifications are changed, and strong reference of the attributes are needed to
carry out eIDAS-based validations. Beside this hard-wired specification, there are also XML
schema definitions saml_eidas_natural_person.xsd, saml_eidas_legal_person.xsd,
saml_eidas_representative_natural_person.xsd and
saml_eidas_representative_legal_person.xsd in SAMLEngine common resources folder, loaded
by SAML bootstrap and used only to validate not encrypted response assertions (thus may
never be used in production environment).

http://www.w3.org/2001/XMLSchema

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 33

There is another set of attribute definitions that can be configured by specifying
additionalAttributeRegistryFile in SamlEngine.xml - as a general xml definition for so called
'additional attributes'. By default, the package includes a saml-engine-additional-attributes.xml
example file configured for the specific ProtocolEngine instance.

5.1.2 Class-related attribute registries

The Demo Specific and Demo SP / IdP use file/memory based registries instead of hard coded.

Figure 15: Classes related to basic attribute registry

The diagram above shows the classes related to the basic attribute registry. The
AttributeRegistries class acts like a static factory for creating registries. Depending on which
method is called, it provides an AttributeRegistry encapsulating a MemoryAttributeDefinitionDao
(method 'of') or a FileAttributeDefinitionDao (fromFile), both extending the AttributeDefinitionDao
interface. Both are based on SingletonAccessors of ImmutableSortedSets containing the actual
AttributeDefinitions.

AttributeRegistry class also provides an interface called AttributeDefinitionFilter, that enables
quick filtering of received attributes based on anonymous classes. The example legal MDS filter
from EidasProtocolProcessor:

public static final AttributeRegistry.AttributeDefinitionFilter

MANDATORY_LEGAL_FILTER = new AttributeRegistry.AttributeDefinitionFilter()

{

 @Override

 public boolean accept(@Nonnull AttributeDefinition<?>

attributeDefinition) {

 return attributeDefinition.isRequired() &&

attributeDefinition.getPersonType() == PersonType.LEGAL_PERSON;

 }

};

An AttributeRegistry contains definitions only, where values are also needed
ImmutableAttributeMap are being used. ImmutableAttributeMap is thread-safe, serializable and
immutable - instantiated by builder pattern - follows the heterogeneous container pattern. When
built, internally contains ImmutableValueMap, but basically a set of AttributeDefinitions with
associated AttributeValue(s).

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 34

Figure 16: Attribute registry values

The values are typed, therefore can contain complex elements like
PostalAddressAttributeValue. The generic AbstractAttributeValue is responsible to hold any
information on SAML attribute level (only transliteration by now).

Since the values are needed to be converted between user types and XML representation
eligible for SAML Assertion, there are AttributeValueMarshallers defined for each type:

Figure 17: Attribute registry value marshalling

The marshaller interface definition is actually a part of the attribute definition.

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 35

5.2 XSD Schemas for Light Objects

5.2.1 LightRequest schema

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 36

<?xml version="1.0" encoding="utf-8"?>

<!--

 ~ Copyright (c) 2020 by European Commission

 ~

 ~ Licensed under the EUPL, Version 1.2 or - as soon they will be

 ~ approved by the European Commission - subsequent versions of the

 ~ EUPL (the "Licence");

 ~ You may not use this work except in compliance with the Licence.

 ~ You may obtain a copy of the Licence at:

 ~ https://joinup.ec.europa.eu/page/eupl-text-11-12

 ~

 ~ Unless required by applicable law or agreed to in writing, software

 ~ distributed under the Licence is distributed on an "AS IS" basis,

 ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 ~ implied.

 ~ See the Licence for the specific language governing permissions and

 ~ limitations under the Licence.

 -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://cef.eidas.eu/LightRequest" elementFormDefault

="qualified" version="1.2">

 <xs:element name="lightRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="citizenCountryCode" minOccurs="1" maxOccurs="1" type

="xs:string">

 <xs:annotation>

 <xs:documentation xml:lang="en">Country code of the citizen, ie.: se

nding country code in

 3166-1-alpha-2 format

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="id" type="xs:string" minOccurs="1" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Internal unique ID what will be used

 to correlate the response

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="issuer" type="xs:string">

 <xs:annotation>

 <xs:documentation xml:lang="en">Issuer of the LightRequest or origin

ating SP - not used</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="levelOfAssurance" minOccurs="1" maxOccurs="unbounded

">

 <xs:annotation>

 <xs:documentation xml:lang="en">Level of assurance required to fulfi

ll the request</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:anyURI">

 <xs:attribute name="type" default="notified">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="notified">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Default value, only one notified level of assurance should b

e

 given and should have a valid value (regarding specs).

 </xs:documentation>

 </xs:annotation>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 37

 </xs:enumeration>

 <xs:enumeration value="nonNotified">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Non notified levels of Assurance, the prefix of notified

 level of assurance cannot be used for these levels of assura

nce.

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="nameIdFormat" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional instruction to the IdP what

 identifier format is requested (if supported).</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:X509SubjectName"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:WindowsDomainQualifiedName"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:kerberos"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:encrypted"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="providerName" type="xs:string" minOccurs="0" maxOccu

rs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Free format text identifier of servi

ce provider initiating the request.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="spType" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional element specifying the sect

or of the SP or the

 Connector. Must not be used if the sector of the Connector is set u

p in the Metadata.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="public"/>

 <xs:enumeration value="private"/>

 </xs:restriction>

 </xs:simpleType>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 38

 </xs:element>

 <xs:element name="spCountryCode" minOccurs="0" maxOccurs="1" type="xs:

string">

 <xs:annotation>

 <xs:documentation xml:lang="en">Country code of the SP, ie.: sending

 country code in

 3166-1-alpha-2 format

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="requesterId" type="xs:anyURI" minOccurs="0" maxOccur

s="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional element specifying the Id o

f the SP. Must be unique

 within the Connector MemberState.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="relayState" type="xs:string" minOccurs="0" maxOccurs

="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional state information expected

to be returned with the LightResponse pair.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="requestedAttributes">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="attribute" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="definition" type="xs:string" minOccurs="1" max

Occurs="1"/>

 <xs:element name="value" type="xs:string" minOccurs="0" maxOccur

s="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The previous schema is a copy of the XSD schema which can be found in the EIDAS-
SpecificCommunicationDefinition/src/main/resources/xsds folder

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 39

5.2.2 Light Response schema

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 40

<?xml version="1.0" encoding="utf-8"?>

<!--

 ~ Copyright (c) 2020 by European Commission

 ~

 ~ Licensed under the EUPL, Version 1.2 or - as soon they will be

 ~ approved by the European Commission - subsequent versions of the

 ~ EUPL (the "Licence");

 ~ You may not use this work except in compliance with the Licence.

 ~ You may obtain a copy of the Licence at:

 ~ https://joinup.ec.europa.eu/page/eupl-text-11-12

 ~

 ~ Unless required by applicable law or agreed to in writing, software

 ~ distributed under the Licence is distributed on an "AS IS" basis,

 ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 ~ implied.

 ~ See the Licence for the specific language governing permissions and

 ~ limitations under the Licence.

 -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="ht

tp://cef.eidas.eu/LightResponse"

 elementFormDefault="qualified" version="1.2">

 <xs:element name="lightResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="id" type="xs:string" minOccurs="1" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Internal unique ID</xs:documentation

>

 </xs:annotation>

 </xs:element>

 <xs:element name="inResponseToId" type="xs:string" minOccurs="1" maxOc

curs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">The original unique ID of the Reques

t this Response is issued for</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="consent" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">The consent of the principal.</xs:do

cumentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:anyURI">

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:unspecif

ied"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:obtained

"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:prior"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:current-

implicit"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:current-

explicit"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:unavaila

ble"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:consent:inapplic

able"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="issuer" type="xs:string" minOccurs="1" maxOccurs="1"

>

 <xs:annotation>

 <xs:documentation xml:lang="en">Issuer of the LightRequest or origin

ating SP - not used</xs:documentation>

 </xs:annotation>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 41

 </xs:element>

 <xs:element name="ipAddress" type="xs:string" minOccurs="0" maxOccurs=

"1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional IP address of the user agen

t as seen on IdP</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="relayState" type="xs:string" minOccurs="0" maxOccurs

="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Optional state information to return

 to the Consumer.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="subject" type="xs:string" minOccurs="0" maxOccurs="1

">

 <xs:annotation>

 <xs:documentation xml:lang="en">Subject of the Assertion for the eID

AS SAML Response.</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="subjectNameIdFormat" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Format of the identifier attribute.<

/xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:transient"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:X509SubjectName"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:1.1:nameid-

format:WindowsDomainQualifiedName"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:kerberos"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:entity"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:nameid-

format:encrypted"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="levelOfAssurance" type="xs:anyURI" minOccurs="0" max

Occurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Level of assurance required to fulfill the request

 Either notified level of assurance matching the following:

 <xs:restriction base="xs:string">

 <xs:enumeration value="http://eidas.europa.eu/LoA/low"/>

 <xs:enumeration value="http://eidas.europa.eu/LoA/substantial"/>

 <xs:enumeration value="http://eidas.europa.eu/LoA/high"/>

 </xs:restriction>

 Or non notified level of assurance being an URI having a different

prefix than

 http://eidas.europa.eu/LoA

 </xs:documentation>

 </xs:annotation>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 42

 </xs:element>

 <xs:element name="status" minOccurs="1" maxOccurs="1">

 <xs:annotation>

 <xs:documentation xml:lang="en">Complex element to provide status in

formation from IdP</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="failure" type="xs:boolean" minOccurs="0" maxOccur

s="1">

 <xs:annotation>

 <xs:documentation>Value "true" represents that the authentication

 request is failed</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="statusCode" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation>SAML2 defined status code</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Succes

s">

 <xs:annotation>

 <xs:documentation>Authentication success</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Reques

ter">

 <xs:annotation>

 <xs:documentation>Authentication failure: the requester did so

mething wrong</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Respon

der">

 <xs:annotation>

 <xs:documentation>Authentication failure: error at the the res

ponder side</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Versio

nMismatch">

 <xs:annotation>

 <xs:documentation>Authentication failure: The responder could

not process the request because the request message's version was incorrec

t.</xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="subStatusCode" minOccurs="0" maxOccurs="1">

 <xs:annotation>

 <xs:documentation>Optional SAML2 defined sub status code used in

case of failure</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:AuthnF

ailed"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Invali

dAttrNameOrValue"/>

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Invali

dNameIDPolicy"/>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix A: Diagrams and Schemas – 43

 <xs:enumeration value="urn:oasis:names:tc:SAML:2.0:status:Reques

tDenied"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="statusMessage" type="xs:string" minOccurs="0" max

Occurs="1">

 <xs:annotation>

 <xs:documentation>An optional status message</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="attributes">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="attribute" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="definition" type="xs:string" minOccurs="1" max

Occurs="1"/>

 <xs:element name="value" type="xs:string" maxOccurs="unbounded"/

>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The previous schema is a copy of the XSD schema which can be found in the EIDAS-
SpecificCommunicationDefinition/src/main/resources/xsds/ folder

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix B: Examples – 44

6 Appendix B: Examples

6.1 LightToken QED

In section demonstrates the generation of the LightToken in a Linux environment as an
example.

Step 0 - Starting from the BASE64 encoded string in section in section 4.4.1

c3BlY2lmaWNDb21tdW5pY2F0aW9uRGVmaW5pdGlvbkNvbm5lY3RvclJlcXVlc3R8ODUyYTY0
YzAtOGFjMS00NDVmLWIwZTEtOTkyYWRhNDkzMDMzfDIwMTctMTItMTEgMTQ6MTI6MDUg
MTQ4fDdNOHArdVA4Q0tYdU1pMklxU2RhMXRnNDUyV2xSdmNPU3d1MGRjaXNTWUU9

Step 1 - Decode it in BASE64

$ echo

c3BlY2lmaWNDb21tdW5pY2F0aW9uRGVmaW5pdGlvbkNvbm5lY3RvclJlcXVlc3R8ODUyYTY0Yz

AtOGFjMS00NDVmLWIwZTEtOTkyYWRhNDkzMDMzfDIwMTctMTItMTEgMTQ6MTI6MDUgMTQ4fDdN

OHArdVA4Q0tYdU1pMklxU2RhMXRnNDUyV2xSdmNPU3d1MGRjaXNTWUU9 | base64 --decode

specificCommunicationDefinitionConnectorRequest|852a64c0-8ac1-445f-b0e1-

992ada493033|2017-12-11 14:12:05

148|7M8p+uP8CKXuMi2IqSda1tg452WlRvcOSwu0dcisSYE=

Step 2 - Create String to be used for calculating digest from id|issuer|timestamp|secret

852a64c0-8ac1-445f-b0e1-
992ada493033|specificCommunicationDefinitionConnectorRequest|2017-12-11 14:12:05
148|mySecretConnectorRequest

Step 3 - Calculate digest and Base64 encode it

$ printf %s "852a64c0-8ac1-445f-b0e1-

992ada493033|specificCommunicationDefinitionConnectorRequest|2017-12-11

14:12:05 148|mySecretConnectorRequest" | openssl dgst -sha256 -binary |

base64

result:

7M8p+uP8CKXuMi2IqSda1tg452WlRvcOSwu0dcisSYE=

Step 4 - Concatenate issuer|id|timestamp|digest

specificCommunicationDefinitionConnectorRequest|852a64c0-8ac1-445f-b0e1-
992ada493033|2017-12-11 14:12:05
148|7M8p+uP8CKXuMi2IqSda1tg452WlRvcOSwu0dcisSYE=

Step 5 - BASE64 encode it

$ printf %s "specificCommunicationDefinitionConnectorRequest|852a64c0-

8ac1-445f-b0e1-992ada493033|2017-12-11 14:12:05

148|7M8p+uP8CKXuMi2IqSda1tg452WlRvcOSwu0dcisSYE=" | base64 -w 1024

the result will be the same as the one in Step 0.

6.2 Python's Ignite Thin client Specific Connector POC

This section presents an example of a working POC for implementing a Thin Client that sets a
LightRequest in the SpecificConnector to Connector Communication Cache and creates and
sends the corresponding BLT to the Connector. The code is written in Python, one of the

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix B: Examples – 45

possibilities for Ignite Thin Clients. There is no special reason for this choice, other possibilities
could have been used.

The main objective for this POC is to facilitate and show another possibility of integration with
the eIDAS Node, through a simple example, than the ones already presented in the Demo
Specific Connector.

Note that this is not production-ready code and should not be used as is. Although it can be
used as a basis for developing production-ready code, adequate security measures should be
also added.

To allow the use of Ignite Thin Clients, it is necessary to enable this possibility. Therefore, in
igniteSpecificCommunication.xml file as a child of the following bean:

<bean id="igniteSpecificCommunication.cfg"

class="org.apache.ignite.configuration.IgniteConfiguration">

the following property needs to be added,

<!-- Thin client connection configuration. -->

<property name="clientConnectorConfiguration">

 <bean

class="org.apache.ignite.configuration.ClientConnectorConfiguration">

 <property name="host" value="127.0.0.1"/>

 <property name="port" value="10900"/>

 <property name="portRange" value="1"/>

 </bean>

</property>

After this step, the Python code that sets a LightRequest in the communication cache and that
creates and sends the corresponding Binary Light Token is as follows:

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix B: Examples – 46

Copyright (c) 2019 by European Commission

Licensed under the EUPL, Version 1.2 or - as soon they will be

approved by the European Commission - subsequent versions of the

EUPL (the "Licence");

You may not use this work except in compliance with the Licence.

You may obtain a copy of the Licence at:

https://joinup.ec.europa.eu/page/eupl-text-11-12

Unless required by applicable law or agreed to in writing, software

distributed under the Licence is distributed on an "AS IS" basis,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.

See the Licence for the specific language governing permissions and

limitations under the Licence

from pyignite import Client

import datetime

import requests

import base64

import hashlib

import uuid

#Example to set a LightRequest in the SpecificConnector to Connector Cache

and

to create and send the corresponding BLT to the Connector.

id = str(uuid.uuid4())

print(id)

lightRequest = """<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<lightRequest xmlns="http://cef.eidas.eu/LightRequest">

<citizenCountryCode>CA</citizenCountryCode>

<id>""" + id + """"</id>

<issuer>pythonSpecificConnectorCA</issuer>

<levelOfAssurance>http://eidas.europa.eu/LoA/low</levelOfAssurance>

<nameIdFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified</nameIdFormat>

<providerName>DEMO-SP-CA</providerName>

<spType>public</spType>

<requestedAttributes>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/D-2012-17-

EUIdentifier</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/EORI</definition

>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/LEI</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/LegalName</defin

ition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/LegalPersonAddre

ss</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/LegalPersonIdent

ifier</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/SEED</definition

>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/SIC</definition>

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix B: Examples – 47

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/TaxReference</de

finition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/VATRegistrationN

umber</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/BirthName</def

inition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/CurrentAddress

</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/CurrentFamilyN

ame</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/CurrentGivenNa

me</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/DateOfBirth</d

efinition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/Gender</defini

tion>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/PersonIdentifi

er</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/PlaceOfBirth</

definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/legalperson/LegalAdditionalA

ttribute</definition>

</attribute>

<attribute>

<definition>http://eidas.europa.eu/attributes/naturalperson/AdditionalAttr

ibute</definition>

</attribute>

</requestedAttributes>

</lightRequest>"""

#Connect to cache

client = Client()

client.connect('127.0.0.1', 10900)

specificNodeConnectorRequestCache =

client.get_cache('specificNodeConnectorRequestCache')

#Put Light Request in cache

specificNodeConnectorRequestCache.put(id, lightRequest)

issuer = "specificCommunicationDefinitionConnectorRequest"

now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S %f")[:-3]

print(now)

timestamp = str(now)

mySecretConnectorRequest = "mySecretConnectorRequest"

#calculation of digest id|issuer|timestamp|secret

bltForDigest = id + "|" + issuer + "|" + timestamp + "|" +

mySecretConnectorRequest

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix B: Examples – 48

print(bltForDigest)

digest = hashlib.sha256(bltForDigest.encode())

print (digest.digest())

digestBase64 = base64.b64encode(digest.digest())

print(digestBase64)

BLT to be sent: issuer|id|timestamp|digest

blt = issuer + "|" + id + "|" + timestamp + "|" +

digestBase64.decode("utf-8")

print(blt)

#BLT in Base64

bltBase64 = base64.b64encode(blt.encode())

print(bltBase64)

#send of post with BL

connectorEndpoint =

'http://localhost:8080/EidasNodeConnector/SpecificConnectorRequest'

payload = {'token' : bltBase64}

response = requests.post(connectorEndpoint, payload)

print(response.text)

More information can be found at the following URLs:

• https://apacheignite.readme.io/docs/binary-client-protocol

• https://apacheignite.readme.io/docs/python-thin-client

6.3 Ignite's Rest API

As mentioned in https://apacheignite.readme.io/docs/rest-api,
" Ignite provides an HTTP REST client that gives you the ability to communicate with the grid
over HTTP and HTTPS protocols using the REST approach. REST APIs can be used to
perform different operations like read/write from/to cache, execute tasks, get various metrics
and more."

Therefore, it is possible to enable it by adding for example a maven profile in eIDAS to e.g. the
pom.xml of EIDAS-JCache-Ignite as follows:

<profiles>

 <profile>

 <id>enableIgniteRest</id>

 <activation>

 <activeByDefault>false</activeByDefault>

 </activation>

 <dependencies>

 <dependency>

 <groupId>org.apache.ignite</groupId>

 <artifactId>ignite-rest-http</artifactId>

 <version>${ignite.version}</version>

 </dependency>

 </dependencies>

 </profile>

</profiles>

Note however, that if enabling this profile, adds several dependencies which can be affected by
CVEs, which were not analysed for impact in eIDAS Node's code. Another solution is to use the
possibility described at B.2 Python's Ignite Thin client Specific Connector POC, which does not
need more dependencies to be included.

https://apacheignite.readme.io/docs/binary-client-protocol
https://apacheignite.readme.io/docs/python-thin-client
https://apacheignite.readme.io/docs/rest-api

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix C: Ignite advanced configurations – 49

7 Appendix C: Ignite advanced configurations

7.1 SSL/TLS

As mentioned in https://apacheignite.readme.io/docs/ssltls:

"Ignite allows you to use SSL socket communication to provide a secure connection among all
Ignite nodes. To use it, set the Factory<SSLContext> and configure the SSL section in the
Ignite configuration. Ignite provides a default SSL context factory,
org.apache.ignite.ssl.SslContextFactory, which uses a configurable keystore to initialize the
SSL context. "

In eIDAS configuration files, files server.p12, trust.p12 need to be included in external
configuration folders, more specifically at:

EidasConfig/server/connector/ignite/KeyStore and EidasConfig/server/proxy/ignite/KeyStore

to demo the enabling of SSL/TLS in Ignite

However, you still need to add in the files

• igniteNode.xml

• igniteSpecificCommunication.xml

the below property sslContextFactory under bean igniteNode.cfg as depicted below:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="igniteNode.cfg"

class="org.apache.ignite.configuration.IgniteConfiguration">

 ...

 <!-- Ssl/Tls context. -->

 <!--IMPORTANT: THIS IS JUST A DEMO CONFIGURATION AND DEMO KEYSTORES,

NEEDS TO BE CHANGED FOR PRODUCTION ALSO THE KEYS IN THE KEYSTORES NEED TO

BE CREATED AS WELL-->

 <property name="sslContextFactory">

 <bean class="org.apache.ignite.ssl.SslContextFactory">

 <!--uncomment the below keyAlgorithm when IBM JRE is used e.g.

websphere 8.5.5-->

 <!--<property name="keyAlgorithm" value="IBMX509" />-->

 <property name="keyStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/server.p12" />

 <property name="keyStorePassword"

value="${IGNITE_SPECIFIC_CONNECTOR_KEY_STORE_PASSWORD:123456}" />

 <property name="trustStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/trust.p12" />

 <property name="trustStorePassword"

value="${IGNITE_SPECIFIC_CONNECTOR_TRUST_STORE_PASSWORD:123456}" />

 <property name="protocol" value="TLSv1.2" />

 </bean>

 </property>

 </bean>

</beans>

Note that this configuration is a demo configuration done using the information on
[https://apacheignite.readme.io/docs/ssltls|https://apacheignite.readme.io/docs/ssltls].
Therefore, this should not be used as is in production and all the necessary measures to ensure
the needed levels of security should be done,e.g. create new PrivateKeyEntries, trusted entries
in the keystores, etc.

https://apacheignite.readme.io/docs/ssltls:
https://apacheignite.readme.io/docs/ssltls|https:/apacheignite.readme.io/docs/ssltls

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix D: Ignite Proposed Configuration – 50

8 Appendix D: Ignite Proposed Configuration

As an example follows the demo file for igniteSpecificCommunication.xml:

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix D: Ignite Proposed Configuration – 51

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="igniteSpecificCommunication.cfg"

class="org.apache.ignite.configuration.IgniteConfiguration">

 <property name="igniteInstanceName"

value="igniteSpecificCommunication"/>

 <property name="cacheConfiguration">

 <list>

 <!--Specific Communication Caches-->

 <!-- Partitioned cache example configuration (Atomic

mode). -->

 <bean

class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name"

value="specificNodeConnectorRequestCache"/>

 <property name="atomicityMode" value="ATOMIC"/>

 <property name="backups" value="1"/>

 <property name="expiryPolicyFactory"

ref="7_minutes_duration"/>

 </bean>

 <!-- Partitioned cache example configuration (Atomic

mode). -->

 <bean

class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name"

value="nodeSpecificProxyserviceRequestCache"/>

 <property name="atomicityMode" value="ATOMIC"/>

 <property name="backups" value="1"/>

 <property name="expiryPolicyFactory"

ref="7_minutes_duration"/>

 </bean>

 <!-- Partitioned cache example configuration (Atomic

mode). -->

 <bean

class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name"

value="specificNodeProxyserviceResponseCache"/>

 <property name="atomicityMode" value="ATOMIC"/>

 <property name="backups" value="1"/>

 <property name="expiryPolicyFactory"

ref="7_minutes_duration"/>

 </bean>

 <!-- Partitioned cache example configuration (Atomic

mode). -->

 <bean

class="org.apache.ignite.configuration.CacheConfiguration">

 <property name="name"

value="nodeSpecificConnectorResponseCache"/>

 <property name="atomicityMode" value="ATOMIC"/>

 <property name="backups" value="1"/>

 <property name="expiryPolicyFactory"

ref="7_minutes_duration"/>

 </bean>

 </list>

 </property>

 <!--Explicitly configure TCP discovery SPI to provide list of

initial nodes from the second cluster.-->

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix D: Ignite Proposed Configuration – 52

 <property name="discoverySpi">

 <bean

class="org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi">

 <!-- Initial local port to listen to. -->

 <property name="localPort" value="49500"/>

 <!-- Changing local port range. This is an optional

action. -->

 <property name="localPortRange" value="4"/>

 <!-- Setting up IP finder for this cluster -->

 <property name="ipFinder">

 <bean

class="org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFin

der">

 <property name="addresses">

 <list>

 <!--

 Addresses and port range of the nodes from

the second cluster.

 127.0.0.1 can be replaced with actual IP

addresses or host names. Port range is optional.

 -->

 <value>127.0.0.1:49500..49503</value>

 </list>

 </property>

 </bean>

 </property>

 </bean>

 </property>

 <!--

 Explicitly configure TCP communication SPI changing local port

number

 for the nodes from the second cluster.

 -->

 <property name="communicationSpi">

 <bean

class="org.apache.ignite.spi.communication.tcp.TcpCommunicationSpi">

 <property name="localPort" value="49100"/>

 </bean>

 </property>

 <!-- Ssl/Tls context. -->

 <!--IMPORTANT: THIS IS A DEMO CONFIGURATION AND DEMO KEYSTORES, IT

NEEDS TO BE CHANGED FOR PRODUCTION ALSO THE KEYS IN THE KEYSTORES NEED TO

BE CREATED AS WELL-->

 <property name="sslContextFactory">

 <bean class="org.apache.ignite.ssl.SslContextFactory">

 <!--uncomment the below keyAlgorithm when IBM JRE is used

e.g. websphere 8.5.5-->

 <!--<property name="keyAlgorithm" value="IBMX509" />-->

 <property name="keyStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/server.p12"/>

 <property name="keyStorePassword"

value="${IGNITE_SPECIFIC_CONNECTOR_KEY_STORE_PASSWORD:123456}"/>

 <property name="trustStoreFilePath"

value="${EIDAS_CONNECTOR_CONFIG_REPOSITORY}/ignite/KeyStore/trust.p12"/>

 <property name="trustStorePassword"

value="${IGNITE_SPECIFIC_CONNECTOR_TRUST_STORE_PASSWORD:123456}"/>

 <property name="protocol" value="TLSv1.2"/>

 </bean>

 </property>

 <!-- how frequently Ignite will output basic node metrics into the

log-->

eIDAS-Node National IdP and SP Integration Guide v2.7

Appendix D: Ignite Proposed Configuration – 53

 <property name="metricsLogFrequency" value="#{60 * 10 * 1000}"/>

 </bean>

 <!--

 Initialize property configurer so we can reference environment

variables.

 -->

 <bean id="propertyConfigurer"

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu

rer">

 <property name="systemPropertiesModeName"

value="SYSTEM_PROPERTIES_MODE_FALLBACK"/>

 <property name="searchSystemEnvironment" value="true"/>

 </bean>

 <!--

 Defines expiry policy based on moment of creation for ignite

cache.

 -->

 <bean id="7_minutes_duration"

class="javax.cache.expiry.CreatedExpiryPolicy" factory-method="factoryOf"

scope="prototype">

 <constructor-arg>

 <bean class="javax.cache.expiry.Duration">

 <constructor-arg value="MINUTES"/>

 <constructor-arg value="7"/>

 </bean>

 </constructor-arg>

 </bean>

</beans>

	1 Introduction
	1.1 Purpose
	1.2 Document aims
	1.3 Document structure
	1.4 Other technical reference documentation

	2 The eID Building Block
	2.1 eIDAS-Node software
	2.2 Architecture of a typical eID solution

	3 Designing Integration
	3.1 eIDAS-Node Connector and eIDAS-Node Proxy Service in one application instance
	3.2 Deployment models
	3.2.1 Standard Deployment method
	3.2.2 Monolithic Deployment method

	3.3 Required profile and flows
	3.3.1 High-level flow
	3.3.1.1 Outbound from MS
	3.3.1.2 Inbound to MS

	3.4 Requirements from MS

	4 Integration Possibilities
	4.1 Provided stack
	4.2 Using the provided SpecificCommunication API
	4.2.1 Use of LightTokens
	4.2.2 Use of LightRequest/LightResponse
	4.2.2.1 LightRequest
	4.2.2.2 LightResponse

	4.2.3 Service interface and implemented beans
	4.2.4 Back-end communication with Ignite
	4.2.5 Back-end communication with an alternative to Ignite
	4.2.6 Overriding default communication cache names
	4.2.7 Back-end communication in Monolithic Deployment
	4.2.8 Incoming Light Request Validation
	4.2.9 Incoming Light Response Validation

	4.3 Re-implementing SpecificCommunication
	4.4 Integrating the provided Generic with custom implementation of communication
	4.4.1 Implementing the LightToken
	4.4.2 Implementing LightRequest / LightResponse
	4.4.2.1 The XML LightRequest
	4.4.2.2 The XML LightResponse
	4.4.2.3 DateTimeAttribute
	4.4.2.4 BooleanAttribute
	4.4.2.5 IntegerAttribute
	4.4.2.6 LiteralStringAttribute
	4.4.2.7 GenderAttribute
	4.4.2.8 PostalAddressAttribute

	5 Appendix A: Diagrams and Schemas
	5.1 Attribute Registry
	5.1.1 Hardcoded attributes
	5.1.2 Class-related attribute registries

	5.2 XSD Schemas for Light Objects
	5.2.1 LightRequest schema
	5.2.2 Light Response schema

	6 Appendix B: Examples
	6.1 LightToken QED
	6.2 Python's Ignite Thin client Specific Connector POC
	6.3 Ignite's Rest API

	7 Appendix C: Ignite advanced configurations
	7.1 SSL/TLS

	8 Appendix D: Ignite Proposed Configuration

