EUROPEAN COMMISSION

* K e
DIGIT

Connecting Europe Facility

* %%
*pk

ek

SML

Software Architecture Document

(BDMSL)

Version [2.15]

Status [Approved]

© European Union, 2018

Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the
reuse of Commission documents.

Date: 04/07/2018

(BDMSL)

Software Architecture Document

Document Approver(s):

Approver Name Role
Adrien FERIAL Architect
Document Reviewers:

Reviewer Name Role
Adrien FERIAL Architect

Yves ADAM

Business Analyst

Summary of Changes:

Version |Date Created by Short Description of Changes

1.0 24/07/2015 |Adrien FERIAL Initial Version

1.1 15/10/2015 Adrien FERIAL Changes after comments from Benoit DEBROUX,
Sandro D'ORAZIO and Olivier DERVEAU

1.2 13/01/2016 |Adrien FERIAL Changes Related to ROLE_ADMIN

2.0 01/06/2016 |Yves ADAM Merge with technical design document

2.1 26/07/2016 Flavio SANTOS Replacing the word CIPA by BDMSL

2.2 26/08/2016 |Yves ADAM Adjust some formatting errors

2.3 29/08/2016 |Flavio SANTOS WebContext for Jboss Added and DNS algorithm
for NAPTR replaced by SHA-256 Base32

2.4 19/09/2016 |Adrien FERIAL Added new error code

2.5 27/09/2016 Flavio SANTOS Data model diagram update

2.6 24/01/2017 Flavio SANTOS Granting SMP Role to multiple domains

2.7 06/03/2017 |Flavio SANTOS Updating Migration Key Constraint

2.8 07/03/2017 |Tiago MIGUEL Changes related to Is Alive

2.9 24/04/2017 Flavio SANTOS Added multiple domains configuration

2.10 16/06/2017 |Tiago MIGUEL Data model update regarding subdomains

2.11 18/07/2017 Flavio SANTOS Added BlueCoat Authentication activation flag.
Added regular expression configuration to
validate participant id. Added logical address
protocol configuration flag

2.12 09/01/2018 |Flavio SANTOS Defining participant DNS records configuration

2.13 27/03/2018 |CEF Support Reuse policy notice added.

2.14 30/04/2018 Flavio SANTOS Adding private key and domain configurations

2.15 03/07/2018 |Joze Rihtarsic¢ Changed Admin-Pwd hash algorithm from
SHA256 to BCrypt
Added new configuration parameter for SMP
authorization

SML Page 2/72

(BDMSL) Software Architecture Document

Table of Contents

1. INTRODUCTIONctuuiiiirinniiiinusiiniinusissresssisimesssissmessssssmessssstmssssssmsssssssssssssssssssssssssssssssssnnes 8
L L, PUI DS ettt nan 8
O 0] o =T o ol TP PUPRPPPPS 8
2. OVERVIEW OF THE SOLUTIONcttuuiiiiinnnieiiennieniensisisensisisessssssssssssssssssssssenssssssssssssssanass 10
2.1. Service Metadata LOCator (SIMIL)cccueiieiieeiie e ces ettt e et e e e sare e e e e saneeeanes 10
2.2. Business Document Metadata Service Location (BDXL)c.eevvveerieeinieeniieeinieenieeeeeesvee e 10
3. PRESENTATION OF THE DIFFERENT LAYERS.......ccittuuiiiiitnniiiinnnsininnnsinineeisimesimmssssenes 11
N I o 7Ty Y o - 1 o] T = 1Y T SRR 11
3.1.1. NAMING CONVENTION ceeiiiiiiiiiiieeee ettt ettt e e e e e s ettt eee e s e s saaabtbeeeeeeesasnnrbraeeeesssasannns 11
N A T oY=l o 1T ol 1Ly 12
3.1.3. Frameworks and Patternscccueie ittt e e e 12
YT oY (ol 1 T PR PR 13
3.2.1. NaMING CONVENTION .cciiiiiiiicccce e 13
0 A =Y oY=l o [T ol [T SRR 14
3.2.3. Frameworks and PatterNScccueie ittt e et e e et e e e nres 14
3.2.4. Development of the SErviCe IaYer ... 14
I I [=Y o o S 14
3.2.4.2. IMmpPlementation ClasSeS......cccuiii ittt e e e e ae e e arees 14
3.2.4.3. Transaction coNfIgUIatioNcooccuiiii it 15
3.3, WED SEIVICE PACKAZE . vveiiietiie ittt ettt e e et e e e e ebee e e st ae e e eeabee e e ssnbeeesesaseeeeenanens 15
R T80 R B 1Y o YT o [T Vol [PPSR 17
3.3.2. SOAP WED SEIVICES .eeuveeierieiieeeitieesiteesitteestteesteeessaeesateeesbeeessseesseeesseesassesessseesnsesanseessnsessnses 17
3.3.2.1. NaMING CONVENTION 1iiiiiiiiiiitieee ettt tee e e e e sttt e e e e s s sitbee e e e s s s ssabbtaeaeeessssssssesaeeeesssnnssens 17
3.3.2.2. EXPOSING @ WED SEIVICE....ciiiitiiee ettt ettt eette e e e tee e e e ebae e e e e bee e e eenbeeeeennbaeeeennnens 17
3.3.2.3. Declaration of the eXposed SEIVICEScccicieiiiiiiie i 17
I T8 A YA T PP PR PR 18
33025 BINAING e eeieeiiie ettt ettt et ettt et st s et e s bt e e at e e s bt e e s abeesabeesnteesabeeeates 18
3.3.2.6. Mapping JAXB ODJECES / BOueieereeeiee et ctee ettt ettt et ettt eeteeeeare e ebeeenteeeseneeeanes 18
3.3.2.7. Frameworks and PattEINSueeiiiiiciciirieeee ettt e e e eerctree e e e e e e e e tbareeeeeeseesassaaeeseeesennnnns 18
3.3.3. ServiCes SPECITICAtIONSveiii ittt e e e et e e e e ebre e e e eabe e e e enabaee e e nrees 19
3.3.3.1. ManageService Metadata SEIVICE ...t e e e e e e e e e e e e s e nanees 19
R TR 0 0 O V1Y A I OO PSPPSR STPUPORPTPPRRNE 19
3.3.3.1.2. OPEIratioN CrEATE() .eeeeevreeeitiieeeiiieeeeitie e e ettt e eeetteeeeetaeeesttteeeestbeeeeesaeeesasseeaaasbasesassseesassesasansseeeanes 19
3.3.3.1.2.1. Pre-requisites 19
3.3.3.1.2.2. Description 19
3.3.3.1.2.3. Technical design 20
IR T8 0 R T 0] o 1= - 1 oY o T Y= I [SRS 20
3.3.3.1.3.1. Pre-requisites 20
3.3.3.1.3.2. Description 20
3.3.3.1.3.3. Technical design 20
3.3.3.1.4. OPeration UPAAte() ...ccceeeeiiiieeeeiiie ettt e ettt e e tee e e ettt e e e ette e e eeataeeeetbee e e abaeeeetaeeeenaraeaeataeaeannes 20
3.3.3.1.4.1. Pre-requisites 20

SML Page 3/72

(BDMSL) Software Architecture Document

3.3.3.1.4.2. Description 21
3.3.3.1.4.3. Technical design 21
I e T BT O oY= o e T DT =T =Y (IS 21
3.3.3.1.5.1. Pre-requisites 21
3.3.3.1.5.2. Description 21
3.3.3.1.5.3. Technical design 22
3.3.3.2. Manage Participant [dentifiercoooieei i 23
TR e T R VL] 1 1SS 23
3.3.3.2.2. OPEratioN CrEaTE() ueeueerueerureiieesitesteesteeste e sttt esteesaeessteesaseessseassseessseassseessseassseesseesssessnseessseenn 23
3.3.3.2.2.1. Pre-requisites 23
3.3.3.2.2.2. Description 23
3.3.3.2.2.3. Technical Design 23
3.3.3.2.3. OPeration Creat@LIST()....uuuicueeeeiriieeiieeeeeiitieeeeiteeeeeeeeessteeeesttreeesasaeeessseeaesstseesensaeeesssaeeessseeeannes 23
3.3.3.2.3.1. Pre-requisites 23
3.3.3.2.3.2. Description 24
3.3.3.2.3.3. Technical Design 24
I e T B 0 T oY= =1 d o T D= =T =Y (ISR 24
3.3.3.2.4.1. Pre-requisites 24
3.3.3.2.4.2. Description 24
3.3.3.2.4.3. Technical Design 25
3.3.3.2.5. Operation DEIELELIST()....eeeicrieeeeiiiieeiiiee e citee ettt e eete e st e e et e e eeabte e e stbee e e ttaeeseasaeeesaraeeesnsaeeennnes 25
3.3.3.2.5.1. Pre-requisites 25
3.3.3.2.5.2. Description 25
3.3.3.2.5.3. Technical Design 26
3.3.3.2.6. Operation Prepare@TOMIGIate() ..oo.i o i erierieerieeieeiestesite st ettt satesatesbeesbeesbeesestesaeesaeesaeeeeenseens 26
3.3.3.2.6.1. Pre-requisites 26
3.3.3.2.6.2. Description 26
3.3.3.2.6.3. Technical Design 27
3.3.3.2.7. OPeration IMIIAate() ..cccuueeeiciieeeeititeeeieee e ettt e eertte e e e etaee e s etae e e e ttaeeeeasaeeessseeeaassaeesansseeesassaeeeanseeeesses 27
3.3.3.2.7.1. Pre-requisites 27
3.3.3.2.7.2. Description 27
3.3.3.2.7.3. Technical Design 28
3.3.3.2.8. OPEIAtiON LIST() ceeeuvrreeerreeeiitiieeeitieeeetteeesitteeeestteeeesaaeeesetaeeeesstaeeaassseessseseaassaseeaassseesassasasasseeeases 28
3.3.3.2.8.1. Pre-requisites 28
3.3.3.2.8.2. Description 28
3.3.3.2.8.3. Technical Design 29
3.3.3.3. BDMISLSEIVICE INTEITACE .oouveiiiiietee ettt ettt ettt et e sttt sabe e sbe e e saneesaees 29
3.3.3.3. L WSDL I8 ettt sttt ettt e st at e st esat e s b e e e ab e e sabe e st e e sareeearee s 29
3.3.3.3.2. Operation PrepareChangeCertifiCate()cccceruereeeiiee e ciee e ettt ette e e et eetre e e e e e e e baeeeennns 29
3.3.3.3.2.1. Pre-requisites 29
3.3.3.3.2.2. Description 29
3.3.3.3.2.3. Technical design 30
3.3.3.3.2.4. Notes 30
T e T e T O T oY= =1 d o TN Y Y 1T S 30
3.3.3.3.3.1. Pre-requisites 30
3.3.3.3.3.2. Description 30
3.3.3.3.4. Operation ClEarCaChe()....cccuuee e eciiee e eteee ettt e ettt e e ettt e e e et e e e eette e e setbeeeesabeeeeetaeaessraeaeesaeaeannes 31
3.3.3.3.4.1. Pre-requisites 31
3.3.3.3.4.2. Description 31
3.3.3.3.4.3. Technical design 31
3.3.3.3.5. Operation ListPartiCiPants()cecueeeeeceereriieeeeiiee e eeiree e st e e et e e eseee e srae e s e sate e e sennae e e snnreeeenanaeeeannes 31
3.3.3.3.5.1. Pre-requisites 31
3.3.3.3.5.2. Description 31
3.3.3.3.5.3. Technical design 32
3.3.3.3.6. Operation CreateParticipantldentifier()........ccoouiieeiiiei it 32
3.3.3.3.6.1. Pre-requisites 32
3.3.3.3.6.2. Description 32

SML Page 4 /72

(BDMSL) Software Architecture Document

3.3.3.3.6.3. Technical Design 32
3.3.3.3.7. Operation ChangeCertifiCate()cuvuieiveerureriieeriieesieerie e st e st e sreesae e steesbeesbeesabeesbeesareesnreesnseess 33
3.3.3.3.7.1. Pre-requisites 33
3.3.3.3.7.2. Description 33
3.3.3.3.7.3. Technical design 33
O = T T [T P17 SRR 34
3.4.1. NaMING CONVENTION ceeiiiiiiiiiiiiieeee ettt e e e ettt e e e e s st e e e e e e s s s saabtbeeeeeeesasnnrtraeeeesssanannn 34
B A DT oYl o 1T Vol [R 34
I TR T 0 1Yo o &SRR 34
3.4.4. Development of the bUSINESS [aYer......cccuiiiiiiiee e e 34
R Nt I [1 =Y o - ol TSP 34
3.4.4.2. IMPlementation ClasSeS.......ccuiiiiiiiie ettt e e e e ebae e e anees 34
T D - Yol ol Y - YT PP 35
3.5.1. NaMING CONVENTION .ciiiiiiiiicccc e 35
I T A L= oYl o o [T Vol [Ty 35
IR T TR = 0 o LYo o PSR 35
3.5.4. Development of the data acCess [QYeroooiviii i e 35
I 35t I =Y o - ol TR 35
3.5.4.2. IMPlementation ClasSES.......ccuiiiiiiiie et et e e e bae e et e e e et ae e e e aaes 36
3.5.4.3. MapPPINg BO / ENTILY c.veiiuieiiiiiie ettt ettt te et ste e s te e s beete e teesbaesaaesavesabeenbeenseenanas 36
3.6. COMMON PACKAZE ..cii i tieee ettt ettt ettt e e e ee e e et e e e e et e e e e e abee e e esabaeeeeaabaeeeennseeeeeanseneeennsens 36
3.6.1. NaMING CONVENTION ceeiiiiiiiiiiiiiee ettt ettt e e e e e s sttt e e e e e s s s ssabraeeeeesssssnsrtnaaeeesssnssnsns 36
T A DT oY=l o o [T ol [Ty R 37
R T - 1V (et] o =T s =10) F R 37
4, SOFTWARE ARCHITECTUREccuiituiiniiiniiiniiiniiieiieeiiosississessicssiisssisssssssssssssssssssssssssasssns 38
4.1. Library "bdmsl-CommON"ooo ettt e e et e e e et e e e e bra e e e eraaaaeeans 38
N o To [0 1Y BT Y= o =T o o PSPPI 38
4.3, WED SEIVICE ClIENT .ttt ettt st e et te e st e e st e e s te e ebeeessbeesnbeeesneeeeseeesnsaeans 39
e 1 =T a1 il o To] o ¢ PP PP PO PP PP PP PP PPPPPPPPPPPPPPPRE 39
4.5. Maven CONTIGUIAtIONuiiiiiiie et e et e e e e bre e e e e ette e e e e ebte e e e eabeeeasebeeeeesssenaeanns 40
5. LOGGINGuuiiiiiiiitrennnisistiinerssmsssisistiietsssmsssssissttsesssssssssssstsssssssssssssssssssssssssssssssssssssnnsssns 41
Lo I 1Y] [=T o g Y=Y] = d o J SRR 41
LI Mo - AV o] ol Yo =TSR 42
6. CACHINGcoiiiiiiiiiiiiiiiiiiiieiaiiieiieetieetiestiasstassssssssstessiasstsssrassssssssssesssasssassssssssssenssanssanss 44
7. EXCEPTION HANDLING.....ccitititiiteiiieiieniieniiaitsiissiiessiessissiserssessssssssssssssssasssssssssssssssnssanss 45
7.0 EXCEPLION TYPES e 45
7.2, SOAP FaUIES.c..eeiiiiieiiie ettt ettt ettt sa e st e s be e s bt e e bbeesabaeessbeesabeesbbeesabeesates 45
7 TR 1 4 o] g oo Lo {13 PP PR 46
8. OBJECT MAPPINGccuiieiiiiiiuiitiiitniieiiiieisietsiseeiiessiossissstasssssssssssssssssssssssssssssssssesssasssasssns 47
9. DATABASE MANAGEMENT.....ccccitiiiiiiiiiiiiiiiiiitiiieniieniisiisieisieisisssisestsstssssssssssssssssnssasss 49

SML Page5/72

(BDMSL) Software Architecture Document

1S 00 R U Lo [1 T ¥ = USRIt 49
0.2, VBISIONING i ittt e e 49
S TR - T 4 4T Yo L= PP 50
0.3, 0. OVEIVIBW.etiiiiieiiiiiteeee e e e ettt et e e e e ettt e e e e e s e aaab e et eeeeeesaaassbaeaeesesasaansbaaaeeeeesesannssraaaaesssnnnnnns 50
9.3.2. Global description of the tablesooiiiiiii i s 50
9.3.3. Detailed description of the tables ... 51
10. SCHEDULER.......ccoitttiteennnieiiiiniernnnsssseiessreessnnsssssssssseessnnsssssssssssssnnnssssssssssssssnnsssssssssssnsnnne 53
O @ o Yo F (ol 0= o) i oF= | PSR 53
10.2. Data INCONSISTENCY ANAIYZEN....oci i e e e e e e aae e e e s baae e eeaaaaee s 54
11, VALIDATIONS.....ciiiiitrennnnsssisniineresssssssisssmmessssssssssssssmmssnns 55
11.1. Participant ID validation per DOMaiNccccuiiiiiiiiie ettt e e sare e e s e e e eaaaee s 55
11.2. Logical Address validation per DOMAiNcuueeieciiieiiiiieeesiiee st e e esre e e saae e e s saaeee s 55
12, SECURITY creuuuuieiiniinnrnnnnssssisniimesssssssssisssimessssssssssssssnssnssnne 56
10700 T 1 PR 56
0 T VYo Y=Y o o= 1 o LU 56
02 2 0 1\ R T o o1 U= g o T=T o = o o RS 57
12,2, ENCIYPLION KBY .eitiiiiiiiiiiiieiee ettt e sttt e e e s e sttt e e e s e s s saabbbeeeeeeesssssstaaaeeesesessssssenes 58
12.2.1. HOW t0 generate @ Private KEYooo ittt et aaeee s 58
12.2.2. HOW t0 €NCrypt @ PASSWOIT...ccicuiiiiieiiiieecciiiieescitee e scire e s eitae e e s setre e e s saaae e e esnsaeeeesabaeeesnnnaeees 58
I T VU =T o 4 (or- Y o PSSR 59
12.3.1. SSL configured on the application SEIVET ... iiie i 60
12.3.2. REVEISE ProXy WIth SSL....cuiiiiiiiiiieeeciiee ettt ectte e ettt e e e e ette e e e e satae e e esabaeeeeeasaeeesassaeeesnnnaaeans 60
I . TR Vo [Y o 1Yol ol LU PP 60
12.3.4. Enable/disable BlueCoat Authentication flagccceeevieiienieniiiie e 61
I U o oY - 1 4[] [61
12,40, ROIES ettt sttt ettt ettt ettt e s e st e e s abe e s bt e e s abeesabe e s bbe e s abe e e sabeesabeeeaateesbaeeareas 61
12.4.2. Granting ROLE_SIVIPeeee s 62
12,5, WS-SECUITY 1uuteeitie ettt ettt ettt sttt e sb e st e e sa e e sttt e sabeesabeesbteesabaeesabeesabaesnteesabaeensseas 62
13. TECHNICAL REQUIREMENTSccuuuiiiiiiiinnmnmnenssisiinnismssssssisssmmesmssssssssssmmmsssssssssssssssnsssns 63
13,1 HArOWAre .eee ettt ettt et sttt e st e st e e s ate e sabe e e sabeesabeesbteesabaeesabeesabaesnteesabaeenseeas 63
Yo i 1Y | TSRS 63
13.2.1. ReCOMMENAEA STACKeiiiiiieiiiiie ettt sttt e sbe e e st e e sbeesbaeesabaeenaeees 63
13.2.2. OPerating SYSTEMSuuuuui s 63
13.2.3.Java Virtual IMacChingS.....coccuiiiiiiiiie ettt st e s s aae e e s sabaeesssnreee s 63
13.2.4. Java APPIICAtION SEIVEISuviii ittt er e e e satb e e e sta e e e snaaeeeenasbeeeennsaneen 63
S T T D -] o - 1YY ST 63
13.2.6. WED BIrOWSEIS ...eiiiiiiiiiieiieesiteesite e st e sttt esiteestteesiteesabaeesabeesabeesbbeesabaeenaseesasaesnsseessaeensseas 64
14. CONFIGURATIONccveeuueiiiiiiinirennsssssisssmmemssssssssssesmmessssssssssssssmsssssssssssssssssssssssssssssssssssnns 65
I/ 95 N T o] [Tor=Yu o) o W @eT oY i T={U = 4] o NP R 65

SML Page 6/72

(BDMSL) Software Architecture Document

14.2. MUIEIPIE OMAINS ot e e e e e e e e e e e et a e e e e e e eeesnabaaaeeeeeeeessanssnanes 66
14.3. Application server specific configurationccoccuviiiiiiiii e e 68
I Y= o] Lo =4 oSSR 68
L. 3.2, TOMICAT . s 68
I T T 1= Yo 11T TP 69
15. ANNEXE 1 — DOCUMENT PARTS...ccccteiiiiiiiimnnnnnssisninneesssssssssssssnmesssssssssssssssesssssssssssssssssnns 70
16. LIST OF FIGURES......cceeuuuiiiiiiiiiirnnnnnsssiniiineeesssssssisesimessasnns 71
17. CONTACT INFORMATIONciiiiirmnnnnssiinniinenenssssssissinnessssssssssssssnsssssssssssssssssssssssssssssssssssnns 72

SML Page 7/72

(BDMSL) Software Architecture Document

1. INTRODUCTION

1.1. Purpose

SML was initiated by PEPPOL [REF2] The PEPPOL SML specification was submitted as input to the
OASIS BDXR TC (Business Document Exchange Technical Committee) with the intent of defining a
standardized and federated document transport infrastructure for business document exchange.
They resulted into a new committee specification: BDXL (Business Document Metadata Service
Location) [REF3].

In WP6 [REF4] , e-SENS defines the Service Location ABB based upon OASIS BDXL specification,
compliant with the legacy SML specification.

The eDelivery Business Document Metadata Service Location application (BDMSL) is the sample
implementation of the Service Location ABB.

This document is the Software Architecture document of the eDelivery Business Document Metadata
Service Location application (BDMSL) sample implementation. It intends to provide detailed
information about the project:

e An overview of the solution
e The different layers
e The principles governing its software architecture

1.2. References

Document Contents outline

[REF1] SML Specification Defines the profiles for the discovery and
management interfaces for the Business
Document Exchange Network (BUSDOX) Service
Metadata Locator service.

[REF2] PEPPOL The OpenPEPPOL Association is responsible for
the governance and maintenance of the PEPPOL
specifications that enable European businesses
to easily deal electronically with any European
public sector buyer in their procurement
processes.

[REF3] OASIS Business Document Metadata This specification defines service discovery
Service Location Version 1.0 (BDXL) methods. A method is first specified to query
and retrieve a URL for metadata services. Two
metadata service types are then defined. Also
an auxiliary method pattern for discovering a
registration service to enable access to
metadata services is described. The methods

SML Page 8/72

https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-ICT_Architecture/1-ICT-Transport_Infrastructure/13-ICT-Models/ICT-Transport-SML_Service_Specification-101.pdf
http://www.peppol.eu/
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html

(BDMSL)

Software Architecture Document

Document

Contents outline

defined here are instances of the generic
pattern defined within IETF RFCs for Dynamic
Delegation Discovery Services (DDDS). This
specification then defines DDDS applications for
metadata and metadata-registration services.

[REF4]

WP6 from eSENS

Work Package 6, eSENS

SML

Page 9/ 72

http://wiki.ds.unipi.gr/display/ESENS/e-SENS+WP6+Project

(BDMSL) Software Architecture Document

2. OVERVIEW OF THE SOLUTION

The eDelivery BDMSL is a solution conformant with both the SML specification and BDXL Core
Implementation Conformance specification.

2.1. Service Metadata Locator (SML)

The SML is the only centrally operated component in the eDelivery Messaging Infrastructure. The
dynamic discovery process begins with the establishment of the Service Metadata relating to the
particular gateway to which a sender wants to transmit a message. To find the address of the Service
Metadata of a participant, the Service Metadata Locator [REF1] service specification is based on the
use of DNS (Domain Name System) lookups.

2.2. Business Document Metadata Service Location (BDXL)

The functionality of SML has been subsumed in a more general technical specification called the
Business Document Metadata Service Location (BDXL) [REF3].This specification is based on DNS, like
SML, but is based on a different type of DNS resource records called URI-enabled Naming Authority
Pointer records (U-NAPTR), which are defined to support Dynamic Delegation Discovery Service
(DDDS). The result of a query is a full URI, which can use HTTPS and supports server (and optionally
client) authentication.

SML Page 10/ 72

(BDMSL) Software Architecture Document

3. PRESENTATION OF THE DIFFERENT LAYERS

A multi-layered architecture requires respecting some principles:

e Structure of the java packages: in a project, every layer is represented as a package
containing all the Java components of this layer

e C(Calls between the layers: The calls must respect the hierarchy of the layers and must be
performed only by using interfaces as shown in the diagram below:

impl
Common lp
I
t 4 4 3
1 1 I I
] 1 1 1
] 1 1 1
1 i I I
Presentation E Service i Business i Persistence i
1 I I I

I == impli === | #== imp| ===] #=== impl ===+ [=== impl

]
I
I}
'l
Facade (WS)I |/
1 "
I =— impl !
I Interf:
nterface ———— Call
impl Implementation — Implements

Figure 1 - Inter-layers interactions

3.1. Presentation layer

The presentation layer manages the Graphical User Interface (GUI: pages, graphical components,
etc.) and the page flow.

This layer mainly handles:

e The GUI

e Interaction with the user

e The page flow

e User sessions

e C(Calls to the service layer through a controller

3.1.1. Naming convention

e Java package for controller: eu.europa.ec.bdmsl.presentation.controller
e Implementation: eu.europa.ec.bdmsl.presentation.controller.<PageName>Controller
e Folder for the ISP files : src/main/webapp/WEB-INF/jsp

SML Page 11/ 72

(BDMSL) Software Architecture Document

3.1.2. Dependencies

In this layer, only the following calls are allowed:

e (Calls to technical components
e C(Calls to the service layer
e (Calls to the common package

3.1.3. Frameworks and patterns

The presentation layer relies on the Spring MVC (Model-View-Controller) framework.

The views are represented by JSP files. These files are bound to controllers. The models are built
from calls to the service layer. They are then returned to the views. The presentation layer includes

the controllers.

For instance, this is the ListDNSController implementation class:

package eu.europa.ec.bdmsl.presentation.controller;

[...]

@Controller
public class ListDNSController f{

@Autowired
private ILoggingService loggingService;

@Value ("S{dnsClient.enabled}")
private String dnsEnabled;

@Value ("S${dnsClient.server}")
private String dnsServer;

// Path to the service

@RequestMapping ("/1istDNS")

public String 1listDNS (Model model) f{
loggingService.debug("Calling 1listDNS..."),

[...]

// We can add any object in the model and retrieve them in the views
model . addAttribute ("dnsEnabled'", dnsEnabled) ;

// bound to 1listDNS.jsp file in the src/main/webapp/WEB-INF/jsp folder
return "listDNS'";

}
In the 1istDNS. jsp file, the model can be accessed like this:

<%@ page language="java'" contentType="text/html; charset=ISO-8859-1"

pageEncoding="IS0-8859-1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.o0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0org/1999/xhtml" xml:lang="en" lang="en'">
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<head>
<title>BDMSL Service</title>
</head>
<body>
<h1>ListDNS</hl1>
<c:choose>
<!-- Access to the model -->
<c:when test="${dnsEnabled}'">
[...]
</c:when>

SML Page 12/ 72

(BDMSL) Software Architecture Document

<c:otherwise>

The DNS client is disabled.

</c:otherwise>

</c:choose>
</body>
</html>

3.2. Service layer

The service layer is the most important layer of the application as it coordinates the calls to the
business rules.

The service layer handles the transaction management. It creates the transaction and instantiates
the technical objects required (sessions, connection, etc.). The transactions manage the
commit/rollback depending on the errors raised by the different layers that it calls (service, business,
and persistence).

The transaction management is handled by Spring through the use of the annotation
@Transactional. Spring transparently encapsulates the calls to the different services and create if
necessary transactions if the configuration requires it.

By default, the transactions are in "read-only" mode (attribute read-only = true) at the class
level.

@Transactional (readOnly = true)
public class ManageServiceMetadataServiceImpl extends AbstractServiceImpl
implements IManageServiceMetadataService f{

@Transactional (readOnly = false, rollbackFor = Exception.class)

public void create (final ServiceMetadataPublisherBO smpBO) throws
BusinessException, TechnicalException {

}...

public ServiceMetadataPublisherValue read (ServiceMetadataPublisherBO
messagePartBO) throws BusinessException, TechnicalException {

}

The service layer performs different calls to the service/business layers.

The objects from the service layer are POJO that implement the singleton pattern. The objects from
the different layers are injected by Spring by setters.

3.2.1. Naming convention

Naming convention for:

e Package: eu.europa.ec.bdmsl.service
e Interface: eu.europa.ec.bdmsl.service.l<InterfaceName>Service
e |Implementation package: eu.europa.ec.bdmsl.service.impl

SML Page 13/ 72

(BDMSL) Software Architecture Document

e Implementation: eu.europa.ec.bdmsl.service.impl.<InterfaceName>Servicelmpl

3.2.2. Dependencies

In this layer, only the following calls are allowed:

e C(Calls to technical components
e (Calls to the business layer
e (Calls to the common package

3.2.3. Frameworks and patterns

The service layer uses these frameworks:

e Spring: transaction management, exception handling, dependency injection

3.2.4. Development of the service layer

3.2.4.1. Interface

public interface IManageServiceMetadataService f{

/**

* Retrieves the Service Metadata Publisher record for the service metadata.

& serviceMetadataPublisherID the unique ID

£ of the Service Metadata Publisher for which the record is required
& ServiceMetadataPublisherBO the service metadata publisher record.

£ TechnicalException Technical exception.

& BusinessException Business exception.

*/

ServiceMetadataPublisherBO read (String serviceMetadataPublisherID)
throws TechnicalException, BusinessException;

3.2.4.2. Implementation classes

The implementation classes extend the parent-class «AbstractServiceImpl» and implement
their dedicated interface (here «IManageServiceMetadataService»).

@Transactional (readOnly = true)
public class ManageServiceMetadataServiceImpl extends AbstractServiceImpl
implements IManageServiceMetadataService f{

private IManageServiceMetadataServiceBusiness
manageServiceMetadataServiceBusiness;

/*
* (non-Javadoc)
*
* @see eu.europa.ec.bdmsl.service.IManageServiceMetadataServicef#fread (String)
*/

@Override

@Transactional (readOnly = true)

public ServiceMetadataPublisherBO read (String serviceMetadataPublisherID)
throws TechnicalException, BusinessException {
ServiceMetadataPublisherBO smpBO =

manageServiceMetadataServiceBusiness.read (serviceMetadataPublisherID) ;

SML Page 14/ 72

(BDMSL) Software Architecture Document

return smpValue,

}

The parent-class «AbstractServiceImpl» contains all common attributes and methods of the
implementation classes of the service layer (logging service, etc.).

3.2.4.3. Transaction configuration
The transaction management is managed by Spring.

The JDBC connections to the database are open by Spring if the processing of the service requires
access to the database (though the call to the business layer).

The configuration of the transaction management is made by annotations. These annotations define
the rollback policy when certain types of exception may be raised. Indeed, if a non-critical error is
raised, it could be useful to perform a commit anyway.

The annotations for the transaction management are set in the service class implementations with
@Transactional. This way, we scan specify which interface and methods are executed in a
transactional context.

There are two types of transaction modes:

e read-only is used by default. It can perform read actions but can't write anything in the
database.
e read-write is used for CUD methods (Create, Update, Delete).

Propagation attributes manage the opening of the transactions. In this project, the attribute
REQUIRED is used. This attribute, which is used by default, means that the method must be executed
in a transaction context. If the transaction doesn't exist at the time of the call, then it a new one is
created.

Thus, only one transaction is allowed for a call to a method in the service layer. If the method calls
itself other services, the transaction will be propagated.

By default, Spring performs a rollback when a runtime exception is thrown. This behaviour can be
modified with the attribute rollbackFor by passing a list of exceptions for which a rollback will be
performed. In the BDMSL component, we rollback for any type of exception (checked and runtime),
so we set the following value: rol1lbackFor = Exception.class.

3.3. Web service package

This chapter describes the use of the Apache CXF framework in the web service package to expose
SOAP and REST web services.

A web service is a service that can be remotely invoked by another system.

The services of the eDelivery BDMSL application are declared in Spring and implement the Singleton
pattern.

SML Page 15/ 72

(BDMSL) Software Architecture Document

In order to connect the classes exposed by CXF to the service class managed by Spring, we use an
additional package that plays the role of Fagade: eu.europa.ec.bdmsl.ws

The facades define the same interfaces as the services they are linked to. They have the same
methods as the Java implementation classes of the services managed by Spring. The facades
implement strictly the interface they reference and serve as a transition with the external systems,
taking into consideration matters like database connection, transaction, security, etc. The facade also
performs the conversion of the objects from JAXB to BO and vice-versa.

The reference to the underlying service is injected in the fagade with Spring. For each method of the
interface implemented by the facade, we invoke the same method as on the service implementation
class:

[...]
public class ManageParticipantIdentifierWSImpl extends AbstractWSImpl implements
IManageParticipantIdentifierWS {

@Autowired
private IManageParticipantIdentifierService
manageParticipantIdentifierService;

@Autowired
private MapperFactory mapperFactory,

[...]

@Override

@WebResult (name = "ParticipantIdentifierPage', targetNamespace =
"http://busdox.org/serviceMetadata/locator/1.0/", partName = "messagePart")

@WebMethod (operationName = "List'", action =
"http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:listIn")

public ParticipantIdentifierPageType list (@WebParam(partName =
"pageRequestType", name = '"PageRequest', targetNamespace =

"http://busdox.org/serviceMetadata/locator/1.0/") PageRequestType
pageRequestType) throws NotFoundFault, InternalErrorFault, UnauthorizedFault,
BadRequestFault {
ParticipantIdentifierPageType result = null;
try {
[...]
// convert input from JAXB to BO
PageRequestBO pageRequestBO =
mapperFactory.getMapperFacade () .map (pageRequestType, PageRequestBO.class),

// call the service layer

ParticipantListBO resultParticipantBOList =
manageParticipantIdentifierService.list (pageRequestBO) ;

loggingService.businessLog (LogEvents.BUS PARTICIPANT LIST,
pageRequestBO.getSmpId()) ;

// convert output from BO to JAXB
result = mapperFactory.getMapperFacade () .map (resultParticipantBOList,
ParticipantIdentifierPageType.class)
} catch (Exception exc) {
[...]
handleException (exc) ;
}

return result;,

SML Page 16/ 72

(BDMSL) Software Architecture Document

3.3.1. Dependencies

In this package, only the following calls are allowed:

e (alls to technical components
e C(Calls to the service layer
e (Calls to the common package

3.3.2. SOAP web services

This section describes the general principles governing SOAP web services.

3.3.2.1. Naming convention

e Package: eu.europa.ec.bdmsl.ws.soap

e Interface: eu.europa.ec.bdmsl.ws.soap.I<InterfaceName>WS

e |Implementation package: eu.europa.ec.bdmsl.ws.soap.impl

e Implementation: eu.europa.ec.bdmsl.ws.soap.impl.<InterfaceName>WSImpl

3.3.2.2. Exposing a web service

As from Java 5, the JSR 181, implemented in Apache CXF, allows declaring a Java class as a SOAP web
service.

To declare a facade as a web service class, the use of the annotations @WebService,
@SOAPBinding et @BindingType is required as follow:

@WebService (serviceName = "ManageServiceMetadataService", portName =
"ManageServiceMetadataServicePort", targetNamespace =

Constants.MANAGE METADATA SERVICE NS)

@SOAPBinding (style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
@BindingType (javax.xml.ws.soap.SOAPBinding.SOAP11HTTP BINDING)

public class ManageServiceMetadataWSImpl f{

}

NB: these annotations are provided by the JSR 181 APl and must be set at both the implementation
class and interfaces level.

To avoid the exposition of some methods like getter/setters, we use the annotation
@WebMethod (exclude=true) .

3.3.2.3. Declaration of the exposed services

The endpoint and the implementing classes are defined in the cxf-servlet.xml file. This is how
we can expose the service bdmslservice:

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns: jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd">

SML Page 17 /72

(BDMSL) Software Architecture Document

[...]

<jaxws:endpoint
id="bdmslService"
implementor="eu.europa.ec.bdmsl.ws.soap.impl.BDMSLServiceWSImpl"
address="/bdmslservice">

</jaxws:endpoint>

</beans>

3.3.2.4. WSDL

The exposed web services are defined in a contract interface file named WSDL. In the eDelivery
BDMSL application, we use a WSDL-first approach. It means that we first design the WSDL and
generate Java code from the WSDL.

The classes are generated through the use of a maven plugin defined in the pom.xml file. To
generate the classes, the following command line must be run. Among other operations, this
command will automatically call the wsd12java goal from the cxf-codegen-plugin plugin:

|mvn package

For the SML compliance, the WSDL files are defined in the SML specification. In the eDelivery BDMSL
application, they are:

e ManageBusinessldentifierService-1.0.wsdl
e ManageServiceMetadataService-1.0.wsdl
e BDMSLService-1.0.wsdl

These files are located in the src/main/webapp/WEB-INF/wsdl directory.
3.3.2.5. Binding

The use of JAXB configuration allows customizing the generated sources like package or class names,
and also allowing the definition of adapters between XML and Java types
(marshalling/unmarshalling).

These binding files are stored as x7b files in the src/main/webapp/WEB-INF/wsdl directory.
3.3.2.6. Mapping JAXB objects / BO

JAXB objects are generated from the WSDL. Inside the different layers of the application, we only use
Business Objects (BO). We don't directly use JAXB generated objects in the business logic because
this would tightly couple the business logic to the WSDL. A schema change in a WSDL (such as for
version update) typically leads to a different package structure for classes generated from that WSDL
via JAXB. To mitigate this risk, we use different Java objects: the business objects (BO). For more
information on the mapping of JAXB objects to BO, see the chapter 8 Object mapping.

3.3.2.7. Frameworks and patterns

e Apache CXF: Exposing SOAP/REST web services. Only in the web module service.
e Spring: dependency injection

SML Page 18/ 72

(BDMSL) Software Architecture Document

3.3.3. Services specifications

This paragraph provides implementation details of the BDMSL.

There are 3 interfaces described in this paragraph:

Interface Description

ManageServiceMetadataService-1.0.wsdl Defined in the PEPPOL SML specification [REF1],
in Appendix B: WSDLs.

ManageBusinessldentifierService-1.0.wsdl Defined in the PEPPOL SML specification [REF1],
in Appendix B: WSDLs.

BDMSLService-1.0.wsdl Contains services not covered by any
specification from OASIS or PEPPOL.

3.3.3.1. ManageService Metadata Service
3.3.3.1.1. WSDL file

e ManageServiceMetadataService-1.0.wsdl
3.3.3.1.2. Operation Create()

3.3.3.1.2.1. Pre-requisites

e The user has a valid certificate®

e The role associated to the certificate is ROLE_SMP

e The SMP doesn't already exists in the system
3.3.3.1.2.2. Description

Establishes a Service Metadata Publisher metadata record, containing the metadata about the
Service Metadata Publisher (SMP), as outlined in the ServiceMetadataPublisherService data type.

e Input CreateServiceMetadataPublisherService: ServiceMetadataPublisherService - contains
the service metadata publisher information, which includes the logical and physical
addresses for the SMP (Domain name and I[P address). It is assumed that the
ServiceMetadataPublisherID has been assigned to the calling user out-of-bands.

e Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Create
operation

e Fault: badRequestFault - returned if the supplied CreateServiceMetadataPublisherService
does not contain consistent data

e Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

! In this document, we consider that a certificate is valid if it is not revoked and not expired.

SML Page 19/ 72

(BDMSL) Software Architecture Document

3.3.3.1.2.3. Technical design
@

suP.

1SmpDAO

i
‘areste(SeniceMatadatsPublisherSenviceType)

reste(SeviceletadataPublisherBO)

validateSMPDats(ServiceletadatsPublisherB0)

i

|
.
. .
g

mssurisung e
. .
|

verifySMPNotExist(String)

fourrent certificate doesn't exis

resteSMP(ServiceMetadataPublisherBO)

resteDNSRecords(ServiceMetsdatsPublisherBO)

reste CNAMEQ

Figure 2 - Sequence Diagram - ManageServiceMetadata Create

3.3.3.1.3. Operation Read()
3.3.3.1.3.1. Pre-requisites

e The user has a valid certificate

e The role of the user is ROLE_SMP

e The SMP already exists
3.3.3.1.3.2. Description

Retrieves the Service Metadata Publisher record for the service metadata publisher.

e Input ReadServiceMetadataPublisherService: ServiceMetadataPublisherID - the unique ID of
the Service Metadata Publisher for which the record is required

e Qutput: ServiceMetadataPublisherService - the service metadata publisher record, in the
form of a ServiceMetadataPublisherService data type

e Fault: notFoundFault - returned if the identifier of the SMP could not be found

e Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Read
operation

e Fault: badRequestFault - returned if the supplied parameter does not contain consistent data

e Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

3.3.3.1.3.3. Technical design

|O IMsnsgeServiceMetadstsWs IMansgeServiceMetadstaSenvice IMansgeServiceMetadstsBusiness ISmpDAD

SMP.
|

i '
| read(SeniceMetadataPublisherServiceType) : |
SeniceMetadatsPublisherSenviceType

-

findSMP{String) :
ServiceMetadataPublisherB0

Figure 3 - Sequence Diagram - ManageServiceMetadata Read
3.3.3.1.4. Operation Update()
3.3.3.1.4.1. Pre-requisites

e The user has a valid certificate
o The role of the user is ROLE_SMP

SML Page 20/ 72

(BDMSL)

Software Architecture Document

The SMP already exists

3.3.3.1.4.2. Description

Updates the Service Metadata Publisher record for the service metadata publisher.

Input UpdateServiceMetadataPublisheServicer: ServiceMetadataPublisherService - contains
the service metadata for the service metadata publisher, which includes the logical and
physical addresses for the SMP (Domain name and IP address). If the request's logical
address is different from the logical address stored into the database, all participant's NAPTR
records under the specified SMP will be updated with the new logical address passed by
request.

Fault: notFoundFault - returned if the identifier of the SMP could not be found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Update
operation

Fault: badRequestFault - returned if the supplied UpdateServiceMetadataPublisheServicer
does not contain consistent data

Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

3.3.3.1.4.3. Technical design

)

SMP.
I

IDnsClientSenvice DNS ICerificateDAD. IMznsgeServicehletadstsDAC

ype)

1
updste(SanviceMatsdstaPublisharB0)

updateSMP{SenvicellletadataP ublisherB0)

updateD

L

i
update CNAME() i

updats U-NAPTR |

T T
1 1

Figure 4 - Sequence Diagram - ManageServiceMetadata Update

3.3.3.1.5. Operation Delete()

3.3.3.1.5.1. Pre-requisites

The user has a valid certificate
The role of the user is ROLE_SMP
The SMP already exists

3.3.3.1.5.2. Description

Deletes the Service Metadata Publisher record for the service metadata publisher.

Input DeleteServiceMetadataPublisherService: ServiceMetadataPublisherID - the unique ID
of the Service Metadata Publisher to delete

Fault: notFoundFault - returned if the identifier of the SMP could not be found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Delete
operation

SML

Page 21/ 72

(BDMSL) Software Architecture Document

e Fault: badRequestFault - returned if the supplied DeleteServiceMetadataPublisherService

does not contain consistent data

e Fault: internalErrorFault - returned if the SML service is unable to process the request for any

reason

Implementation note: If the SMP is linked to many participants, then the participants are deleted
from the database and the DNS by batch of 300 elements. This is to avoid reaching the limit of the
DNS protocol. Indeed, the RFC1035 of the DNS standard states that the messages are bound to

65535 bytes length.

3.3.3.1.5.3. Technical design

I.C) [imansg | [| ons IMansgeSeniceMetadataDAO 1SmpDAD IParticipantD?
% | | L
'
i
i
| delete(Sting)
|
delete(String)
validateSMPIG(Sting)
i "
verifySMPExist(String) i
)
0) Li i
| L
.
i
checiNoMigrationPlsnned) i
T |
i
it i artic List<L
T
1o0p iteration over participants j
deletefsmpld, List<ParticipantB0>) |
@See Sequence Disgram -
ManageParticipantidentifier
Delete
deleteSMP(ServiceMetadataPublisherB0)
deleteSMP(ServiceMetadataPublisherBO)
2
deleteDNSRecords(ServiceMetadsatsPublisherBO) i 3
: delete CNAWED !
i
o L o i T
Figure 5 - Sequence Diagram - ManageServiceMetadata Delete
SML Page 22 /72

(BDMSL)

Software Architecture Document

3.3.3.2. Manage Participant Identifier

3.3.3.2.1. WSDL file

ManageBusinessldentifierService-1.0.wsdl

3.3.3.2.2. Operation Create()

3.3.3.2.2.1. Pre-requisites

The user has a valid certificate

The SMP already exists

The role of the user is ROLE_SMP
The participant doesn't already exists

3.3.3.2.2.2. Description

Creates an entry in the Service Metadata Locator Service for information relating to a specific
participant identifier. Regardless of the number of services a recipient exposes, only one record
corresponding to the participant identifier is created in the Service Metadata Locator Service by the
Service Metadata Publisher which exposes the services for that participant.

Input CreateParticipantldentifier: ServiceMetadataPublisherServiceForParticipantType -
contains the Participant Identifier for a given participant and the identifier of the SMP which
holds its data

Fault: notFoundFault - returned if the identifier of the SMP could not be found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Create
operation

Fault: badRequestFault - returned if the supplied CreateParticipantldentifier does not contain
consistent data

Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

3.3.3.2.2.3. Technical Design

)

suP

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i i ‘ 1SmpDAO ‘ ‘ DNS. ‘ ‘ IParticipantDAO.
i
i

eate(ParticipantB0)

validateParticipant(ParticipantB0)

verifySMPEXxist(String)
T

| indSHP(Sving) SenicelsdaisPubishers0
) G
findParticipant(ParticipantBO) :ParticipantBO E

i
{ | findParticipant{ParticipantBO)

[ParticipantBO doesn't exist) { |

eateParticipant(ParticipantB0)
i

‘esteDNSRecors(ParticipantB0)

reste CNAMEQ

areste UNAPTR)

Figure 6 - Sequence Diagram - ManageParticipantldentifier Create

3.3.3.2.3. Operation Createlist()

3.3.3.2.3.1. Pre-requisites

e The user has a valid certificate
e The SMP already exists
e The participants don't already exists
SML Page 23/ 72

(BDMSL) Software Architecture Document

e The role of the user is ROLE_SMP
e The number of participants in the list is less than 100
3.3.3.2.3.2. Description

Creates a set of entries in the Service Metadata Locator Service for information relating to a list of
participant identifiers. Regardless of the number of services a recipient exposes, only one record
corresponding to each participant identifier is created in the Service Metadata Locator Service by the
Service Metadata Publisher which exposes the services for that participant.

e Input Createlist: ParticipantldentifierPage - contains the list of Participant Identifiers for the
participants which are added to the Service Metadata Locator Service. The
NextPageldentifier element is absent.

e Fault: notFoundFault - returned if the identifier of the SMP could not be found

e Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Createlist
operation

e Fault: badRequestFault - returned if:

e The supplied CreatelList does not contain consistent data

e The number of participants in the list is greater than 100

e Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

3.3.3.2.3.3. Technical Design

IO = = = e : - = s iBracin
T T

SMP
' T
1 ' i
1 |

i |
gesteList{ParticipsntidentifierPageType)

reateList{ParticipantListBO)

T
1
1
1
1
1
1
1
1
|
1
1
|
|
1

loop iteration on each panicupam/

i
[participantListBO.size] validateParticipant(Participant80)

]
G
|

findParticipant(ParticipantB0)

loop iteration over participants /

0)

k §
— L

Y o o 1
' 1 1

Figure 7 - Sequence Diagram - ManageParticipantldentifier CreateL.ist

3.3.3.2.4. Operation Delete()
3.3.3.2.4.1. Pre-requisites

e The user has a valid certificate

e The SMP already exists

e The role of the user is ROLE_SMP

e The participant already exists
3.3.3.2.4.2. Description

Deletes the information that the SML Service holds for a specific Participant Identifier.

SML Page 24/ 72

(BDMSL)

Software Architecture Document

Input DeleteParticipantldentifier: ServiceMetadataPublisherServiceForParticipantType -
contains the Participant Identifier for a given participant and the identifier of the SMP that
publishes its metadata

Fault: notFoundFault - returned if the participant identifier or the identifier of the SMP could
not be found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Delete
operation

Fault: badRequestFault - returned if the supplied DeleteParticipantldentifier does not contain
consistent data

Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

3.3.3.2.4.3. Technical Design

)

e
'

delete(ParticipanB0)

vaidateParicpant(Paricpant0)

veritySUPExst(Stng)

findSMP(Sting)
ServiceMetadamPubisher80

LRl

findPartoipant(ParticipantB0) Paricpants0

findP aricpant(ParticipantE0)

c—
3

s sert condiion on particpant exisence

[Fanicpan B0 exiss]
dekeParticipantParticipants0)

deketeParicpant(Participanta0)

fo—feoiss
A

dele = DNSRecois(ParticpantE0)

delete CNAMEQ

delee UNAPTR()

Figure 8 - Sequence Diagram - ManageParticipantldentifier Delete

3.3.3.2.5. Operation Deletelist()

3.3.3.2.5.1. Pre-requisites

The user has a valid certificate

The SMP already exists

The participants already exists

The role of the user is ROLE_SMP

The number of participants in the list is less than 100

3.3.3.2.5.2. Description

Deletes the information that the SML Service holds for a list of Participant Identifiers.

e Input Deletelist: Participantldentifier - contains the list of Participant Identifiers for the
participants which are removed from the Service Metadata Locator Service. The
NextPageldentifier element is absent.

e Fault: notFoundFault - returned if one or more participant identifiers or the identifier of the
SMP could not be found

e Fault: unauthorizedFault - returned if the caller is not authorized to invoke the DeletelList
operation

e Fault: badRequestFault - returned if:

e The supplied DeletelList does not contain consistent data

e The number of participants in the list is greater than 100

e Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

SML Page 25/ 72

(BDMSL)

Software Architecture Document

3.3.3.2.5.3. Technical Design

)

SMP.
'

1 i
deleteList{ParticipantldentifierPageType)
il

‘ ‘ v ‘ | i i u i im F ‘ ‘] ‘
T
'
I
'

deleleList(Li ici 03)

=

o

[1o0p iteration over participants

validsteSMPIg(smpld) &

0l
T

i
05) :Li
i

OList)

d--d-d

deleteParticipants(List<ParticipantB0=)
H

delete UNAPTR recordsl)
L

delete CNAME records() _ |

Figure 9 - Sequence Diagram - ManageParticipantldentifier DeleteL ist

3.3.3.2.6. Operation PrepareToMigrate()

3.3.3.2.6.1. Pre-requisites

The user has a valid certificate
The SMP already exists

The role of the user is ROLE_SMP
The participant already exists

3.3.3.2.6.2. Description

Prepares a Participant Identifier for migration to a new Service Metadata Publisher. This operation is
called by the Service Metadata Publisher which currently publishes the metadata for the Participant
Identifier. The Service Metadata Publisher supplies a Migration Code which is used to control the
migration process. The Migration Code must be passed (out of band) to the Service Metadata
Publisher which is taking over the publishing of the metadata for the Participant Identifier and which
MUST be used on the invocation of the Migrate() operation. This operation can only be invoked by
the Service Metadata Publisher which currently publishes the metadata for the specified Participant
Identifier.

Input PrepareMigrationRecord: MigrationRecordType - contains the Migration Key and the
Participant Identifier which is about to be migrated from one Service Metadata Publisher to
another.

Fault: notFoundFault - returned if the participant identifier or the identifier of the SMP could
not be found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the
PrepareToMigrate operation

Fault: badRequestFault - returned if the supplied PrepateMigrationRecord does not contain
consistent data

Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

SML

Page 26/ 72

(BDMSL)

Software Architecture Document

3.3.3.2.6.3. Technical Design

IC)

SMP
I

i i
prepareToMigrate(MigrationRecord Type)

1SmRDAO ‘ IFaricipantDAC

|
prepare ToMigrate{MigrstionRecordBO) _ |

I
validsteMigrationRecord{MigrationRecordBO)_ |

finaParticipant{PsrticipantBO) -

'
i 1
i i

'
'
'
'
:
findSmep(Sting) 4
T
i
'
'

|
findFaricipani(Fartidipantac)

U

prepareTolligrste(MigrsticnRecordBo) |

[8 migration record
i

[no migrstion record)
T

Figure 10 - Sequence Diagram - ManageParticipantldentifier PrepareToMigrate

3.3.3.2.7. Operation Migrate()

3.3.3.2.7.1. Pre-requisites

The user has a valid certificate

The SMP already exists

The participant already exists
The role of the user is ROLE_SMP
The prepareToMigrate service has been called for this participant

3.3.3.2.7.2. Description

Migrates a Participant Identifier already held by the Service Metadata Locator Service to target a new
Service Metadata Publisher. This operation is called by the Service Metadata Publisher which is
taking over the publishing for the Participant Identifier. The operation requires the new Service
Metadata Publisher to provide a migration code which was originally obtained from the old Service
Metadata Publisher. The PrepareToMigrate operation MUST have been previously invoked for the
supplied Participant Identifier, using the same MigrationCode, otherwise the Migrate() operation
fails. Following the successful invocation of this operation, the lookup of the metadata for the service
endpoints relating to a particular Participant Identifier will resolve (via DNS) to the new Service
Metadata Publisher.

Input CompleteMigrationRecord: MigrationRecordType - contains the Migration Key and the
Participant Identifier which is to be migrated from one Service Metadata Publisher to

another.

Fault: notFoundFault - returned if the migration key or the identifier of the SMP could not be

found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Migrate

operation

Fault: badRequestFault - returned if the supplied CompleteMigrationRecord does not contain

consistent data

Fault: internalErrorFault - returned if the SML service is unable to process the request for any

reason

SML

Page 27 /72

(BDMSL)

Software Architecture Document

3.3.3.2.7.3. Technical Design

)

SMP.
'

IParticipantDAQ 1SmpDAC IMigrationDAO

‘ ‘ a ‘ ‘ i ‘ im F i ‘ i ‘

I
h
n

i
| migrate(MigrationtecordType)

a

=
T

findMigrationRecord{MigrationRecordBO) L L
ServiceMetadataPublisherBO H

b
findParticipant{ParticipantB0)

| ps:

-l
performMigration{MigrationRecordBO)

updateParticipant{MigrationRecordBO)

i

g}
T

0)

i
update CNAME() i
1
update UNAPTR) |

Figure 11 - Sequence Diagram - ManageParticipantldentifier Migrate

3.3.3.2.8. Operation List()

3.3.3.2.8.1. Pre-requisites

The user has a valid certificate
The role of the user is ROLE_SMP
The SMP already exists

3.3.3.2.8.2. Description

List() is used to retrieve a list of all participant identifiers associated with a single Service Metadata
Publisher, for synchronization purposes. Since this list may be large, it is returned as pages of data,
with each page being linked from the previous page.

Input Page: PageRequest - contains a PageRequest containing the
ServiceMetadataPublisherID of the SMP and (if required) an identifier representing the next
page of data to retrieve. If the NextPageldentifier is absent, the first page is returned.
Output: ParticipantldentifierPage - a page of Participant Identifier entries associated with the
Service Metadata Publisher, also containing a <Page/> element containing the identifier that
represents the next page, if any.

Fault: notFoundFault - returned if the next page or the identifier of the SMP could not be
found

Fault: unauthorizedFault - returned if the caller is not authorized to invoke the List operation
Fault: badRequestFault - returned if the supplied NextPage does not contain consistent data
Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

Note that the underlying data may be updated between one invocation of List() and a subsequent
invocation of List(), so that a set of retrieved pages of participant identifiers may not represent a
consistent set of data.

SML

Page 28/ 72

(BDMSL) Software Architecture Document

3.3.3.2.8.3. Technical Design

)

SMP
'

list{PageRequestTyps)

list{PageRequestB0)

|
validatePageRequest{PageRequestB0) |

i
verifySMPExistismpld)
i

list{PageRequestBO) .

i
listParticipent{PageRequestB0)

L]
1

Figure 12 - Sequence Diagram - ManageParticipantldentifier List

3.3.3.3. BDMSLService interface

This interface describes non-core services that are not defined in the SML or BDX specifications.

3.3.3.3.1. WSDL file

e BDMSLService-1.0.wsdl
3.3.3.3.2. Operation PrepareChangeCertificate()

3.3.3.3.2.1. Pre-requisites

o The current certificate of the user is valid

e The role of the user is ROLE_SMP

e The user has the new certificate for the SMP(s)
3.3.3.3.2.2. Description

This operation allows an SMP to prepare a change of its certificate. It is typically called when an SMP
has a certificate that is about to expire and already has the new one. This operation MUST be called
while the certificate that is already registered in the BDMSL is still valid. If the migrationDate is not
empty, then the new certificate MUST be valid at the date provided in the migrationDate element. If
the migrationDate element is empty, then the "Valid From" date is extracted from the certificate and
is used as the migrationDate. In this case, the "Not Before" date of the certificate must be in the
future.

e Fault: unauthorizedFault - returned if the caller is not authorized to invoke the
PrepareChangeCertificate operation
e Fault: badRequestFault - returned if
o The supplied request does not contain consistent data
o The new certificate is not valid at the date provided in the migrationDate element
o The migrationDate is not in the future.
o The migrationDate is not provided and the "Not Before" date of the new certificate is
not in the future
o The migrationDate is not provided and the "Valid From" is in the past
e Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason

SML Page 29/ 72

(BDMSL) Software Architecture Document

3.3.3.3.2.3. Technical design

IC)

SMP
1
i

lidateChangeCertifi ifi 0)

checMigrationDate(X50SCertificste, PrepareChangeCertificsteBO)
i

|
extraciCertificate(publicey) -l
7

calculateCertificateld(X509Certificate)
'
I

| T i
findCertificate{certificateld) ! h
i

i
i i
i H findCertificateByCertificsteld(certificateld)
: a|
cesteNewCertificate(ChangeCertificateBO) o !
'
! cesteNewCerificate(newCerificateB0)
g ® |
I
updateCertificate{cumentCarificate) Pl
T
'
I updsteCertificate(CertificateBO) =
| i
i

Figure 13 - Sequence Diagram - BDMSL Service PrepareChangeCertificate()

3.3.3.3.2.4. Notes

A nightly job performs an analysis to actually perform the change of certificates. The algorithm is as
following:

List<Certificate> certificates = findCertificateWithPessimisticLock ()
for each certificate in certificates do
if [certificate.new_cert migration date <= today] then
for each allowed wildcard in bdmsl.allowed wildcard do
allowed wildcard.fk certificate id = certificate.new_cert id
end for
for each smp in bdmsl.smp do
smp.fk certificate id = certificate.new cert id
end for
delete certificate
else if [certificate.new_cert migration date < today] then
warn "The migration of the certificate couldn't be perform in time"
end if
end for

The scheduling of the job can be configured by setting the value of the property
certificateChangeCronExpression.

In order to avoid the job to be performed multiple times on a clustered environment, it is necessary
to use a pessimistic lock when finding the certificates. The job must run in a single transaction and
the lock is released at the end of the transaction.

3.3.3.3.3. Operation IsAlive()
3.3.3.3.3.1. Pre-requisites

e The certificate is valid
e The user has the role ROLE_SMP or ROLE_ADMIN
3.3.3.3.3.2. Description

This service has only a monitoring purpose. It can be called to check if the application is up and
running.

SML Page 30/ 72

(BDMSL) Software Architecture Document

This service checks if the database and the DNS are accessible by trying to read from the database
and to write to and read from DNS.

e Input:none
e Qutput : none. HTTP 200 OK expected
e Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason
3.3.3.3.4. Operation ClearCache()

3.3.3.3.4.1. Pre-requisites

e The certificate is a valid certificate
e The user has the role ROLE_SMP or ROLE_ADMIN
3.3.3.3.4.2. Description

The application manages in-memory caches in order to enhance performances. This service can be
called to clear all the caches managed by the application. The in-memory caches are used for:

e The list of trusted aliases and their corresponding domains, because these data are not
supposed to be changed frequently

e The content of the Certificate Revocation List, in order to avoid the cost of downloading each
time the CRLM for each certificate

e Input:none

e Qutput : none. HTTP 200 OK expected

e Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason

3.3.3.3.4.3. Technical design

@ ICipaSericeWs ICipaService

Client

T
i
1
clearCache() - .
|
1
clearCache() - 1

=]
1
1
1
1
1

Figure 14 - Sequence Diagram — BDMSL Service ClearCache()

3.3.3.3.5. Operation ListParticipants()
3.3.3.3.5.1. Pre-requisites

o The certificate is valid
e The user has the role ROLE_PYP

3.3.3.3.5.2. Description

Lists all the participants managed by the BDMSL. This service is only meant to be called by the
PEPPOL Yellow Pages application.

e |nput:none
e QOutput : ListParticipantsType : the complete list of the participants managed by the BDMSL
e Fault: UnauthorizedFault : Returned if the certificate provided is not a PYP certificate

SML Page 31/ 72

(BDMSL) Software Architecture Document

e Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

3.3.3.3.5.3. Technical design

Figure 15 - Sequence Diagram — BDMSLService ListParticipants()

3.3.3.3.6. Operation CreateParticipantldentifier()
3.3.3.3.6.1. Pre-requisites

e The certificate is valid

e The SMP already exists

e The participant doesn't already exists
3.3.3.3.6.2. Description

This service has the same behaviour as the Create() operation in the
ManageParticipantIdentifier interface but it has one additional and optional input: the
serviceName element. In the Create() operation, the service name is "Meta: SMP" by default. In
the CreateParticipantIdentifier () operation, this service name can be customized.

e serviceName: the name of the service for the NAPTR record
3.3.3.3.6.3. Technical Design

@S=e Sequence Disgram -
ManageParticipantidentifier
Create

Figure 16 - Sequence Diagram - BDMSL Service CreateParticipantldentifier()

Note: the flow for the create method of ManageParticipantIdentifierServiceImpl can be found
here: 3.3.3.2.2.3 Technical Design

SML Page 32/72

(BDMSL) Software Architecture Document

3.3.3.3.7. Operation ChangeCertificate()
3.3.3.3.7.1. Pre-requisites

e The user credentials are valid
e The user has the role ROLE_ADMIN
e The user has the new certificate for the SMP

3.3.3.3.7.2. Description

This operation allows the admin team to change the SMP's certificate. It is called by the admin team
in case the SMP's certificate has expired and the new one needs to be applied. The new certificate
MUST be valid at the date time the request is sent.

e Input : SMP id, Certificate public key
e Qutput: none. HTTP 200 OK expected
e Fault: unauthorizedFault - returned if:
o The calleris not authorized to invoke the ChangeCertificate operation (The user
doesn't have the ROLE_ADMIN role)
o The public key already exists
e Fault: badRequestFault - returned if
o The supplied request does not contain consistent data
o Invalid public key
o The new certificate is not valid at the moment the request is sent
o The SMP id is unknown
e Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for

some reason
3.3.3.3.7.3. Technical design

@ ICipaSericeWs
SHIF
! |

shangeCertificate(ChangeCenificate Type)
= nget e

)

|

150 |

|

126501

1$mpDAD

(i

changeCedifioatetChangeCertificateBO)

i
validateSMPId(Sting)
!

|
veritySMPExistrSting)

Yy
3
¥

0;

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
|
0
T
|

etXS0ACerificate(ChangeCeificateB0)

-0

Y
i

isC1ientXS00C erificateValid(X500C erificate)
|

extraeiCertificate(X500C edificate)

I
calculate Ce i catel d(X509 Certificate)

y

R S e —

findCetificateByCertificataldtcartificatald)
T

createNewCertificate(ChangaCertificateBn) |

create Certificate(CerificateBO)

ngeCenificate(newt eificate B0, ol4C ertificateBO)

Y
de—J-—3-

S I . e ————— o}

——
—

fIT

Figure 16 - Sequence Diagram - BDMSL Service ChangeCertificate()

SML Page 33/ 72

(BDMSL) Software Architecture Document

3.4. Business layer

The business layer manipulates only business objects and defines the business rules.

Business objects are POJO and implement the Singleton pattern. They are defined in the common
package described in section 3.6.3 Business Objects (BO).

3.4.1. Naming convention

e Package: eu.europa.ec.bdmsl.business

e Interface: eu.europa.ec.bdmsl.business.I<InterfaceName>Business

e Implementation package: eu.europa.ec.bdmsl.business.impl

o Implementation: eu.europa.ec.bdmsl.business.impl.<InterfaceName>Businessimpl

3.4.2. Dependencies

In this layer, only the following calls are allowed:

e C(Calls to technical components
e C(Calls to the persistence layer
e (Calls to the common package

3.4.3. Frameworks

This layer handles most of the business logic processing. Therefore, there is no technical aspect. The
only framework used is Spring for the dependency injection.

3.4.4. Development of the business layer

3.4.4.1. Interface

public interface IManageServiceMetadataBusiness {

/**

* Retrieves the Service Metadata Publisher record for the service metadata.

* serviceMetadataPublisherID the unique ID

£ of the Service Metadata Publisher for which the record is required
* ServiceMetadataPublisherBO the service metadata publisher record.

£ TechnicalException Technical exception.

* BusinessException Business exception.

*/

ServiceMetadataPublisherBO read (String serviceMetadataPublisherID)
}

3.4.4.2. Implementation classes

The implementation classes extend the parent-class «AbstractBusinessImpl» and implement
their dedicated interface (here «IManageServiceMetadataBusiness»). The
AbstractBusinessImpl class only contains the logging service but may be completed with new
services if new common requirements are identified for *BusinessImpl classes in future versions.

public class ManageServiceMetadataBusinessImpl extends AbstractBusinessImpl
implements IManageServiceMetadataBusiness f{

SML Page 34/ 72

(BDMSL) Software Architecture Document

private IManageServiceMetadataDAO manageServiceMetadataDAO;

/*
* (non-Javadoc)
*
* @see eu.europa.ec.bdmsl.service.IManageServiceMetadataBusiness#read (String)
*/

@Override

public ServiceMetadataPublisherBO read (String serviceMetadataPublisherID)
throws TechnicalException, BusinessException {
ServiceMetadataPublisherBO smpBO =

manageServiceMetadataServiceBusiness.read (serviceMetadataPublisherID) ;

return smpBO;

}

3.5. Data Access layer

This layer access to the data persisted in the database. The objects of this layer are POJO that
implement the Singleton and DAO pattern.

3.5.1. Naming convention

e Package: eu.europa.ec.bdmsl.dao

e Interface: eu.europa.ec.bdmsl.dao.l<InterfaceName>DAO

e |Implementation package: eu.europa.ec.bdmsl.dao.impl

e Implementation: eu.europa.ec.bdmsl.dao.impl.<InterfaceName>DAOImpl
e Package Entity Object: eu.europa.ec.bdmsl.dao.entity

e Entity object: eu.europa.ec.bdmsl.dao.entity.<ObjectName>Entity

3.5.2. Dependencies

In this layer, only the following calls are allowed:
e (Calls to technical components
e C(Calls to the common package

3.5.3. Frameworks

This layer is the only one to use the JPA framework because it is the only one that actually accesses
to the database.

The configuration is managed by Spring.

3.5.4. Development of the data access layer

3.5.4.1. Interface

public interface ISmpDAO {

/**
* Retrieves the Service Metadata Publisher record for the service metadata.
& serviceMetadataPublisherID the unique ID

SML Page 35/ 72

(BDMSL) Software Architecture Document

£y of the Service Metadata Publisher for which the record is required
&y ServiceMetadataPublisherBO the service metadata publisher
*/

ServiceMetadataPublisherBO findSMP (String serviceMetadataPublisherID) throws
TechnicalException;,

}

3.5.4.2. Implementation classes

The implementation classes extend the parent-class «AbstractDAOImpl» and implement their
dedicated interface (here «IManageServiceMetadataDAO»).

public class ManageServiceMetadataDAOImpl extends AbstractDAOImpl implements
ISmpDAO {

/**
* @see eu.europa.ec.bdmsl.dao.ISmpDAO#£findSMP (String)
*/
@Override
public ServiceMetadataPublisherBO findSMP (String serviceMetadataPublisherID)
throws TechnicalException {
ServiceMetadataPublisherBO resultBO = null,
SmpEntity resultSmpEntity = getEntityManager () .find(SmpEntity.class, id);
if (resultSmpEntity != null) {
resultBO = mapperFactory.getMapperFacade () .map (resultSmpEntity,
ServiceMetadataPublisherBO.class)
} else {
loggingService.debug("No SMP found for id " + id);,
}

return resultBO;

3.5.4.3. Mapping BO / entity

The data access layer internally uses JPA entities to perform the Object/Relational mapping with the
database. However, the methods exposed in the interfaces only expose Business Objects because the
Business objects are the only ones that can be used between the layers. For more information on the
mapping BO/Entities, see the chapter 8 Object mapping.

3.6. Common package

This package is particular because it can be called without restriction by all the layers of the
application: it is transversal.

This common package provides:

e Business and technical Exceptions.

e Business objects (BOs) to be used in every layer
e Constants, error codes, utility classes

e Enums

3.6.1. Naming convention

e Package: eu.europa.ec.bdmsl.common

SML Page 36/ 72

(BDMSL) Software Architecture Document

e Package Business Object: eu.europa.ec.bdmsl.common.bo
e Business Object: eu.europa.ec.bdmsl.common.<ObjectName>BO

3.6.2. Dependencies

In this layer, only the following calls are allowed:

e (alls to technical components

3.6.3. Business Objects (BO)

Business objects (BO) are developed in the common package because they are transversal to all
layers and are used in the service, business and persistence layer. They are POJO with no dependency
to any framework or database. They can walk through the layers. We use BO because they are linked
to the domain, and hide the implementation choices made for facade and for the persistence. Thus,
they are not directly linked to any database model, or any web service interface.

Each BO extends the abstract class AbstractBusinessObject provided by the common library.
This class implements java.io.Serializable and overrides equals, hashCode and toString

as abstract methods.

Each BO must define a serialVersionUID and implement the 3 previous methods.

SML Page 37 /72

(BDMSL) Software Architecture Document

4. SOFTWARE ARCHITECTURE

There are 4 different maven projects:

bdmsl [bdmsl-builder]
bdmsl-client
bdmsl-common

bdmsl-parent-pom

bdmsl-webapp

pom.xm |

Figure 17 - Project structure

In this chapter, we describe the content and the role of each project.

4.1. Library "bdmsl-common"

Project name : bdmsl-common

Packages:

v i > bdmsl-commen [SWL EDELIVERY-1180_-_CEFify_BDMSL]
v B sre/main/java
v 1 eueuropa.ecbdmsl.commen

M bo

B business

B exception

3 logging

B service

B util
(# src/test/java
&) JRE System Library [JavaSE-1.7]
=) Maven Dependencies
iy srC
(= target
o pemxml

Figure 18 - Packages of the bdmsl-common project

This library is used by all the modules of the eDelivery BDMSL solution. It provides services like:

e Cryptography

e Constants

e Configuration manager

e Utils (dates, encoding, etc.)

e logging

e Abstract/parent classes common to all eDelivery BDMSL modules

4.2. bdmsl-webapp

Project name : bdmsl-webapp

SML Page 38/ 72

(BDMSL) Software Architecture Document

This is a Maven project that contains all the services, business logic and persistence code of the
application. It produces a war file that can be deployed in the supported application servers and
servlet containers.

There are multiple profiles of compilation:

e weblogic-oracle : produces a war compatible with a Weblogic application server and
an Oracle database

e tomcat-mysgl : produces a war compatible with a tomcat servlet container and a Mysq|
database

e jboss-mysgl : produces a war compatible with a JBoss application server and a Mysq|
database. Currently, this profile still needs to be configured.

To produce a war compatible with the profile weblogic-oracle, run the following command at the
root of the bdms1-webapp folder:

|mvn clean install -Pweblogic-oracle

4.3. Web service client

Project name: bdmsl-client

It's a SOAP web service client (stub) that is generated from the WSDLs of the main project. The client
is a Maven project and the output is packaged as a jar file.

The WSDL files contain all the methods that are exposed, the objects and the exceptions.
The projects that call the web services of the eDelivery BDMSL application can use this web service

client.

4.4. Parent pom

Project name: bdmsl-parent-pom

It's the parent pom of all the Maven module. It contains the version for the dependencies, default
configuration of plugins, etc.

SML Page 39/ 72

(BDMSL) Software Architecture Document

4.5. Maven configuration

[bdmsl—parent-pom]

[bdmsl—client]

[bdmsl-webapp]

e e e e

R nneE e Rt Lo

bdmsl-common

€— Depends

€---= Inherits

Figure 19 - Dependency tree of the maven projects

SML Page 40/ 72

(BDMSL) Software Architecture Document

5. LOGGING

5.1. Implementation

The logs use the Log4j framework. The bdmsl-common library provides the logging manager
ILoggingService and its main implementation class LoggingServiceImpl. This logging
manager must be used for all the logs within the eDelivery BDMSL application.

String, String, Throw

tylmpl (<] LoggerBus

(1]
)
")
o
]
)
")
")
W
]
i)

0 lLogEvent
D get gl String

99006000000 @

Figure 20 - Logging class diagram

There are 3 types of logs: security logs, business logs and miscellaneous logs. Each category of log has
its own appender defined in the 1og47 . xm1 file. By default, each category will log in a separate file:

e bdmsl-security.log : This log file contains all the security related information. For
example, you can find information about the clients who connect to the application.

e bdmsl-business.log: This log file contains all the business related information. For
example, when a participat is created, when a SMP is deleted, etc.

e bdmsl.log : This log file contains both the security and business logs plus miscellaneous
logs like debug information, logs from one of the framework used by the application, etc.

The security and business logs require a code that is defined in the implementation of the
ILogEvent interface. In the eDelivery BDMSL application, all the security and business messages are
defined in the LogEvents class.

The pattern of the logs is defined in the 1og47.xm1 file. The default pattern is:

|%d{ISOB601}{Europe/Brussels} [8X{user}] [%X{requestId}] $%-5p %c{l}:%L - %m3n

e user: The client authenticated by its certificate.
e requestId:the UUID of the request (provided by the application server)

SML Page 41/ 72

(BDMSL) Software Architecture Document

The values for the user and requestId properties can be set by calling the method
ILoggingService.putMDC (String key, String wvalue).

5.2. Log event codes

\ Category Log event code Description
SECURITY SEC-001 The host %s attempted to access %s without any certificate
SECURITY SEC-002 The host %s has been granted access to %s with roles %s
SECURITY SEC-003 The host %s has been refused access to %s
SECURITY SEC-004 The certificate is revoked : %s
SECURITY SEC-005 The root certificate of the client certificate is unknown in the

database. It means that the certificate is accepted at transport
level (SSL) but refused at application level. %s

SECURITY SEC-006 Certificate is not valid at the current date %s. Certificate valid
from %s to %s

SECURITY SEC-007 Certificate is not yet valid at the current date %s. Certificate valid
from %s to %s

BUSINESS BUS-001 Technical error while authentication process

BUSINESS BUS-002 Error while configuring the application.

BUSINESS BUS-003 The SMP was successfully created: %s.

BUSINESS BUS-004 The SMP couldn't be created: %s.

BUSINESS BUS-005 The following SMP was read: %s.

BUSINESS BUS-006 The SMP couldn't be read: %s.

BUSINESS BUS-007 The SMP was successfully deleted: %s.

BUSINESS BUS-008 The SMP couldn't be deleted: %s.

BUSINESS BUS-009 The SMP was successfully updated: %s.

BUSINESS BUS-010 The SMP couldn't be updated: %s.

BUSINESS BUS-011 The participant was successfully created: %s.

BUSINESS BUS-012 The participant couldn't be created: %s.

BUSINESS BUS-013 The list of participant couldn't be created: %s.

BUSINESS BUS-014 The list of participants couldn't be created: %s.

BUSINESS BUS-015 The participant was successfully deleted: %s.

BUSINESS BUS-016 The participant couldn't be deleted: %s.

BUSINESS BUS-017 The list of participant couldn't be deleted: %s.

BUSINESS BUS-018 The list of participants couldn't be deleted: %s.

BUSINESS BUS-019 The participants of SMP %s have been successfully listed.

BUSINESS BUS-020 The participants of SMP %s couldn't be listed.

BUSINESS BUS-021 The prepare to migrate service was successfully called for
participant: %s.

BUSINESS BUS-022 The prepare to migrate service failed for participant: %s.

BUSINESS BUS-023 The call to migrate service was successfully called for participant:
%s.

BUSINESS BUS-024 The call to migrate service failed for participant: %s.

BUSINESS BUS-025 The call to the list service succeeded

BUSINESS BUS-026 The call to the list service failed

BUSINESS BUS-027 The new certificate was successfully planned for change for
current certificate: %s

BUSINESS BUS-028 The certificate change failed for current certificate: %s

BUSINESS BUS-029 The following CNAME record has been added to the DNS for the

participant %s : %s

SML Page 42/ 72

(BDMSL) Software Architecture Document

BUSINESS BUS-030 The following NAPTR record has been added to the DNS for the
participant %s : %s

BUSINESS BUS-031 The following CNAME record has been added to the DNS for the
SMP %s : %s

BUSINESS BUS-032 The following A record has been added to the DNS for the SMP
%S : %s

BUSINESS BUS-033 The CertificateChangelob ran successfully. %s certificates have
been migrated

BUSINESS BUS-034 The CertificateChangelob failed.

BUSINESS BUS-035 The ChangeCertificate service has been executed successfully

BUSINESS BUS-036 The ChangeCertificate service has failed

Table 1 - Log event codes
SML Page 43/ 72

(BDMSL) Software Architecture Document

6. CACHING

In order to enhance performance, in-memory caches are used in the application. They rely on the
ehcache implementation. To put objects in a cache, we use annotations:

@Override

@Cacheable (value = "crlByUrl", key = "#crlDistributionPointURL")

public void verifyCertificateCRLs (String serial, String crlDistributionPointURL) {
[...]

}

The @Cacheable annotation triggers cache population. In the previous example, the name of the
cache is crlByUrl. The key attribute is one of the parameters of the method:
crlDistributionPointURL. The next time this method is called, if the cache is already populated
with a value for the given key, then the method won't actually be called and the result will be
returned from the cache.

Sometimes, it is useful to clear the caches. This can be done by calling the method
IBDMSLService.clearCache ().

SML Page 44/ 72

(BDMSL) Software Architecture Document

7. EXCEPTION HANDLING

7.1. Exception types

When exceptions are thrown in the business, persistence and service layers, they are transformed
into technical or business exceptions to ensure to the client of the service that all the possible
exceptions are declared in the service signature.

All the methods of the exposed interfaces in the persistence, business and service layer can only
throw two kinds of exceptions:

e TechnicalException : Technical exceptions happen when a technical component of a
business process acts in an unexpected way. Examples of technical exceptions are: 10
exception, timeout, bad configuration, etc.

e BusinessException : Business Exceptions are exceptions that are designed and
managed in the specification of a business process. In other words, Business Exceptions are
exceptions which happen at the process or workflow level, and are not related to the
technical components.

7.2. SOAP Faults

Because of the design of the WSDL in the SML specification, it is not possible to use an interceptor to
transform the exceptions into SOAP fault. Thus, it is the AbstractWSImpl class which handles
exceptions and convert any type of exception into appropriate SOAP faults. In the eDelivery BDMSL,
there are 4 types of SOAP faults, all mapped to TechnicalException:

e NotFoundFault

e UnauthorizedFault
e BadRequestFault
e InternalErrorFault

A typical SOAP fault example would be:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap :Body>
<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>5378C6571DE2DD3FD026704338FF678B</faultstring>
<detail>
<NotFoundFault
xmlns:ns2="http://busdox.org/transport/identifiers/1.0/"
xmlns="http://busdox.org/serviceMetadata/locator/1.0/">
<FaultMessage>[ERR-100] The SMP 'testSMLUpdate' doesn't
exist.</FaultMessage>
</NotFoundFault>
</detail>
</soap:Fault>
</soap :Body>
</soap:Envelope>

SML Page 45/ 72

(BDMSL)

Software Architecture Document

In the previous SOAP fault, the faultstring contains the request unique identifier provided by the
application server. This request unique identifier is traced in the logs, in order to easily find the logs
associated to an exception:

2015-07-24 10:32:08,562 [unsecure-http-client] [5378C6571DE2DD3FD026704338FF678B]

ERROR LoggingServiceImpl:83 - [ERR-100] The SMP 'testSMLUpdate' doesn't exist.

The error codes are all listed in the IErrorCodes interface (see table in the following paragraph).

7.3. Error codes

Error
code
100

Description

SMP not found error

Exception type

TechnicalException

101

Unauthorized error

TechnicalException

102

Certificate authentication issue

TechnicalException

103

The root alias is not found in the list of trusted

issuers in the database

TechnicalException

104

The certificate is revoked

TechnicalException

105

Generic technical error

TechnicalException

106

Bad request error

TechnicalException

107

DNS communication problem

TechnicalException

108

Problem with the SIGO signature

TechnicalException

109

Bad configuration

TechnicalException

110

Participant not found error

TechnicalException

111

Migration data not found

TechnicalException

112

Duplicate participant error

TechnicalException

113

Error when deleting a SMP

TechnicalException

114

The deletion failed because a migration is
planned for the given participant or SMP

TechnicalException

115

The certificate couldn't be found

TechnicalException

Table 2 - Error Codes

SML

Page 46/ 72

(BDMSL) Software Architecture Document

8. OBJECT MAPPING

There are 3 types of objects used in the application:

e JAXB objects : Generated objects from the WSDL
e Business objects (BO) : POJO used in the business logic in the service, business and

persistence layers
o JPA entities : Persistence domain objects

2 types of mapping are required:

JAXB SoapMappingInitializer Bus|ness EntityMappingInitializer JPA
objects <> objects € cntities

Figure 21 - Object mappings

The first type of mapping converts JAXB objects to BO and vice-versa. The implementation class is
SoapMappingInitializer.

The second type of mapping converts JPA entities to BO and vice-versa. The implementation class is
EntityMappingInitializer

In order to avoid hand coding value object assemblers to copy data from one object type to another,
we use a generic framework named Orika. Orika is a Java Bean mapping framework that recursively
copies data from one object to another.

An example of mapping would be:

@Component
public class SoapMappingInitializer {

@Autowired
private MapperFactory mapperFactory,

@PostConstruct
public void init() {
[...]
mapperFactory.classMap (PageRequestType.class, PageRequestBO.class)
.field("serviceMetadataPublisherID", "smpId")
.byDefault ()
.register();

[...]

In the previous mapping, we map the field serviceMetadataPublisherID of the class
PageRequestType to the field smpId of the class PageRequestBO. The other fields have the same
name so they are automatically mapped thanks to the byDefault () method. This mapping is

bidirectional.

SML Page 47172

https://code.google.com/p/orika/

(BDMSL) Software Architecture Document

To map an object, the singleton instance of the MapperFactory object can be used. For instance, in

the Facade layer (ws) :

[...]
public class BDMSLServiceWSImpl extends AbstractWSImpl implements IBDMSLServiceWS

{
[...]

@Autowired
private MapperFactory mapperFactory;,

[...]

@Override
@WebMethod ([...])
public void create (@WebParam ParticipantType participantType) {

[...]
// Convert the ParticipantType JAXB object into a ParticipantBO object

ParticipantBO participantBO =
mapperFactory.getMapperFacade () .map (participantType, ParticipantBO.class),
[...]
}
[...]

SML Page 48/ 72

(BDMSL) Software Architecture Document

9. DATABASE MANAGEMENT

9.1. Auditing

In order to automatically audit the changes in the database, all the DAOs must extend the
AbstractDAOImpl class and use its persist () and merge () methods. This way, the date of the
changes of any business data is automatically logged.

For each table containing business data, these 2 following columns are present:

e created on: date of creation of the row
e last updated on: date of the last update of the row

9.2. Versioning

Liquibase is used to manage the database versioning. Liquibase is an open source library for
tracking, managing and applying database changes and can be used for any database.

The database scripts are written as changeSet in an XML file and the library then generates the
appropriate SQL scripts for Oracle, H2 or MySQL databases.

Each time the application starts, Liquibase checks the version of the database and executes the
changeSet that have not been yet executed.

An example of changeSet would be:

<?xml version="1.0" encoding="UTF-8" standalone="no'"?>
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.3.xsd">

<property name="autoIncrement" value="true" dbms="mysql, h2"/>
<property name="autoIncrement" value="false" dbms="oracle'"/>
[...]
<changeSet author="eDelivery" id="1">
<createTable tableName='"bdmsl allowed wildcard">
<column name=''scheme" remarks="The scheme to which the wildcard
applies"”" type="VARCHAR (255) ">
<constraints nullable="false"/>
</column>
<column name="fk certificate id" remarks='"The foreign key to the
certificate" type="INT">
<constraints nullable="false"/>
</column>
<column defaultValueComputed="${now}" name="created on" remarks="Date
of creation"
type="datetime">
<constraints nullable="false"/>
</column>
<column defaultValueComputed="${now}" name="last updated on"
remarks="Date of the last update"
type="datetime">
<constraints nullable="false"/>
</column>

SML Page 49/ 72

http://www.liquibase.org/

(BDMSL) Software Architecture Document

</createTable>
</changeSet>
[...]
<changeSet author="eDelivery'" id="8">
<addPrimaryKey columnNames='fk certificate id, scheme"
constraintName="PRIMARY AWS"
tableName="bdmsl allowed wildcard"/>
</changeSet>
[...]
</databaseChangeLog>

The 1liquibase scripts are located in the src/main/resources/liquibase folder. The main file
isdb.changelog-master.xml.

9.3. Data model

9.3.1. Overview

BOMSL_CERTIFICATE BOMSL_ALLOWED_WILDCARD BOMSL_CONFIGURATION
P D NUMBER (10) P * SCHEME VARCHAR2 (255 BYTE) F * PROPERTY VARCHARZ (255 BYTE) DATABASECHANGELOG
U " CERTIFICATE_ID VARCHARZ (255 BYTE) FF* FK_CERTIFICATE_IB NUMBER (10) * VALUE CLOB "D VARCHARZ (255 BYTE)
* VALID_FROM TIMESTAMP * CREATED_ON TIMESTAMP DESCRIPTION cLoe " AUTHOR VARCHARZ (255 BYTE)
* VALID_UNTIL TIMESTAMP e * LAST_UPDATED_ON TIMESTAMP " CREATED_ON TIMESTAMP * FILENAME VARCHARZ (255 BYTE)
PEN_ENCOBING CLOB [PRIMARY_AWS (FK_CERTIFICATE_ID, SCHEME) LAST_UPDATED_ON TIMESTAMP * DATEEXECUTED TIMESTAMP
NEW_CERT_CHANGE_DATE DATE [PRIMARY_CON (PROPERTY) " ORDEREXECUTED NUMBER (10)
F NEW_CERT_ID NUMBER (10) % FK_WMS_SUB_SUBJECT_ID (FK_CERTIFICATE_ID) * EXECTYPE VARCHAR2 (10 BYTE)
" GRS 61D UEEEALLT * % PRIMARY_AWS (FK_CERTIFICATE_ID, SCHEME) SALMARYCON GRORERID MD5SUM VARCHAR2 (35 BYTE)
* LAST_UPDATED_ON TIMESTAMP DESCRIPTION VARCHAR2 (255 BYTE)
COMMENTS A

| PRIMARY_CER (ID)

1
|
|
4 UQ_CERTIFICATE [CERTIFICATE_ID) | BDMSL_SMP Iﬁ:Gu\BASE x’:ﬁw::z gsﬁaiﬂ?
I3 FK_cER_ID_CER_Ib (NEW_CERT_ID) ! P o iR AU EhATE) BOMSL_PARTICIPANT_IDENTIFIER
| A ' FK_CERTIFICATE_ID NUMBER (10) = =
& PRIMARY_CER (ID) | S+ ENDPOINT_PHYSICAL_ADDRESS VARCHARZ (255 BYTE) ; . Z:S;L:‘EPMUD ;"22:";; g:: ::;g
% UQ_CERTIFICATE (CERTIFICATE_ID) * ENDPOINT_LOGICAL_ADDRESS VARCHAR2 (255 BYTE) ARCHA
i it | - — S . ARCHA DATABASECHANGELOBLOCK
vy | + CREATED_ON TEETE F RSP D VARCHARZ (253 BYTE) -
____________ + LAST URDATED oH TR o | cRERTED.ON TINESTAUP P HUMBER (10)
£ FK_SUBDOMAIN D NUMBER (10) LAST_UPDATED_ON TIMESTAMF LOCKED NUMBER (1)
LOCKGRANTED TIMESTAMP
(& PRIMARY_PID (PARTICIPANT_ID, SCHEME:
[&= PRIMARY_SMP (SMP_ID) b =) LOCKEDBY VARGHARZ (255 BYTE)
FK_PID_SMP_ID_SMP_SMP_ID (FK_SHP_D!
AONSL_CERTFIGATE DOMAN (8 FI_SMP_SUBDOM_SUBDOMID (FK_SUBDOMAIN_ID) B FK_PID_SMP_ID_SMP_SMP_ID (FK_SHIP_ID) [FI_DATABASECHANGELDGLODK (0]
I3 FK_SMP_SUB_SUBJECT D (FK_CERTIFICATE_ID) & PRIMARY_PID (PARTICIPANT_ID, SCHEWE)
P " CERTIFICATE VARCHAR2 (255 BYTE) & PK_DATABASECHANGELOGLOCK (ID)
CRL_URL VARCHARZ (1000 BYTE) & PRIMARY_SWIP (SMP_ID)
* CREATED_ON TIMESTAMP W
* LAST_UPDATED_ON TIMESTAMP
* I5_ROOT_CA NUMBER (1) BOMSL_MISRATE
F " FK_SUBDOMAIN_ID NUMBER (10) F " SCHEME WARCHAR2 (255 BYTE)
F " PARTICIPANT_ID HAR2 (255 BYTE)
R AR A 0G0/ DERTIRICATEY OMSISSIRNOMAN P * MIGRATION_KEY VARCHAR2 (50 BYTE)
(%3 FK_CERTDOM_SUBDOM_SUBDOMID (FK_SUBDOMAIN_ID) [——f" * SUBDOMAIN_ID NUWEBER (10) NEW_SMP_ID VARCHAR2 (255 BYTE)
Ch _NAME VARCHARZ (255 BYTE) * OLD_SMP_ID VARCHAR2 (255 BYTE)
© PRIMARY_EDA (CERTIFICATE) * GREATED_ON TIMESTAMP © WERATED T
* LAST_UPDATED_ON TIMESTAMP « CREATED_ON TIMESTAMP
& BDUSL X _NAME_UN _NAME) * LAST_UPDATED_ON TIMESTAUP
(&= PRIMARY_SUBDOM (SUBDOMAIN_ID) |5 PRIMARY_MIG (SCHEME, PARTICIPANT_ID, MIGRATION_KE')
% PRIMARY_SUBDOM (SUBDOMAIN_ID) @ PRIMARY_MIG (SCHEME. PARTICIPANT_ID, MIGRATION_KE'Y)

Figure 22 - Data model overview

9.3.2. Global description of the tables

(Table ~ Description

bdmsl_allowed_wildcard It is possible for a given Service Metadata Publisher to provide the
metadata for all participant identifiers belonging to a particular
participant identifier scheme. If this is the case, then it corresponds
to the concept of a "wildcard" CNAME record in the DNS, along the
lines: *.<schemelD>.<SML domain> CNAME <SMP domain><SMP
domain> may either be the domain name associated with the SMP,
or an alias for it. This implies that all participant identifiers for that
schemelD will have addresses that resolve to the single address of
that one SMP - and that as result only one SMP can handle the
metadata for all participant identifiers of that scheme. Wildcard
records are indicated through the use of "*" as the participant

SML Page 50/ 72

(BDMSL)

Software Architecture Document

| Table

Description

identifier in the operations of the ManageParticipantldentifier

interface.

This table identifies the SMP with their certificates and map them to
schemes for which they can create wildcard records.

bdmsl_certificate

List of SMPs identified with their certificates.

bdmsl_certificate_domain

Associates the root certificates to the DNS domains

bdmsl_configuration

Table containing all the configuration

bdmsl_migrate

Contains the participants migrated or to be migrated

bdmsl_participant_identifier

List of the participants

bdmsl_smp

List of the SMPs

Bdmsl_subdomain

List of Subdomains

Table 3 - Tables list

9.3.3. Detailed description of the tables

\ Table
bdmsl_allowed_wildcard

Column
scheme

Description
The scheme on which the wildcard
applies

fk_certificate_id

The foreign key to the certificate

created_on

Date of creation

last_updated_on

Date of the last update

bdmsl_certificate

certificate_id

The certificate_id is a key
composed of the subject and the
serial number of the certificate.

valid_from

Start validity date of the certificate

valid_until

Expiry date of the certificate

pem_encoding

PEM encoding for the certificate

new_cert_change_date

The date of the change for the new
certificate

new_cert_id The new certificate id. Links to the
certificate that will be valid after
the current one is expired. At the
migration date, it aims to replace
the existing certificate
created_on Date of creation
last_updated_on Date of the last update
bdmsl_certificate_domain certificate Trusted root certificate. Must also

be defined in the configured
truststore

fk_subdomain_id

The foreign key to the subdomain

crl_url

URL to the certificate revocation list
(CRL)

created_on Date of creation

is_root_ca If certificate is root CA or not

last_updated_on Date of the last update
bdmsl_configuration property Name of the property

value Value of the property

description Description of the property

created_on Date of creation

SML

Page 51/72

(BDMSL) Software Architecture Document
\ Table Column Description
last_updated_on Date of the last update
bdmsl_migrate scheme The scheme of the participant

identifier to be migrated

participant_id

The participant identifier to be
migrated

migration_key

The migration key is a code that

must be passed out-of-band to the

SMP which is taking over the

publishing of the metadata for the

participant identifier.

This code must contain:

e 8 characters minimum

® 24 characters maximum

2 Special Characters
@#S%() {1~ | +=

e 2 Upper Case letters minimum

e 2 Lower Case letters minimum

e 2 Numbers minimum

¢ No white spaces

new_smp_id

The id of the SMP after the
migration

old_smp_id The id of the old SMP (before the
migration)

migrated True if the migration is done

created_on Date of creation

last_updated_on

Date of the last update

bdmsl_participant_identifier

participant_id

The participant identifier

scheme The scheme of the participant
identifier
fk_smp_id The foreign key to the SMP
identifier
created_on Date of creation
last_updated_on Date of the last update
bdmsl_smp smp_id The SMP identifier

fk_certificate_id

The foreign key to the certificate

endpoint_physical_address

The physical address of the
endpoint. This physical address is
used as the ALIAS on the CNAME
DNS record.

endpoint_logical_address

The logical address of the endpoint

created_on

Date of creation

fk_subdomain_id

The foreign key to the subdomain

last_updated_on

Date of the last update

bdmsl_subdomain

subdomain_id

The subdomain identifier

subdomain_name

The subdomain name

created_on

Date of creation

last_updated_on

Date of the last update

Table 4 - Tables fields

SML

Page 52/ 72

(BDMSL) Software Architecture Document

10. SCHEDULER

The Spring Framework provides abstractions for asynchronous execution and scheduling of tasks.

In the applicationContext.xml file, we can define the jobs to be scheduled:

<task:scheduler id="scheduler" pool-size="1"/>
<task:scheduled-tasks scheduler='"scheduler">
<task:scheduled ref="manageCertificateService" method="changeCertificates"
cron="0 0 2 ? * *"/>
</task:scheduled-tasks>

The previous example will execute every day at 2 am the method changeCertificate of the bean
name manageCertificateService.

In case of the execution of the application on a clustered environment, it is necessary to make sure
that multiple jobs won't perform the same task at the same time. The use of a pessimistic lock can be
useful:

@Override
public List<CertificateBO> findCertificatesToChange (Calendar currentDate) throws
TechnicalException {

// This method is used in the context of a job that can be run on a clustered
environment. To avoid concurrency issues, we do here a SELECT FOR UPDATE

Query query = getEntityManager () .createQuery ("SELECT cert from
CertificateEntity cert where cert.newCertificateChangeDate <= :currentDate')

. setParameter ("currentDate"”,

currentDate) . setLockMode (LockModeType . PESSIMISTIC WRITE)

[...]

10.1. Change Certificate

This job changes the certificates that have a migration date in the past or at the present day and
deletes the older ones.

This task runs according to this parameter:

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

certificateChangeCronExpression 0027? * * Cron expression for the
changeCertificate job. Example:
0027?** (everyday at 2:00
am)

This parameter can be updated manually on the database or by means of a liquibase script.

SML Page 53/ 72

(BDMSL) Software Architecture Document

10.2. Data Inconsistency Analyzer

This job looks for inconsistencies between the database and the DNS. It first accesses the DNS to
retrieve all SMPs and Participants. It then compares DNS data against Database. All dismatch entries
these changes are reported to the user by means of a report email.

As the previous job, this task will run according to the parameters below:

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

dataInconsistencyAnalyzer.cronJobExpression (Q(Q37?* * Cron
expression: 00
3?2 ** (every
day at 3:00 am)

dataInconsistencyAnalyzer.recipientEmail ema”@example_com Email address

to receive Data
Inconsistency
Checker results

dataInconsistencyAnalyzer.senderEmail ema”@examp|e_com Sender email

address for
reporting Data
Inconsistency
Analyzer.

These parameters can be updated manually on the database or by means of a liquibase script.

SML Page 54/ 72

mailto:email@example.com
mailto:email@example.com

(BDMSL) Software Architecture Document

11. VALIDATIONS

11.1. Participant ID validation per Domain

SML provides to each existent domain the possibility to validate its participant ids through Regular
Expression. The following property in the table BDMSL_CONFIGURATION allows validating participant
ids:

Example:
Property =subdomain.validation.participantldRegex.peppol.acc.edelivery.tech.ec.europa.eu

Value = A((((1234]45678|9584|9635):).) | (*))$

Property =subdomain.validation.participantldRegex.generalerds.acc.edelivery.tech.ec.europa.eu

Value = A.*S

NOTE: The property must start with subdomain.validation.participantldRegex. followed by the
existent subdomain name.

11.2. Logical Address validation per Domain

Two addresses are needed to create a SMP: the Logical and the Physical Addresses. As from SML
version 3.1, the configuration allows to specify if the Logical Address may accept HTTP or HTTPS
protocol for the Create SMP Operation.

An additional property has been introduced in the table BDMSL_CONFIGURATION in that
purpose.The property must start with
subdomain.validation.smpLogicalAddressProtocolRestriction., followed by the domain name.

The possible values for this property are (all, http or https). The option 'all' means that both protocols
are accepted.

Example:

Property =
subdomain.validation.smpLogicalAddressProtocolRestriction.test.acc.edelivery.tech.ec.europa.eu

Value = all

NOTE: The property must start with subdomain.validation.smpLogicalAddressProtocolRestriction.,
followed by the existent subdomain name.

SML Page 55/ 72

(BDMSL) Software Architecture Document

12. SECURITY

12.1. DNS

12.1.1. DNS specifications

The SML specification [REF1] states in the chapter 5. DNS spoof mitigation:

"The regular lookup of the address of the SMP for a given participant ID is performed using a
standard DNS lookup. There is a potential vulnerability of this process if there exists at least one
"rogue" certificate (e.g. stolen or otherwise illegally obtained). In this vulnerability, someone
possessing such a rogue certificate could perform a DNS poisoning or a man-in-the-middle attack to
fool senders of documents into making a lookup for a specific identifier in a malicious SMP (that uses
the rogue certificate), effectively routing all messages intended for one or more recipients to a
malicious access point. This attack could be used for disrupting message flow for those recipients, or
for gaining access to confidential information in these messages (if the messages were not separately
encrypted). One mitigation for this kind of attack on the DNS lookup process is to use DNSSEC rather
than plain DNS. DNSSEC allow the authenticity of the DNS resolutions to be checked by means of a
trust anchor in the domain chain. Therefore, it is recommended that an SML instance uses the
DNSSEC infrastructure."

Thus, in order to mitigate the risk of DNS spoofing, the DNSSEC can be used in the eDelivery BDMSL
application. The Domain Name System Security Extensions (DNSSEC) is a suite of Internet Engineering
Task Force (IETF) specifications for securing certain kinds of information provided by the Domain
Name System (DNS) as used on Internet Protocol (IP) networks.

3 properties allow the administrator to configure the DNSSEC:

Property Description

dnsClient.SIGOEnabled 'true' if the SIGO signing is enabled. Required fr
DNSSEC. Possible values: true/false

dnsClient.SIGOPublickeyName The public key name of the SIGO key

dnsClient.SIGOKeyFileName The actual SIGO key file. Should be just the
filename if the file is in the classpath or in the
‘configurationDir

Table 5 - DNS Properties

Remark: It is important to be aware that the BDMSL deployed at the European Commission is not
configured to use DNSSEC on the actual public DNS server:

SML Page 56 / 72

(BDMSL) Software Architecture Document

BDMSL 1
Notify

>
<

v

afxr

Dynamic Update
DNS server

Load balancer
Reverse proxy

BDMSL 2

SNET Webgate SNET DNS Public DNS

Figure 23 - BDMSL hosting at the EC

12.1.2. DNS implementation

The BDMSL registers 1 CNAME record for each SMP.
The BDMSL registers 2 types of DNS records for each participant:

e 1 CNAME record with the prefix "B-"
e 1 U-NAPTR record without prefix "B-"

Thus, for each participant, 2 records exist at the same time in the DNS and don't conflict because
they don't use the same hash algorithm. For example, if a SMP registers the participant
"0010:5798000000001" then:

e The MDS5 hash is "e49b223851f6e97cbfce4f72c3402aac"
e The SHA-256 Base32 hash is
"XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6KATONV3LMVSY5ARVQ"

As a result, the BDMSL registers 2 records in the DNS:

>dig CNAME B-e49b223851f6e97cbfced4f72c3402aac.iso6523-actorid-
upis.acc.edelivery. tech.ec.europa.eu (@ddnsext. tech.ec.europa.eu

B-e49b223851f6e97cbfcedf72c3402aac.iso6523-actorid-upis.edelivery.eu. 60 IN CNAME
smp.edelivery. tech.ec.europa.eu

>dig NAPTR XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6K4TONV3LMVSY5ARVQ. is0o6523-actorid-
upis.edelivery.eu @ddnsext.tech.ec.europa.eu

XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6K4TONV3LMVSY5ARVQ. iso6523-actorid-
upis.edelivery.eu. 60 IN NAPTR 100 10 "U" "Meta:SMP"
"I~ *SIhttp://smp.edelivery.eu/iso6523-actorid-upis: :0010:5798000000001!" .

SML Page 57 /72

(BDMSL) Software Architecture Document

In order to mitigate the risk of DNS spoofing, the BDMSL can use the DNSSEC infrastructure. The
deployment infrastructure is described in section 12.1 DNS.

12.2. Encryption Key

SML uses a private key to encrypt and decrypt the keystore password used by SML to sign any
response and the proxy password.

12.2.1. How to generate a private key

e Download one of the latest BDMSL .war files from the repository on the CEF Digital site
e Extract the .war file using any extracting tool
e Run the following commands to create a private key

1. cd bdmsl-webapp-XXX-weblogic-oracle (XXX being the SML version number you are
intalling)

2. java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.PrivateKeyGenerator
c:\temp\encriptionPrivateKey.private

Required parameter = Full directory path where the private key will be created
Example:
Printed result:
Private key created at c:\temp\encriptionPrivateKey.private

NOTE: Once the private key is generated, please copy the private key file name "EX:
encriptionPrivateKey.private" to the value of the property encriptionPrivateKey in the table
BDMSL_Configuration, and copy the private file to the path configured in the property

configurationDir.

12.2.2. How to encrypt a password

After generating a private key at the section 12.2.1, please configure the proxy or keystore (used to
sign response) password if needed as follows:

e Inside the folder already extracted from the BDMSL .war file, please run below command:

java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.EncryptPassword
c:\temp\privateKey.private Password123

1% parameter = private key location
2" parameter = plain text password

e To configure the proxy password, please copy the printed encrypted and base64 encoded
password to the value of the property nhttpproxyprassword in the table Bpsui,_conrrguraTION

SML Page 58/ 72

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/SML+software?src=contextnavpagetreemode

(BDMSL) Software Architecture Document

Example:

Property Description

httpProxyPassword vXA7JjCy0iDQmMX1UEN1Qwg==

Table 6 - DNS Properties

e To configure keystore password, please copy the printed encrypted and base64 encoded
password to the value of the property keystorepasswordin the table
BDSML_CONFIGURATION

Example:

Property Description

keystorePassword vXA7JjCy0iDQMX1UEN1Qwg==

Table 7 - DNS Properties

12.3. Authentication

The authentication relies on the use of a Public Key Infrastructure (PKI). The services are all secured
at the transport level with a two-way SSL / TLS connection. The requestor must authenticate using a
client certificate issued for use in the infrastructure by a trusted third-party. The server will reject SSL
clients that do not authenticate with a certificate issued under a trusted root.

WS-Security is only used for signing the response from the BDMSL to the SMP. It allows the SMP to
validate that the request was correctly processed and acknowledged by the BDMSL.

The authentication for the user interface is also performed with 2-way SSL and the user must provide
the SMP's certificate.

The authentication is performed through a custom interceptor named
CertificateAuthenticationInterceptor. This interceptor is configured to intercept any
incoming request in the cxf-servlet.xml configuration file:

<cxf:bus>
<cxf:inInterceptors>
<ref bean="certificateAuthenticationInterceptor"/>
</cxf:inInterceptors>
[...]
</cxf:bus>

The interceptor extracts the certificate information from the request and then validates it.
A certificate is valid if:

o The rootissuer is trusted in the bdmsl_certificate_domain table.
e Itis not revoked according to its certificate revocation list (CRL)
e Itisvalid for the current date

SML Page 59/ 72

(BDMSL) Software Architecture Document

This certificate is then automatically used to authenticate the client using the Spring security
framework. If the certificate is valid, then the client is authenticated and the certificate details are
stored in the security context. Otherwise, a UnauthorizedFault is thrown.

12.3.1. SSL configured on the application server

The 2-way SSL configuration can be directly set up on the application server hosting the application:

2-way SSL H
|

Figure 24 - SSL configured on the application server

Application server

In this type of configuration, the client certificate is passed in the request and can be intercepted in
the javax.servlet.request.x509Certificate attribute.

12.3.2. Reverse proxy with SSL

The server can be behind a reverse proxy. In this case, 2-way SSL is set up on the reverse proxy and
the application server hosting the application can use the HTTP protocol:

H <

HTTP

\ — —
IR Application server

everse proxy

2-way SSL

Client
Figure 25 - Reverse proxy with SSL

In this configuration, the certificate information is stored in the HTTP header, in the Client-Cert
attribute.

12.3.3. Admin Access

The system administrators can access the services like ChangeCertificate by authenticating through a
password included in the HTTP Header in the following way:

e The HTTP header need to have the following attribute: Admin-Pwd
e The password needs to be hashed with BCrypt algorithm
o The password will be stored in the configuration table under the key adminPassword

SML Page 60/ 72

(BDMSL)

Software Architecture Document

12.3.4. Enable/disable BlueCoat Authentication flag

In order to authenticate into SML using the header Client-Cert attribute, the flag
authentication.bluecoat.enabled must be enabled in the table BDMSL_CONFIGURATION (BlueCoat

Authentications are rejected otherwise)

12.4. Authorizations

12.4.1. Roles

There are 3 roles defined in the application:

Property Description
ROLE_SMP The role specific to SMP
clients

Current condition

The CN (Common Name) must start
with "SMP_" or "DN" (Distinguished
name) and must match regular
expression from configuration
property:
authorization.smp.certSubjectRegex.
Please see §14.1 for further
information

For a Non Root Certificate Authority,
the CN (Common Name) must
contain "_SMP_".

Please see §12.4.2 for further
information.

ROLE_PYP The role specific to the
PEPPOL Yellow Pages client

The CN starts with "PYP_"

ROLE_ADMIN The role for the
administrator of the BDMSL

No certificate needed and it needs
to have the right credentials sent via
the HTTP header attribute Admin-
Pwd

Table 8 - Roles

Currently, the role assignment is hardcoded in the

BlueCoatClientCertificateAuthentication, X509CertificateAuthentication and
AdminAuthentication classes. For the first two, the role assignment depends on the certificate
information, for the Admin it depends on the header information. This should be enhanced in a

future version.

The authorizations are set using the Spring security framework using the @PreAuthorize

annotation on the methods of the service layer:

@Override

@PreAuthorize ("hasAnyRole ('ROLE SMP', 'ROLE ADMIN')")

@Transactional (readOnly = false, rollbackFor = Exception.class)

public void prepareChangeCertificate (PrepareChangeCertificateBO
prepareChangeCertificateBO) throws BusinessException, TechnicalException {

[...]
}

SML

Page 61/ 72

(BDMSL) Software Architecture Document

In the previous example, the method can only be called if the current client has any of the roles
ROLE SMP or ROLE_ADMIN. Otherwise, a UnauthorizedFault SOAP fault is thrown.

12.4.2. Granting ROLE_ SMP

Root Certificate Authority

For granting a certificate as trusted and as RootCA, SML checks the issuer of the certificate against
the trusted RootCA List provided by the SML database. The database flag isRootCA must be true.

A Root Certificate Authority owns a PKI (Public Key Infrastructure) to manage certificates.
Non Root Certificate Authority

For granting a certificate as trusted and as NonRootCA, SML checks the subject of the certificate
against the trusted RootCA List provided by the SML database. The database flag isRootCA must be
false.

A Non Root Certificate Authority does not own any PKI (Public Key Infrastructure) to manage
certificates, a third party entity is responsible for managing certificates for such case.

Non Root and Root Certificate Priority

Apart from the aforementioned cases, SML allows certificates that are configured with Root and Non
Root CA simultaneously. In such cases SML gives priority to Non Root CA, it means that if a certificate
matches "Non Root CA" then SML ignores "Root CA".

NOTE: If the request method is HTTP the certificate is already trusted, for such cases SML only checks
if isRootCA database flag matches.

12.5. WS-Security

If the property signResponse is set to true, then the responses are signed using the WS-Security
framework.

The response signature is performed through a custom interceptor named
SignResponseInterceptor. This interceptor is configured to intercept any outgoing request in
the cxf-servlet.xml configuration file:

<cxf:bus>
[...]
<cxf:outlInterceptors>
<ref bean="signResponseInterceptor" />
</cxf:outInterceptors>
</cxf:bus>

SML Page 62/ 72

(BDMSL) Software Architecture Document

13. TECHNICAL REQUIREMENTS

This chapter describes the minimum and recommended system requirements to operate a BDMSL
component.

13.1. Hardware

Type Minimum Recommended
Processor 1 CPU core 4 CPU core
Memory (RAM) 2GB 8GB or more

Disk space 5GB Depends on usage

Table 9 - Hardware requirements

13.2. Software

13.2.1. Recommended stack

Ubuntu 12.04 LTS 64 bits
Oracle Java SE 8

Red Hat JBoss AS 7.1.1
MySQL 5.6

Google Chrome

13.2.2. Operating Systems

Any operating system that is compliant with one of the supported JVM.

13.2.3. Java Virtual Machines

e OracleJavaSEJRE 8
e OpenJDK8

13.2.4. Java Application Servers

e Apache Tomcat 8.x
e RedHatJBoss AS7.1.1
e Oracle Weblogic Server 12¢ (12.1.2.0.0)

13.2.5. Databases

e MySQL5.6
e Oracle Database 11g (11.2.0.4.0)
e h21.4.190

SML Page 63/72

(BDMSL) Software Architecture Document

13.2.6. Web Browsers

e Internet Explorer 8 or newer
e Mozilla Firefox
e Google Chrome

SML Page 64 /72

(BDMSL)

Software Architecture Document

14. CONFIGURATION

14.1. Application Configuration

Property Description

unsecureLoginAllowed

'true’' if the use of HTTPS is not required. If the value is
set to 'true', then the user 'unsecure-http-client' is
automatically created. Possible values: true/false

configurationDir

The absolute path to the folder containing all the
configuration files (truststore, keystore, sig0 key, etc.)

httpProxyHost The http proxy host

httpProxyPort The http proxy port

httpsProxyHost The https proxy host

httpsProxyPort The https proxy port

useProxy 'true' if a proxy is required to connect to the internet.
Possible values: true/false

httpProxyUser The proxy user

httpProxyPassword The proxy password

dnsClient.enabled

'true’' if registration of DNS records is required. Must
be 'true' in production. Possible values: true/false

dnsClient.server

The DNS server

dnsClient.publisherPrefix

This is the prefix for the publishers (SMP). This is to be
concatenated with the associated DNS domain in the
table 'bdmsl_certificate_domain'

dnsClient.SIGOEnabled

'true' if the SIGO signing is enabled. Required fr
DNSSEC. Possible values: true/false

dnsClient.SIGOPublickeyName

The public key name of the SIGO key

dnsClient.SIGOKeyFileName

The actual SIGO key file. Should be just the filename if
the file is in the classpath or in the 'configurationDir'

signResponse

'true’' if the responses must be signed. Possible values:
true/false

keystoreFileName

The JKS keystore file. Should be just the filename if the
file is in the classpath or in the 'configurationDir'

keystoreAlias

The alias in the keystore.

keystorePassword

The password for the keystore

paginationListRequest

Number of participants per page for the 'list'
operation of 'ManageParticipantldentifier' service.
This property is used for pagination purposes.

certificateChangeCronExpression

Cron expression for the changeCertificate job.
Example: 002 ? * * (every day at 2:00 am)

adminPassword

BCrypt hashed password. Used to verify that the
value provided in the HTTP header "Admin-Pwd" is
correct to then attribute the role: "ROLE_ADMIN".

dnsClient.domain.*

The value of this property represents the parent
domain for this subdomain.

* needs to be replaced by the subdomain, eg:
dnsClient.domain.subdomain.edelivery.tech.ec.europ
a.eu

SML

Page 65/ 72

(BDMSL)

Software Architecture Document

datalnconsistencyAnalyzer.cronJobExpression

Cron expression: 00 3 ? * * (every day at 3:00 am)

datalnconsistencyAnalyzer.recipientEmail

Email address to receive Data Inconsistency Checker
results

datalnconsistencyAnalyzer.senderEmail

Sender email address for reporting Data Inconsistency
Analyzer.

subdomain.validation.smpLogicalAddressProto
colRestriction.*

The case insensitive Value of this property must be
all,http or https. The option ‘all' means that both
protocols are accepted.

* needs to be replaced by the subdomain, eg:
subdomain.validation.smpLogicalAddressProtocolRest
riction.newEntitySubdomain.edelivery.tech.ec.europ
a.eu

subdomain.validation.participantldRegex.*

The value of this property must be populated with a
regular expression to define the syntax of accepted
subdomain names in addition to ISO 15459 constraints
governing these identifiers. By default, the regular
expression A.*$ may be used. It accepts any sequence
of characters and therefore adds no restriction.

* needs to be replaced by the subdomain, eg:
subdomain.validation.participantldRegex.newEntitySu
bdomain.edelivery.tech.ec.europa.eu

authentication.bluecoat.enabled

Must be true or false. True means that the SML
accepts and processes the header Client-Cert.

dnsClient.recordTypes.*

The value of this property represents the types of DNS
Records allowed to be created into the DNS server by
a subdomain.
* needs to be replaced by the subdomain, eg:
dnsClient.recordTypes.subdomain.edelivery.tech.ec.e
uropa.eu

Possible values are CNAME, NAPTR or ALL where the
last one will create both CNAME and NAPTR.

authorization.smp.certSubjectRegex

The value of this property must be populated with a
regular expression to define the DN (Distinguished
name for certificates with SMP role issued by
dedicated SMP issuer CA.

Table 10 -

14.2. Multiple domains

Application properties

SML is able to manage DNS records per domain. Any domain must be linked to only one certificate in

the database.

Domain: It is used by the SML to authenticate to the DNS server and gain update privileges.

Example: acc.edelivery.tech.ec.europa.eu or

Subdomain: It belongs to a domain and must

edelivery.tech.ec.europa.eu

be provided to create DNS entries.

SML

Page 66/ 72

(BDMSL) Software Architecture Document

Example: mycompany.acc.edelivery.tech.ec.europa.eu

In order to configure a subdomain please follow the steps below:
1. Create a subdomain in the table BDMSL_Subdomain:

Example:

Colurmns | Data | Constraints | Grants | Statistics | Triggers | Flashback | Dependendies | Details |

A E X PR sot. Fter:

4" SUBDOMAL.. [SUBDOMAIN_NAME IE

| ’ll 1 tax.acc.edelivery.tech.ec.europa.eu 01
2 2ehealth.acc.edelivery.tech.ec.eurocpa.eu 01

3 3 isaitb.acc.edelivery.tech.ec.europa.eu ol

Figure 26 — Creating a subdomain

NOTE: It is mandatory to define the new subdomain as NON ROOT CA or ROOT CA in the column
IS_ROOT_CA. Please check section 13.2.1 Granting ROLE_SMP

Define the subdomain configurations in the table BDMSL_Configuration:

- dnsClient.domain.{subdomain} = specify for every domain the name of the domain in the
dns server responsible for the subdomains.

28 dnsClient.domain.isaitb.acc.edelivery.tech.ec.europa.eu acc.edelivery.tech.ec.eurcpa.eu
29 dnaClient.domain.ehealth.acc.edelivery.tech.ec.europa.eu acc.edelivery.tech.ec.eurcpa.eu
30 dnaClient.domain.acc.edelivery.tech.ec.eurocpa.eu acc.edelivery.tech.ec.eurcpa.eu

Figure 27 — Defining a domain for every subdomain

- dnsClient.recordTypes.{subdomain} = specify for every domain the type of DNS Record
accepted when registering/updating participant, 'all' means that both DNS record CNAME
and NAPTR are accepted, possible values are [cname, naptr, all].

dnsClient.recordlypes.isaitb.acc.edelivery.tech.ec.eurcpa.eu all
dnsClient.recocrdIypes.ehealth.acc.edelivery.tech.ec.eurcpa.eu cname

dnsClient.recordIypes.acc.edelivery.tech.ec.eurcpa. eu naptr
Figure 28 — Defining the accepted types of DNS records

- subdomain.validation.smpLogicalAddressProtocolRestriction.{subdomain} = specify for
every domain the protocol that must be used for LogicalAddress when registering new SMP,
'all' means that both protocols HTTP and HTTPS are accepted, possible values are [http,

https, all].
subdomain.validation.smplogicalfddressProtocolRestriction.is... all
]su.bdc:main.validatic:n.smchgic:alﬁddressPrctccclRestricticn.eh. .. http
]subdcmain.validatic:n.smchgicalﬁddressPrctc:c.c:lRestrictic:n.ac:. .. https

SML Page 67 /72

(BDMSL) Software Architecture Document

Figure 29 — Defining the accepted protocol

- subdomain.validation.participantldRegex.{subdomain} = specify for every domain the
regular expression that validates the participant ID. By default the regular expression "A.*S"

is used.
subdomain.validation.participantIdRegex.isaitb.acc.edelivery... ".*5
subdomain.wvalidation.participantIdRegex.ehealth.acc.edeliver... ~.*§

subdomain.validation.participantIdRegex.acc.edelivery.tech.e... ~({({{0002|0007|0009|0037|00&0|0088|009&|0097...

Figure 30 — Defining regular expression for valid participant 1Ds

NOTE: The values of the properties aforementioned are case insensitive.

14.3. Application server specific configuration

To ensure compatibility with all the supported application servers, some configuration is required.

For technical reasons, it is not possible to use the exact same war in all the application servers. Thus,
it is needed to build different versions of the war. This can be done by using different maven profiles:

e weblogic-oracle: use this profile to build a war pre-configured for Weblogic and Oracle

database.

e tomcat-mysqgl: use this profile to build a war pre-configured for Tomcat and MySQL
database.

e jboss-mysqgl: use this profile to build a war pre-configured for JBoss and MySQL
database.

14.3.1. Weblogic

The file src/main/webapp/WEB-INF/weblogic.xml has 3 purposes in the context of the
BDMSL:

o Define the context root of the application

e Specify the class loading preferences for some package names (from the weblogic libraries or
from the war)

e Configure the work manager to optimize the performance of the application

14.3.2. Tomcat

Tomcat is not an application server because it only supports the servlet API (including JSP, JSTL). An
application server supports the whole JavaEE stack.

The file src/main/webapp/META-INF/context.xml has 2 purposes:

o Define the context root of the application
e Link the datasource to the globally defined JNDI datasource

SML Page 68/ 72

(BDMSL) Software Architecture Document

14.3.3. JBoss

The file src/main/webapp/ WEB-INF/jboss-web.xml is responsible for defining the context
root of the application.

SML Page 69/ 72

(BDMSL) Software Architecture Document

15. ANNEXE 1 — DOCUMENT PARTS

SML Page 70/ 72

(BDMSL) Software Architecture Document

16. LIST OF FIGURES

Figure 1 - Inter-1ayers iNTEIraCtioNSccviiiieiiiie et ree e e sbae e e e bae e e e nabae e e e areeas 11
Figure 2 - Sequence Diagram - ManageServiceMetadata Createccoccveevecieeeeccieee e, 20
Figure 3 - Sequence Diagram - ManageServiceMetadata Read........ccccccuveeeeiiiieecciiee e, 20
Figure 4 - Sequence Diagram - ManageServiceMetadata Update........cccuveeeeciieeeccieee e, 21
Figure 5 - Sequence Diagram - ManageServiceMetadata Deleteccccoveeeecieieeccieee e, 22
Figure 6 - Sequence Diagram - ManageParticipantldentifier Createcccecvuveeeeiiieecccciee e, 23
Figure 7 - Sequence Diagram - ManageParticipantldentifier CreateList........ccccceeeevveeiiiiieeeccciiee e, 24
Figure 8 - Sequence Diagram - ManageParticipantldentifier Deleteccccoveeeeiiieeecciee e, 25
Figure 9 - Sequence Diagram - ManageParticipantldentifier DeleteList.........c.cccoeevveeeeiiieeeecciee e, 26
Figure 10 - Sequence Diagram - ManageParticipantldentifier PrepareToMigrateccccceeeevveeeennneen. 27
Figure 11 - Sequence Diagram - ManageParticipantldentifier Migrate........cccccvvvveeiviieeeccciiee e, 28
Figure 12 - Sequence Diagram - ManageParticipantldentifier Listcccccvviiiiiiviiee e, 29
Figure 13 - Sequence Diagram - BDMSLService PrepareChangeCertificate()ccccovvereeeevveesveescrnennns 30
Figure 14 - Sequence Diagram — BDMSLService ClearCache() ...ccveeceeeecieeeeieeiieeecieecee et esvee e 31
Figure 15 - Sequence Diagram — BDMSLService ListParticipants().....ccceeceeeeeeeiiieeeiie e ccieeesieeevee s 32
Figure 16 - Sequence Diagram - BDMSLService CreateParticipantldentifier().........ccccocveeevieeicieescnenns 32
FISUIE 17 - ProjJECT STIUCTUIE. . .uiiiiiii ittt ettt e ettt e et e s s e s bae e e e e e s s s ssasbaraeeeeessssnsseanaeeesssnnas 38
Figure 18 - Packages of the bdmsl-common Project.........ccevviiiiiciiiiiciiee e 38
Figure 19 - Dependency tree of the Maven ProjJects......ccccvieieiicieie i 40
Figure 20 - LOZEING Class dIiagrami......ciicciiiiieciieeiciiieeeesitee e et e e este e e s s ree e s sabae e e ssabae e e enbeeeesnaseaesennrenas 41
=V Y R A O] o J =T a4 0 =T o o1 =SSR 47
Figure 22 - Data MOUEI OVEIVIEWeeiiiiiiieeeiiiee et ettt e e et e e e tte e e e e atae e e e enbae e e enbeeeeennseeeeennnenas 50
Figure 23 - BDMSL hoSting @t the EC.......ueiiiiiiie ettt e e ee e e bae e e e rae e e ae e e aneeas 57
Figure 24 - SSL configured on the application SEIVENcoociiii it 60
Figure 25 - REVErse ProXy WIith SSL......cccuiiii ettt e et e e e ae e e e ree e e e sabaee e e aneeas 60
Figure 26 — Creating @ SUDAOMAINccciiiieceee e e et e e e e ee e e e eabee e e e eabaee e e nneeas 67
Figure 27 — Defining a domain for every subdomainccccueiiiiiiiec e 67
Figure 28 — Defining the accepted types of DNS r€COrds.......cuuiiiccuiieeieiiieeecciiee et e eeveee et e e 67
Figure 29 — Defining the accepted ProtoCol........couiii it 68
List of Tables

LI o] T R o o AT o ol Yo =S PR 43
TADIE 2 - EFTOr COUES ...veiiiiiiiieeeiee ettt ettt ettt sate e sttt e sttt e sabeesbteesabeesbbeesabeesabteesabeesasaesnnseesbaeenn 46
TADIE 3 - TABIES [IST ..eiiiiiiiieeie ettt e sb e st e s bt e e sabe e s bt e e sabeesbeeesabeesabeesnnbeesbaeenns 51
Table 4 - TAbIES fIlUS ...eei ittt st et e st e s bt e st e e sabb e e sabeesbeessnteesabeeenes 52
B Lo 1T T B\ R 2 o o 1T A [PSP 56
B Lo 1Tl S BV R A o o 1T A [PSP 59
B Lo 1 TR A 3V R 2 o o 1T 4 =T3PPSR 59
TADIE 8 = ROIES ..ttt ettt ettt ettt et sb et e s et e e sabe e sbte e sabeesabteesabaesabbeesabeesabaesnnbeesbaeene 61
Table 9 - Hardware reqUIrEIMENTSccccuiieeeiiieeeecitee e eritee e esre e e e sre e e e sate e e e e sabaeeseabeeeeensbaeeessnseeesennsenas 63
Table 10 - AppPlication ProPeItiES ... e e e e e e e e eeb e e e e e e e e e ssanrraaeeeeeeeanns 66

SML Page 71/ 72

(BDMSL) Software Architecture Document

17. CONTACT INFORMATION

CEF Support Team
By email: CEF-EDELIVERY-SUPPORT@ec.europa.eu
By phone: +32 2 299 09 09
o Standard Service: 8am to 6pm (Normal EC working Days)

« Standby Service*: 6pm to 8am (Commission and Public Holidays, Weekends)

* Only for critical and urgent incidents and only by phone

SML Page 72/ 72

