

Date: 10/10/2016

EUROPEAN COMMISSION

DIGIT
Connecting Europe Facility

Domibus 3.2

 Plugin Cookbook

Usage and implementation manual

Domibus plugin cookbook Page 2 / 16

Document Approver(s):

Approver Name Role

Adrien FERIAL CEF eDelivery Technical team leader

Document Reviewers:

Reviewer Name Role

Federico MARTINI Software Developer

Summary of Changes:

Version Date Created by Short Description of Changes

0.1 21.06.2016 Christian KOCH Initial version

0.2 14.07.2016 Christian KOCH Changes according to comments

0.3 21.07.2016 Christian KOCH Added link to administration guide

0.4 29.07.2016 Christian KOCH Changes according to comments

0.5 11.08.2016 Christian KOCH Changes according to comments

1.0 11.08.2016 Cosmin BACIU Describe how perform the validation of the
submission. First version published

1.1 15.09.2016 Cosmin BACIU Updated the document for 3.2-RC1

1.2 04.10.2016 Ioana DRAGUSANU Added authentication details for 3.2.0

1.3 10.10.2016 Adrien FERIAL Finalization of the document

Domibus plugin cookbook Page 3 / 16

Table of Contents

1. INTRODUCTION ... 4

1.1. Objectives .. 4

1.2. Users .. 4

2. BACKEND INTEGRATION .. 5

2.1. General Overview .. 5

2.2. Plugin Structure ... 5

2.3. Message Flow .. 6

3. IMPLEMENTING A PLUGIN ... 8

3.1. Pull and Push plugins ... 8

3.2. Extending eu.domibus.plugin.AbstractBackendConnector .. 8

3.2.1. eu.domibus.plugin.BackendConnector.Mode.PULL .. 8

3.2.2. eu.domibus.plugin.BackendConnector.Mode.PUSH ... 8

3.3. Implementing eu.domibus.plugin.transformer.MessageSubmissionTransformer and
eu.domibus.plugin.transformer.MessageRetrievalTransformer .. 9

3.4. Validation of the submission ... 9

3.5. Plugin Authorisation .. 12

3.6. WS plugin authentication example ... 13

4. PLUGIN CONFIGURATION AND DEPLOYMENT ... 14

5. API DOCUMENTATION ... 15

6. CONTACT INFORMATION ... 16

Domibus plugin cookbook Page 4 / 16

1. INTRODUCTION

This document describes the Domibus plugin architecture and plugin API

1.1. Objectives

After reading this document the reader should be aware of the capabilities provided by the
Domibus plugin system. Additionally a developer familiar with the AS4 protocol will be able to
implement a plugin integrating an existing back office application into Domibus

1.2. Users

This document is intended for:

 The Directorate Generals and Services of the European Commission, Member States (MS)
and also companies of the private sector wanting to set up a connection between their
backend system and the Access Point. In particular:

o Business Architects will find it useful for determining how to best exploit the Access
Point to create a fully-fledged solution.

o Analysts will find it useful to understand the Use-Cases of the Access Point.

o Architects will find it useful as a starting point for connecting a Back-Office system to
the Access Point.

o Developers will find it essential as a basis of their development concerning the Access
Point services.

o Testers can use this document in order to test the use cases described.

Domibus plugin cookbook Page 5 / 16

2. BACKEND INTEGRATION

2.1. General Overview

The purpose of Domibus is to facilitate B2B communication. To achieve this goal it provides a
very flexible plugin model which allows the integration with nearly all back office applications.

There are two default plugins available with the Domibus distribution, the domibus-default-jms-
plugin and the domibus-default-ws-plugin. Further documentation for those plugins can be found
at https://ec.europa.eu/cefdigital/wiki/x/cTIEAg.

2.2. Plugin Structure

A plugin is only dependent on the domibus-plugin-api module which is released together with the
main Domibus application. Any changes to previous API versions will be addressed in a migration
guide. While the default plugins use the Spring framework [https://spring.io/] for dependency
injection this is not mandatory.

A plugin consists of implementations of at least two interfaces and one abstract class. The
extension of eu.domibus.plugin.AbstractBackendConnector and an implementation of both
eu.domibus.plugin.transformer.MessageSubmissionTransformer and
eu.domibus.plugin.transformer.MessageRetrievalTransformer.

This way multiple plugins can share the same data formats while using different transport
protocols or enforcing different security policies. It also is possible to implement transport
handlers for protocols while keeping the actual data format pluggable as those classes are not
necessarily coupled and can be reused independently from each other.

https://ec.europa.eu/cefdigital/wiki/x/cTIEAg

Domibus plugin cookbook Page 6 / 16

2.3. Message Flow

Figure 1: Message Submission from the back end

Domibus plugin cookbook Page 7 / 16

Figure 2: Message reception by the back end and delivery to the plugin (PUSH/PULL mode)

Domibus plugin cookbook Page 8 / 16

3. IMPLEMENTING A PLUGIN

3.1. Pull and Push plugins

There are two different ways of communicating with the back end. The first one is
eu.domibus.plugin.BackendConnector.Mode.PULL. A plugin operation under this mode initiates all
communications with Domibus MSH by itself and is never called from Domibus itself. This mode is
intended mostly for backend applications that are not always online (e.g. mobile devices).

The default Webservice plugin bundled with Domibus is an example of such a plugin. The major
disadvantage of this mode is that there is no way for Domibus to report processing errors back to the
plugin, relying on calls to getMessageStatus(java.lang.String) by the back end to be informed about
any error conditions.

The preferred way of implementing a plugin is eu.domibus.plugin.BackendConnector.Mode.PUSH This
mode allows Domibus to push notifications and incoming messages to the backend. In case the
backend is not reachable the notification will be retried according to the backend queue definition as
described in Section B.3, “Plugin configuration and deployment”. The default bundled JMS plugin is
an example of such a plugin.

3.2. Extending eu.domibus.plugin.AbstractBackendConnector

eu.domibus.plugin.AbstractBackendConnector provides implementations of most methods defined in
eu.domibus.plugin.BackendConnector. eu.domibus.plugin.AbstractBackendConnector should be used
as basis for every plugin.

3.2.1. eu.domibus.plugin.BackendConnector.Mode.PULL

• getMessageSubmissionTransformer()

• getMessageRetrievalTransformer()

To submit a message to the MSH the submit(U) implementation of
eu.domibus.plugin.AbstractBackendConnector should be used.

To download a message a combination of listPendingMessages() and
downloadMessage(java.lang.String, T) should be used.

3.2.2. eu.domibus.plugin.BackendConnector.Mode.PUSH

• getMessageSubmissionTransformer()

• getMessageRetrievalTransformer()

• deliverMessage(java.lang.String)

• messageReceiveFailed(java.lang.String, java.lang.String)

Domibus plugin cookbook Page 9 / 16

• messageSendFailed(java.lang.String)

• messageSendSuccess(java.lang.String)

Additionally listPendingMessages() is only callable from Mode.PULL plugins. To submit a message to
the MSH the submit(U) implementation of eu.domibus.plugin.AbstractBackendConnector should be
used. Additional details on these methods can be found in the Javadoc (see chapter 5).

3.3. Implementing
eu.domibus.plugin.transformer.MessageSubmissionTransformer

and eu.domibus.plugin.transformer.MessageRetrievalTransformer

The implementations of the transformer classes are responsible for transformation between the
native backend formats and eu.domibus.plugin.Submission. As there are two different interfaces to
implement it is possible to use different DTOs for message submission and reception. This is
convenient when those tasks are handled by different backend applications.

As eu.domibus.plugin.Submission is able to represent all kinds of messages there are many
parameters that must be set, with some of them unknown to the backend application. One approach
is to statically set those values in the transformer classes. Another, more flexible approach is the
usage of overridable default settings as used in the bundled default JMS plugin. For further details,
see the documentation and implementation of the default JMS plugin.

3.4. Validation of the submission

There are uses cases when it is required that the Submission object is validated before it is being
delivered to the plugin. For instance, the user might want to verify that one of all the payloads is
valid against a custom XSD schema. In this case, it does not make sense to deliver the message to the
plugin for processing if it is not valid.

In order to better understand why the current API is not sufficient for this use case we have to
understand first how the Submission object is delivered to the plugin for processing.

There are two transactions involved in the Submission processing:

1. In the first transaction the message is stored in the database and a signal is sent internally via JMS
to trigger the Submission processing.

2. A JMS listener is listening to Submission processing events and triggers the processing.

If the Submission is validated in the second step it would be too late because the Submission has
been already saved and accepted for processing in the first step. This is the reason why we need to
perform the Submission validation in the first step. If the Submission is not valid an exception will be
raised and the processing will not be performed.

The API for Submission validation can be found in the plugin API under the package
eu.domibus.plugin.validation

Domibus plugin cookbook Page 10 / 16

Hereunder you can find the class diagram of the classes involved in the submission validation.

In order to validate the Submission object one has to declare in the plugin Spring context a bean of
type eu.domibus.plugin.validation.SubmissionValidatorList and the bean id needs to contain the
plugin name. The core will automatically discover the bean of type SubmissionValidatorList and
perform the validation by calling the validate method on each SubmissionValidator configured.

In the plugin API there is already a default implementation of the SubmissionValidatorList interface
DefaultSubmissionValidatorList that has an java.util.ArrayList for maintaining the list of validators.

By default Domibus comes with 3 implementations of the SubmissionValidator interface. An example
how to use them can be found in the next paragraph.

1. eu.domibus.submission.validation.OnePayloadSubmissionValidator – validates that there is at
least one payload present in the Submission

2. eu.domibus.submission.validation.PayloadsRequiredSubmissionValidator – validates that
there is only one payload present in the Submission

3. eu.domibus.submission.validation.SchemaPayloadSubmissionValidator – validates that the
payloads are valid against a custom XSD schema

For example, below there is an extract of a custom plugin Spring context where we can see that a
custom validator has been implemented and there are 3 validators used to validate the Submission:

<!-- custom validator -->

<bean id="customValidator"

class="eu.domibus.submission.validation.CustomSubmissionValidator"/>

<bean id="customJaxbContext" class="javax.xml.bind.JAXBContext" factory-

method="newInstance">

Domibus plugin cookbook Page 11 / 16

 <constructor-arg type="java.lang.String"

 value="eu.domibus.plugin.custom.domain"/>

</bean>

<!-- schema validator -->

<bean id="customPayloadSchemaValidator"

class="eu.domibus.submission.validation.SchemaPayloadSubmissionValidator">

 <property name="jaxbContext" ref="customJaxbContext"/>

 <property name="schema" value="classpath:xsd/as4Payload.xsd"/>

</bean>

<!-- validators list -->

<bean id="customSubmissionValidatorList"

class="eu.domibus.plugin.validation.DefaultSubmissionValidatorList">

 <property name="submissionValidators">

 <list>

 <ref bean="onePayloadSubmissionValidator"/>

 <ref bean="customValidator"/>

 <ref bean="customPayloadSchemaValidator"/>

 </list>

 </property>

</bean>

Domibus plugin cookbook Page 12 / 16

3.5. Plugin Authorisation

Domibus can be configured to require authorisation by setting the following property to false in the
config file domibus-configuration.xml:

 <prop key=“domibus.auth.unsecureLoginAllowed”>false</prop>

The authorisation is performed at method level by using Spring, @PreAuthorize annotation.

There are two roles defined in the application, ROLE_ADMIN and ROLE_USER

@PreAuthorize("hasAnyRole('ROLE_USER', 'ROLE_ADMIN')")

public void hasUserOrAdminRole() {}

@PreAuthorize("hasAnyRole('ROLE_ADMIN')")

public void hasAdminRole() {}

ROLE_ADMIN has the right to call:

o sendMessage with any value for originalSender property

o downloadMessage (any message among messages notified to this plugin)

o listPendingMessages will list all pending messages for this plugin

o getMessageStatus and getMessageErrors

ROLE_USER has the right to call:

o sendMessage with originalSender equal to the originalUser

o downloadMessage, only if finalRecipient equals the originalUser

o listPendingMessages, pending messages filtered by the finalRecipient (equal to the
originalUser)

The authentication object implements org.springframework.security.core.Authentication and is
expected in the security context holder:

SecurityContextHolder.getContext().setAuthentication(authentication)

It is required that the method getPrincipal() of the authentication object returns the value
of the original user which represents the authenticated end user (matching the
“originalSender” or “finalRecipient” in the message properties).

Domibus plugin cookbook Page 13 / 16

3.6. WS plugin authentication example

The WS plugin provides an example of how to implement the authentication in the plugin. It
supports:

• Basic Authentication

• X509Certificates Authentication

• Blue Coat Authentication

Note: Blue Coat is the name of the reverse proxy at the EC. It forwards the request in HTTP with the
certificate details inside the request (“Client-Cert” header key).

The authentication is performed through a custom interceptor named
CustomAuthenticationInterceptor. This interceptor is configured to intercept incoming
requests on /backend interface, in the ws-plugin.xml:

<jaxws:endpoint id="backendInterfaceEndpoint"

implementor="#backendWebservice" address="/backend">

 …

 <jaxws:inInterceptors>

 <ref bean="customAuthenticationInterceptor"/>

 </jaxws:inInterceptors>

</jaxws:endpoint>

The interceptor will then call a custom authentication provider depending on the authentication type
in the request.

Basic Authentication takes precedence on both http and https.

X509Certificates is expected on https when no Basic Authentication was found.

Blue Coat certificates are expected on http when no Basic Authentication was found.

For convenience reasons, the WS plugin uses, to store the users/passwords and certificate ids,
exactly the same database as configured in Domibus core.

Two users are already inserted in the DB (TB_AUTHENTICATION_ENTRY table), “admin” and “user”
both with passwords “123456”. You need to change them for security reasons.

“admin” has the role ROLE_ADMIN and “user” has the role ROLE_USER, matching the originalUser
“urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1”

Note: Other plugins may use their own custom authentication providers and perform different
authentication as long as the SecurityContextHolder is set correctly as described in the “3.5 Plugin
Authorisation” section.

Domibus plugin cookbook Page 14 / 16

4. PLUGIN CONFIGURATION AND DEPLOYMENT

The documentation for configuration of the message routing and plugin deployment for all
supported deployment platforms can be found in the administration guide. It can be downloaded
from the release page of Domibus, section Documentation:
https://ec.europa.eu/cefdigital/wiki/x/cTIEAg

https://ec.europa.eu/cefdigital/wiki/x/cTIEAg

Domibus plugin cookbook Page 15 / 16

5. API DOCUMENTATION

Standard Javadoc documentation for the API can be downloaded at
https://ec.europa.eu/cefdigital/artifact/service/local/repositories/eDelivery/content/eu/domibus/do
mibus-plugin-api/3.2/domibus-plugin-api-3.2-javadoc.jar.

This documentation includes all necessary information required to implement the necessary
methods.

https://ec.europa.eu/cefdigital/artifact/service/local/repositories/eDelivery/content/eu/domibus/domibus-plugin-api/3.2/domibus-plugin-api-3.2-javadoc.jar
https://ec.europa.eu/cefdigital/artifact/service/local/repositories/eDelivery/content/eu/domibus/domibus-plugin-api/3.2/domibus-plugin-api-3.2-javadoc.jar

Domibus plugin cookbook Page 16 / 16

6. CONTACT INFORMATION

CEF Support Team

By email: CEF-EDELIVERY-SUPPORT@ec.europa.eu

By phone: +32 2 299 09 09

 Standard Service: 8am to 6pm (Normal EC working Days)

 Standby Service*: 6pm to 8am (Commission and Public Holidays, Weekends)

* Only for critical and urgent incidents and only by phone

