EUROPEAN COMMISSION

*"’***
5 e DIGIT
****.* Connecting Europe Facility

Domibus 3.3

Software Architecture Document

Date: 6/10/2017

Domibus 3.3

Software Architecture Document

Document Approver(s):

Approver Name

Role

Adrien FERIAL

IT Project officer

Document Reviewers:

Reviewer Name

Role

Cosmin BACIU

Developer

Summary of Changes:

Version |Date Created by Short Description of Changes
0.1 21.07.2016 Christian KOCH Initial draft
0.2 27.09.2016 Christian KOCH, Changes according to comments
Stefan MULLER
0.3 30.09.2016 Stefan MULLER Chapters about logging and caching added
0.4 05.10.2016 Federico Martini Added information about
TB_MESSAGE_LOG and TB_ERROR_LOG
0.5 06.10.2016 Christian KOCH, Information about certificate handling and
retry mechanism added. Graphics updated.
Stefan MULLER
1.0 10.10.2016 Adrien FERIAL Fist published version
1.1 13.01.2017 Cosmin BACIU Documented the new Domibus logging
framework
1.2 29.06.2017 Cosmin BACIU Documented the domibus-ext-services-api
1.3 03.10.2017 Cosmin BACIU Documented the messageStatusChanged
method and updated the diagrams for the
outgoing/incoming message flows

Page 2/ 36

Domibus 3.3 Software Architecture Document

Table of Contents

1. INTRODUCTIONciieeiiiieiiieeiienniienstensiiinssssnsssrsssssssssssnsssenssssnssssssssssssssasssssnssssnssssnsssanssssns 5
3 I e VT T 1] JO PP PPPPPPPPPPTPPRE 5
i Yolo T o 1Pt 5
S TR < =Y =T o Vol TP PEURN 5
1.4. Document CoNteNT OVEIVIEW....cciiiiiiiiiiiiiiiiiiieeeeeee ettt eeee e e e e e e e e e e eeeeeeseeeeesesseseessseseseseeesseeeseens 7
2. ARCHITECTURAL REPRESENTATIONccituuiiienniiennciennisineiiieessransrenssssnssssssssssssssssssssnssssnssssns 8
3. ARCHITECTURAL GOALS AND CONSTRAINTS.cccecttmiirnniireencransienrsssnsssrssssssessssnssssnssssnssssns 9
4. SECURITY ..uiieeiiieeiinniienninnesiiinesssnessisssresssssnssssnssssnsssssssssssssssnssssnssssnssssssssssssssanssssnsssanssssns 10
0 I o 4 o Yo [¥ ot [o USRS 10
4.2. Corner 1 - Corner 2 CommuNICatioNccoeeiiiiii i 10
4.3. Corner 2 —Corner 3 CommUNICAtiON ...cooeviiiiiiiii 10
4.3.1. Certificate CoNfigUIatioNccviii it et e e et e e e e bee e e e e bee e e e eareeas 10
N O 1= o o @Y {1 (oF- | <P SSURRRRROt 10
4.4, Corner 3 —Corner 4 CommuNiCatioNccoooviiiiiiiii 10
4.5, AdMINISErAtIVE SIEES..eeiiiii ittt e e e e e eercbrree e e e e e s e sttbaaaeeeeeessabssssaeeaeeesnnnsrens 11
5. USE-CASE VIEW.......cccuiiimiiiiniieniiinniiinsiraessisssiiesssrsssssrssssrssssrssssresssssssssssssssassssasssssnsssanssss 12
6. LOGICAL VIEW ...ccuiiiiniiienniiinniiensiiassienssirasssrssssresssssssssrssssssssssasssssssssssssssssssssssssasssssnsssanssss 14
B. 0. OVEIVIBW iiiiiiiiiiieiee e ettt ettt e e e sttt e e e s s s sttt e e e e e s s saababeeaeeesesssssbabaaeeeesssnsssssaaaaeesssnnsnsenaeees 14
6.2. Architecturally Significant Design Packages........ccccccueeeieiiiie it 14
6.2.1. Back office syStem (COMNEI 1/4) ...ttt ete e e eeveeste s te e s ee s beebeesbeesbeesanesaneens 15
6.2.2. Domibus plugin iMplementation..........ccueeeeciiee e e 15
6.2.3. Domibus default PIUGINSeviiieeeeeee e e et e e e e e 15
6.2.4. DOMIBUS PIUGIN AP ..ttt e e et e e e ae e e e s abe e e e s abee e s snbaeeeennreeas 15
6.2.5. DOMIDUS IMSH (COINEE 2/3) ettt ettt e e e et e et e e tee e e be e e teeeeateeebeeenanes 15
(o I e [a1 o T A = L 1Y 1 PP PP 15
7. DEPLOYMENT VIEWcuuiiiiiiiieniieniiinesiieeisimniiesssrsssssissssrssssrssssressssssssssssssssssssssssssnssssnssss 16
8. IMPLEMENTATION VIEW......ituiiiiueiiinniiensieasiirassiraessrssssresssrssssssssssssssssssssrsssssssssssnssssnssssas 17
8.1 OVEIVIBW i s s s s e e e e ss s s s s s s s s s s e s s s s s s e s s ssessasssasssssssssnsssssssnsssssnsssssssssssssnsesesnsnnnsnnennnns 17
O. DATA VIEW....cuiiiuiiiineiiieniiineniienssiensiienssisssssissssresssssssssensssssssssasssssssssssssssnssssnssssasssssnsssanssss 19
N R = = T 1Y o o [PRSP 19
1S B - 1 1=V F- T o 11 1R 22
9.2.1. Outgoing Message State MaChingccoociiiiiiiie e e 22
9.2.2. Incoming Message State MacChingcc.ueeeiiiiiiiiieee e e 22
10. SIZE AND PERFORMANCEcccituuiiieeiienniiinsimnessrsssieessrssssssnssssssssrasssssssssssssssnsssssssssanss 23

Page 3/ 36

Domibus 3.3 Software Architecture Document

L0.0. SIZE ettt ettt e e et e e e e bt e e e s e be e e e e e b te e e e e bt e ee s e beteeeebaeeesenreeeennee 23
O o=T s (o] o o o= [o [ol O PUPPPPPN 23
0 0 1Y X I 24
O N TG =T o T o1 1 YU PRPPPPN 24
10,2, REIADIITLY .eeeeieeciie ettt et et e st e e sbe e s be e e sateesbeeesabeesnbeesseeesnbeesnns 24
3 T 2o T =1 o 11 1 Y R PPPPN 24
12. LOGGING ...ccuuiiiiiuniiiiruniieiinnniettennsiettenssiestenssiossensssssssssssssssssssssssssssssssssssssensssssssnssssssanssss 25
00 B [4o 1= 0 =T o = T] o T RPN 25
20 0 1o 1 411 o U T Fo T = ol Yo L= U PURN 26
B TR 07X 0 o 32
14, EXTERNAL APceeeiiiiiiiiiinineiiisiniesessesssisssnnnsssassssssssstnnssssssssssssssnsssssssssssssssessssnnsssssss 33
14.1. Message acknowledgemMENt SEIVICEuiiiiciiiiieiiiee ettt e e e srree e e ssarae e e e 33
0 Y oY 1) e T T =T V] (ol PPNt 34
I B AN ol Y =Tt { U TR PPPN 35

Page 4/ 36

Domibus 3.3 Software Architecture Document

1. INTRODUCTION

1.1. Purpose

.................. This.document provides a comprehensive architectural overview of the system, using a number
of different architectural views to depict individual aspects of the system. It is intended to
capture and convey the significant architectural decisions that have been made on the system.

1.2. Scope

The architecture described in this document concerns the middleware Domibus created by the e-
CODEX project and adopted by the CEF as sample platform for e-delivery. It is compliant with the
e-SENS profile [REF2] of the OASIS ebMS3/AS4 standard. This document is not intended to
explain the ebMS3/AS4 standards, the four-corner model or any other concepts described in the
provided references.

1.3. References

Document Contents outline

[REF1] e-SENS AS4 Profile The e-SENS AS4 Profile is a profile of
the ebMS3 and AS4 OASIS Standards. It has
provisions for use in four-corner topologies, but
it can also be used in point-to-point exchanges.

[REF2] OASIS AS4 Profile AS4 Profile of ebMS 3.0 Version 1.0. OASIS
Standard, 23 January 2013.

[REF3] ebMS3 Core OASIS ebXML Messaging Services Version 3.0:
Part 1, Core Features. OASIS Standard. 1
October 2007.

[REF4] Domibus plugin cookbook Technical manual on Domibus plugin

development.

[REF5] Apache CXF Apache CXF is an open source services
framework. These services can speak a variety
of protocols such as SOAP, XML/HTTP, RESTful
HTTP, or CORBA and work over a variety of

Page 5/ 36

http://wiki.ds.unipi.gr/display/ESENS/PR+-+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/AS4-profile-v1.0.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/
http://cxf.apache.org/

Domibus 3.3

Software Architecture Document

transports such as HTTP, JMS or JBI.

[REF6]

Apache WSS4)J

The Apache WSS4J™ project provides a Java
implementation of the primary security
standards for Web Services, namely the OASIS
Web Services Security (WS-Security)
specifications from the OASIS Web Services

Security TC

[REF7]

WS-Policy Specification

The Web Services Framework provides a
general-purpose model and corresponding
syntax to describe the policies of entities in a
Web services-based system.

[REFS]

Spring Security

Spring Security is a framework that focuses on
providing both authentication and authorization
to Java applications. It can easily be extended to
meet custom requirements.

[REF9]

Bcrypt

Provos, Niels; Mazieres, David; Talan Jason
Sutton 2012 (1999). "A Future-Adaptable
Password Scheme". Proceedings of 1999 USENIX
Annual Technical Conference: 81-92.

[REF10]

The Java Message Service (JMS) APl is a Java
Message Oriented Middleware API for sending
messages between two or more clients.

[REF11]

€-CODEX

The e-CODEX project improves the cross-border
access of citizens and businesses to legal means
in Europe and furthermore creates the
interoperability between legal authorities
within the EU.

[REF12]

Java Servlet 3.0

A Java servlet is a Java program that extends
the capabilities of a server. Although servlets
can respond to any types of requests, they most
commonly implement applications hosted on
Web servers. Such Web servlets are the Java
counterpart to other dynamic Web content
technologies such as PHP and ASP.NET.

[REF13]

Xtext

Xtext is a framework for development of
programming languages and domain-specific
languages.

Page 6/ 36

https://ws.apache.org/wss4j
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.w3.org/TR/ws-policy/
http://projects.spring.io/spring-security/
http://www.usenix.org/events/usenix99/provos/provos_html/node1.html
http://www.usenix.org/events/usenix99/provos/provos_html/node1.html
https://www.jcp.org/en/jsr/detail?id=914
http://www.e-codex.eu/home.html
https://www.jcp.org/en/jsr/detail?id=315
http://www.eclipse.org/Xtext/

Domibus 3.3 Software Architecture Document

[REF14] SOAP Simple Object Access Protocol

[REF15] HTTP Chunking A mechanism by which data is broken up into a
number of chunks when sent over an HTTP
connection.

1.4. Document Content Overview

After summarizing the architectural representation, goals and constraints, this document
describes the system using several architectural views (Use Case, logical, process, deployment,
implementation and data) and then concludes with size, performance and quality considerations.

Page 7/ 36

http://www.w3.org/TR/soap/
http://en.wikipedia.org/wiki/Chunked_transfer_encoding

Domibus 3.3 Software Architecture Document

2. ARCHITECTURAL REPRESENTATION

The next two sections of the document describe the architectural goals and constraints.

Architecturally relevant Use Cases are described by a Use Case diagram and a short explanation
of their impact on the architecture. The following views will also be provided:

¢ Alogical view provides a high-level view of the platform presenting the structure of the
system through its components and their interactions.

e Animplementation view describes the software layers and the main software
components. A component diagram is used in this view.

e Adeployment view provides a description of the hardware components and how they
are linked together. This view gives a technical description of protocols and hardware

nodes used.

e A data view provides information about the data persistency. A class diagram will be used
to model the main system data.

UML diagrams are systematically used to represent the different views of the system.

Page 8/ 36

Domibus 3.3

Software Architecture Document

3. ARCHITECTURAL GOALS AND CONSTRAINTS

The following non-functional requirements that affect the architectural solution have been

identified:

Non-functional requirement

Description

Adaptability The application shall be easy to be integrated into
existing business workflows using different
communication protocols and data formats

Portability The application shall be able to be deployed on a wide

variety of software/hardware systems

Interoperability

The system shall be interoperable with both commercial
and free alternative implementations of the e-SENS
profile.

Page 9/ 36

Domibus 3.3 Software Architecture Document

4. SECURITY

4.1. Introduction

The Domibus middleware provides built-in security in accordance to the implemented [REF2]
specification and industry best practices. It can also be easily integrated into existing security
domains.

4.2. Corner 1 - Corner 2 Communication

As no assumptions can be made about the security architecture of corner 1/4 (back office), the
integration into the existing architecture has to be provided by the Domibus plugins. While the
default plugins do not include any security constraints they can be easily extended to
accommodate most of the security requirements.

4.3. Corner 2 - Corner 3 Communication

The communication between corner 2 and corner 3 is able to fulfil all the security requirements
specified in the e-SENS AS4 profile. The configuration is handled via WS-Policy files and PMode
configuration. All webservice security is enforced by the Apache CXF framework [REF5].

4.3.1. Certificate Configuration

The location and credentials of private and public certificates used by CXF are configured in the
“domibus.properties” property configuration file.
4.3.2. Client Certificate

The client certificate for use with client authentication (two-way SSL) is configured in the
“clientauthentication.xml” spring configuration file. Incoming TLS secured connections terminate
at the proxy server (e.g. Apache httpd) and must be configured according to the employed proxy
servers documentation.

4.4. Corner 3 — Corner 4 Communication

The security between corner 3 and corner 4 is handled via the same mechanisms used in the
communication corner 1 — corner 2.

Page 10/ 36

Domibus 3.3 Software Architecture Document

4.5. Administrative Sites

Access to the Domibus administration page is secured with username/password. The credentials
are managed by a Spring authentication manager and multiple authentication providers can be
plugged into it By default, the credentials are stored in the database and they are managed by an
authentication provider that uses a Bcrypt strong hashing function for encoding them.
Integration into an existing authentication scheme (i.e. LDAP) can be performed via Spring
configuration.

SECURITY DISCLAIMER

On top of the security that Domibus provides, the user shall take additional security measures
according to best practices and regulations. This includes, but is not limited to, using firewalls, IP
whitelists and file system/database encryption. DIGIT shall not be held responsible for any
security breach that might occur due to User not respecting this recommendation.

Page 11/ 36

Domibus 3.3 Software Architecture Document

5. USE-CASE VIEW

This section provides a representation of the use cases relevant for the architecture.
5.1. Selection Rationale
The use cases relevant for the architecture have been selected based on the following criteria:
e Use cases affecting the exchange between the back office system and the Domibus MSH.

e Use cases representing critical parts of the architecture, thereby addressing the technical
risks of the project at an earlier stage.

The following use cases have been selected:
¢ Back office integrations using pull communication (i.e. WebService)
e Back office integrations using push communication (i.e. JMS)

e Usage of the administrative GUI

Domibus Plugin
Implementation (pull)

' Send Message

Receive Pending
Message

«wuses»

«uses»

«wuses» «uses»

Request Errors for
Message

«wuses» «uses»

Back Office System Domibus MSH

Request List of
pending Messages

Request Message
Status

Page 12/ 36

Domibus 3.3

Software Architecture Document

«uses»

«uses»

Domibus Plugin
Implementation (push)

‘ Send Message

Push Received
Message

Notify of Status

«uses»

«wuses»

Back Office System

Change for Message

Domibus MSH

«uses»

«uses»

Administrative GUI

Upload
Configuration

TV/'
e, /(/Q'
(SAN N
N

—<<include>>—

User

«uses»

Show Message Log

Show Error Log

Page 13/ 36

Domibus 3.3 Software Architecture Document

6. LOGICAL VIEW

6.1. Overview

This chapter describes the main application modules, how they interact and how they implement
the specification and profile.

6.2. Architecturally Significant Design Packages

The following diagram provides a high-level view of the main packages composing the system.
The Database persistence and file system persistence are logical packages representing the
physical data storages used by the platform. The others represent different application layers and
give an overview of the organisation of the platform's code.

External tooling (can be downloaded fron the e-Delivery website)
PMode [-—-—-———--=———--=—---—----- > Administrative
Generator GUI
PMode PMode
Command . .
. Eclipse Plugin
Line Tool
T
|
|
|
|
|
<<configures>>
I
I
I
I
I
N

<<send with retries>>

]] 1
Domibus }
Plugin |---—---- Domibus [-—--------2> Domibus |
Implement Plugin API MSH }
ation }
]
_IZT
Domibus Domibus MSH is working as
default corner 2 and/or corner 3
Plugins

Page 14/ 36

Domibus 3.3 Software Architecture Document

6.2.1. Back office system (Corner 1/4)

The whole purpose of Domibus is to connect different back office systems via structured, secure
message exchange. While, regarding a single message exchange, corner 1 and 4 are usually
different applications running in different environments, within a single deployment the role of
corner 1 and corner 4 (for different message exchanges) is usually occupied by the same
application. Therefore, from a logical point of view, corner 1 and 4 are the same package.

6.2.2. Domibus plugin implementation

This module is responsible for the communication between the back office system and Domibus
and for the mapping from the back office internal data format to Domibus internal data format.
The communication and the mapping of the data can be done in both directions. Integration into
existing security architecture can also be implemented here.

As there can be made few assumptions about the back office system, this module is commonly
implemented by the Domibus user. Details on this process can be found inside the Domibus
Plugin Cookbook.

6.2.3. Domibus default plugins

Domibus provides three default plugins, which serve for testing purposes and as examples for
custom implementations. They were initially developed to accommodate the needs of the e-
CODEX project and thus will not be suitable for every use case.

6.2.4. Domibus plugin API

This package contains all necessary interfaces and classes required to implement a Domibus
plugin

6.2.5. Domibus MSH (Corner 2/3)

The Domibus MSH (Message Service Handler) is the main module, representing corner 2 and/or 3
in a 4-corner message exchange. All the implementation relevant to the e-SENS profile is done
inside this package. It is deployable on any Container supporting the Java Servlet Specification v
3.0.

To support the required AS4 retry mechanisms a spring configured cronjob regularly checks for
messages that need to be resent. The cronjob is configured using Spring and it uses the property:
“domibus.msh.retry.cron” defined in the configuration file domibus.properties. This does not
configure the retry interval for messages (which is done via PModes).

6.2.6. Administrative GUI

This package contains of a Spring MVC web application providing basic monitoring and
configuration options.

Page 15/ 36

Domibus 3.3 Software Architecture Document

7. DEPLOYMENT VIEW

The following is a description of the hardware nodes running the execution environment for the
system.

The following diagram provides a view of hardware components involved in this project. Note
that a clustered environment is shown. If a single server deployment is sufficient (i.e. for testing
purposes), a load balancer and multiple hardware nodes are not required.

Domibus (Node 1) ‘

Loadbalancer

Loadbalancer

Y WYY

Domibus {Node n) DB-Server Shared filesystem IMS-Server
(clustered) (shared queues/topics,
clustered)

It is important to note that not all physical nodes are represented on this diagram. Indeed load
balancers, database servers and JMS servers could be duplicated for scalability, performance and
availability reasons. Furthermore, security mechanisms like firewalls are not shown.

These are the identified hardware nodes.

¢ Load balancers are responsible for distributing requests among multiple Domibus nodes.
A random round robbing/no sticky session setup is recommended.

e Java servlet containers with deployed Domibus instances are responsible for message
processing

¢ A database server (MySQL 5.5+ or Oracle 10g+) is responsible for storing messages and
PMode configuration data

e The shared file system contains shared Domibus configuration data, file based PMode
data (Keystores) and, depending on configuration, binary data of message attachments.

Domibus has been successfully tested on Tomcat 8, WebLogic 12.1.x and WildFly 9.0.2 servers.
Page 16/ 36

Domibus 3.3 Software Architecture Document

8. IMPLEMENTATION VIEW

8.1. Overview

The following diagram describes the software layers of the system and their components.

The AS4 MSH Service is the web service which accepts the AS4 requests and it is the one that is
called by the external systems. External MSH services are accessed through the AS4 Message
Dispatch Service, which is a web service client capable of sending AS4 requests. The Back office
systems can access the platform through their respective plugin implementations. The Web
Layer is accessed typically by a web browser. The MSH SOAP handling is implemented using the
Apache CXF framework.

The Integration Layer uses the Spring framework and is responsible for the integration of custom
plugins and all communication processes and data format translations between back office
systems and Domibus.

The Services Layer offers access to the domain objects of the platform as well as to the platform
data layer. These services are Plain Old Java Objects relying on the Spring framework for
dependency injection and for transaction management.

The Types Layer contains all the java objects generated from the XSDs used by the platform.
These are JAXB generated objects.

The Domain Layer holds all the platform entities. The persistence of these entities is
implemented using the Java Persistence APl version 2.0.

Finally, the Data Persistence relies on the database and the file system to persist the data. The
file system is used to store configuration data and the database to persist the incoming and
outgoing messages.

All these layers run on a Java Servlet Container. The platform has been tested on Tomcat 8.x,
WildFly 9.0.2 and WebLogic 12.1.x.

Page 17/ 36

Domibus 3.3 Software Architecture Document

Servlet API Spring Security
))
| |
| |
1 1
Web Layer
Routing Configuration Configuration Upload Message Monitoring _

Integration Layer

Plugin Callbacks Back Office System Integration Control Chain Plugin Configuration

T
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4

Spring MVC

Plugin API

Service Layer

AS4 MSH Service

AS4 Message Dispatch Service AS4 Retry Service

PMode Discovery Service Compression Service

Decompression Service

Routing Service

Back Office Notification Service Receipt Generation Service

Types Layer

ebMS3 XML Types

PMode XML Types Internal Java AS4 Representation

<44444444444444444444

‘
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
;

v

Domain Layer
Domain Entities
|
|
N2
Data Access Layer
Database Persistance Filesystem Persistance

JPA 2

1

JAXB

Spring Core

Page 18/ 36

Domibus 3.3 Software Architecture Document

9. DATA VIEW

9.1. Data Model

The following diagrams show a high-level abstraction of the data entities, which must be

implemented by the system:
DII tb_message_info DII tb_receipt |

IID th_user_message DII tb_signal_message Eﬂj th_receipt_data
HH tb_part_info | EH tb_party_id | EH tb_messaging | ET tb_error |
E7 th_property

The above tables represent a 1:1 mapping of the ebMS3 XSD to database tables.

Page 19/ 36

Domibus 3.3

Software Architecture Document

7 th_business_process

£ th_mep_hinding 1 th_agreement £ th_mep | = th_party F th_payload £ th_service = th_party_id_type = th_reliahility = th_error_handling = th_security £ th_action I th_reception_awareness I th_messags
A A A T { { + A A A A A A A A
1 th_configuration 1 th_party_identifier
T th_role | = th_mpc 7 th_payload_profile I th_message_property_set
A A A A A A A
I th_process F th_join_payload_profie th_leg 1 th_join_propert
A A A A A
] th_join_process_init_party "I th_join_process_resp_party 7 th_join_process_leq 1 th_leg_th_mpc

Page 20/ 36

Domibus 3.3 Software Architecture Document

The above tables represent a 1:1 mapping of the PMode configuration XSD to database tables.

= th_backend_filter

= th_routing_criteria

Routing criteria contains the data that are needed to perform the routing of the messages to a
specific plugin implementation.

Backend filters are collections of routing criteria associated with a specific backend
representation.

- th_message_log |

& th_error_log |

The TB_MESSAGE_LOG table contains information about the User Messages and the Signal
Messages (both sent and received ones). The stored values are the following:

MESSAGE_ID, MESSAGE_STATUS, MESSAGE_TYPE, MPC, MSH_ROLE, NEXT_ATTEMPT,
NOTIFICATION_STATUS, RECEIVED, SEND_ATTEMPTS, SEND_ATTEMPTS_MAX, BACKEND,
ENDPOINT, DELETED

The TB_ERROR_LOG table contains information of the errors occurred during message
transmission. The stored values are the following:

ERROR_CODE, ERROR_DETAIL, ERROR_SIGNAL_MESSAGE_ID, MESSAGE_IN_ERROR_ID,
MSH_ROLE, NOTIFIED, TIME_STAMP

Page 21/ 36

Domibus 3.3 Software Architecture Document

9.2. State Machines

9.2.1. Outgoing Message State Machine

The outgoing messages have the following state machine:

SEND_ENQUEUED

delay if throughout
limit reached

SEND_IN_PROGRESS

. READY_TO_SEND

Initial submit via plugin |

retry time interval

reached
WAITING_FOR_RECEIPT

Wrong receipt or other failure N N
N valid receipt received
(e. g. connection lost)

WAITING_FOR_RETRY |'< SEND_ATTEMPT_FAILED ACKNOWLEDGED é

valid receipt received with an ebMS3 warning

%GCKNDWLEDGED_W!TH_WAF\NINCD*

END_FAILURE
no (more) retries configured /ks - Y)
when entering this state a
notification will be sent to the
backend plugin that initially
Time to live exceeded. There is at least one send attempt for each message submitted the message

9.2.2. Incoming Message State Machine

The incoming messages have the following state machine:

[ebMS3 errar receipt with severity FAILU RE]J/—\I
. REIECTED

[ebg53 error receipt with severity WARNING] [Undeawnloaded retention period expired]
RECEIVED _WITH_WARNING

—

[C4 downloads message]

Download retention period expired
DOWMNLOADED DELETED

[C4 downloads message]
[ebM53 receipt SLMCCESS) -\I/—\I | [Undownloaded retention period expired|
L RECEIVED

A

Page 22/ 36

Domibus 3.3 Software Architecture Document

10. SIZE AND PERFORMANCE

10.1. Size

Size restrictions applied on the data that is exchanged by the back office systems, but not on the
application or its components themselves, have an impact on the architecture and on the
configuration of the system.

To support the exchange of large binary files, the plugin API supports payload submission by
reference, meaning that Domibus is able to download a payload from a given URI. Additionally
payloads can be stored on the file system instead of the database to avoid the processing of huge
blobs.

As the e-SENS AS4 profile provides no provisions for ebMS large file handling (split/join) the
transfer of data is limited by bandwidth and memory constraints.

Extra restrictions can be implemented via the business process PModes. These restrictions
concern the maximum size of a payload and the maximum number of payloads in a message.

10.2. Performance

An important architectural decision that benefits the performance of Domibus includes the
decoupling of the solution into corner 1/4 representing the back office systems and corner 2/3
representing the Domibus Access Point.

The back office systems (cornerl/4) interact with the Domibus MSH (corner 2/3) via the
interfaces (web services, JMS, REST, etc) exposed by the plugins deployed on the Domibus MSH

side.

Domibus MSH is using internally JMS queues to perform the processing of the messages coming
from the back office systems via the plugins or from other access points.

All this architectural decisions lead to an improved throughput and load distribution of the
messages.

Page 23/ 36

Domibus 3.3 Software Architecture Document

11. QUALITY

The architecture of Domibus contributes to improve extensibility, reliability and portability.

11.1. Extensibility

Domibus is designed in a layered fashion and consists of multiple interconnected modules. This
modular design facilitates the upgrades by replacing existing modules and extensions by adding
additional modules.

11.2. Reliability

The reliability of Domibus is enhanced through the decoupling of each architectural layer by JMS
qgueues. A store and forward mechanism and automatic retry policy ensures that parts of the
system can continue functioning without losing data when an issue occurs in a specific
component.

11.3. Portability

Currently the application can be deployed on Tomcat 8, WebLogic 12.1.x and WildFly 9.0.2 and
can connect to Oracle and MySQL databases.

With minor changes, it might be deployed on any Java Servlet 3.0-compliant server and it might
connect to any RDBMS (Relational Database Management System).

Besides being extensible, Domibus is carefully designed in such a way that it is independent of
the specific external system that communicates with. The use of a generic plugin API leaves the
different layers unaffected when an additional external systems need to be supported by
Domibus.

The usage of JPA to access the database makes it easy for implementers to change the relational
database used to store the platform data.

Page 24/ 36

Domibus 3.3 Software Architecture Document

12. LOGGING

12.1. Implementation

The logging framework used by Domibus is SLF4J API together with Logback as the SLF4j
implementation.

The domibus-logging module provides the custom SLF4J logger DomibusLogger. This logger must
be used for all the logs within the Domibus application.

I Logger

i s

|
|
|
€ LoggerWrapper | |
|
|
|
|

T

© CategorylLogger

m Categorylogger(Logger, String, MessageConverter, String) I MessageCode

m trace(Marker, MessageCode, Object...) void m getCode(String
m debug(Marker, MessageCode, Object...) void ™ getMessage() String
m info(Marker, MessageCode, Object...) void |

m warn(Marker, MessageCede, Object..) void ':

m error(Marker, MessageCode, Object...) woid !

™ putMDC(String, String) void E DomibusMessageCode
m removeMDC(String) void m getCode() String
m translateMDCKey(String) String ™ getMessage() String
™ clearCustomKeys() void ‘1,_7

m clearAll] void

~—

i’ MessageConverter

™ getMessage(Marker, MessageCode, Object..] String

€ DomibusLogger
m DomibusLagger{Logger, MessageConverter)
m DomibusLagger{Logger) [

m businessTrace(DomibusMessageCade, Object...) void |

™ businessDebug(DomibusMessageCode, Object...) void ‘I

m businessInfo(DomibusMessageCode, Object...) void € DefaultMessageConverter

™ businessWarn(DomibushMessageCode, Object..) void . ;

™ businessWarn(DamibusMessageCode, Throwable, Object...) voig [~sereates™> 7 getMessagelMlarker MessogeCode, Object.) Sting
m businessError(DomibusMessageCode, Object...) void

m businessError(DomibusMessageCode, Throwable, Object...) wvoid

m securityTrace(DomibusMessageCode, Object...) void

m securityDebug(DemibusMessageCode, Object...) void "-—-—mea‘et

m securitylnfo(DomibusMessageCode, Object...) void T @ DomibusLoggerFactory

m securityWamn(DomibusMessageCode, Object...) woid getlogger(String) DomibusLogger
m securityWam(DomibusMessageCode, Throwable, Object..) woid 4§ getlogger(Class<?>) DomibusLogger
m securityError(DomibusMessageCode, Object...) void

m securityError(DomibusMessageCode, Throwable, Object...) void

There are three types of logs: security logs, business logs and miscellaneous logs. Each log
category has its own marker defined in the DomibusLogger class. By default, each category will
be logged in a separate file:

e domibus-security.log : This log file contains all the security related information. For
example, you can find information about the clients who connect to the application.

o domibus-business.log: This log file contains all the business related information. For
example, when a message is sent or received, etc.

o domibus.log : This log file contains both the security and business logs plus miscellaneous
logs like debug information, logs from one of the framework used by the application, etc.

Page 25/ 36

Domibus 3.3 Software Architecture Document

The security and business logs require a code that is defined in the DomibusMessageCode class.

The logs pattern is defined in the logback.xml file. The default pattern is:

|%d{ISO8601} [3X{d user}] [%X{d messageld}] %5p %c{1}:%L - 3m3n

e d user: The authenticated user.

e d messageld: The message id currently being sent/received.
The values for the d_user and d_messageld properties can be set by calling the method
DomibusLogger.putMDC(String key, String value). The prefix d_ is added automatically by the

DomibusLogger in order to easily identity the Domibus specific MDC properties.

Eg:

|LOGGER .putMDC (DomibusLogger.MDC USER, authenticationResult.getName()),; |

The MDC values need to be always cleaned after the thread execution. Otherwise, the thread
might be returned back to the thread pool with previously set MDC values and on the next thread
execution, the old MDC values will be used.

In order to easily clear the MDC values after a method execution a custom annotation, MDCKey,
has been created in order to mark a method that is setting values in the MDC. An AOP aspect is
detecting the methods annotated with the MDCKey annotation and after the execution of the
method it is clearing the MDC values.

Eg:

@MDCKey (DomibusLogger.MDC MESSAGE ID)
public String submit (final Submission messageData, final String backendName)

12.2. Domibus log codes

Category Event code Description

SECURITY SEC-001 Unsecure login is allowed, no authentication will be performed

SECURITY SEC-002 Basic authentication is used

SECURITY SEC-003 X509Certificate authentication is used

SECURITY SEC-004 Blue coat authentication is used

SECURITY SEC-005 The host [{}] attempted to access [{}]

Page 26/ 36

Domibus 3.3

Software Architecture Document

SECURITY

SECURITY

SECURITY

SECURITY

SECURITY

SECURITY

SECURITY

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

SEC-006

SEC-007

SEC-008

SEC-009

SEC-010

SEC-011

SEC-012

BUS-001

BUS-002

BUS-003

BUS-004

BUS-005

BUS-006

BUS-007

BUS-008

BUS-009

BUS-010

The host [{}] has been granted access to [{}] with roles [{}]

The host [{}] has been refused access to [{}]

Certificate is not valid at the current date [{}]. Certificate valid

from [{}] to [{}]

Certificate is not yet valid at the current date [{}]. Certificate
valid from [{}] to [{}]

No security policy (intended for testing alone) is used. Security
certificate validations will be bypassed!

User [{}] is trying to access a message having final recipient: [{}]

X509Certificate invalid or not found

Message successfully received

Failed to receive message

Failed to validate message

Failed to notify backend for incoming message

Invalid charset [{}] used

Invalid NonRepudiationIinformation: no security header found

Invalid NonRepudiationinformation: multiple security headers
found

Invalid NonRepudiationinformation: eb:Messaging not signed

Invalid NonRepudiationinformation: non repudiation
information and request message do not match

There is no content inside the receipt element received by the

Page 27/ 36

Domibus 3.3 Software Architecture Document

responding gateway

BUSINESS BUS-011 Reliability check failed, check your configuration

BUSINESS BUS-012 Reliability check was successful

BUSINESS BUS-013 Compression failure: no mime type found for payload with cid
[{}]

BUSINESS BUS-014 Error compressing payload with cid [{}]

BUSINESS BUS-015 Payload with cid [{}] has been compressed

BUSINESS BUS-016 Decompression failure: no mime type found for payload with
cid [{}]

BUSINESS BUS-017 Payload with cid [{}] will be decompressed

BUSINESS BUS-018 Decompression is not performed: leg compressPayloads
parameter is false

BUSINESS BUS-019 Decompression is not performed: partinfo with cid [{}] is in
body

BUSINESS BUS-020 Message action [{}] found for value [{}]

BUSINESS BUS-021 Message action not found for value [{}]

BUSINESS BUS-022 Message agreement [{}] found for value [{}]

BUSINESS BUS-023 Message agreement not found for value [{}]

BUSINESS BUS-024 Party id [{}] found for value [{}]

BUSINESS BUS-025 Party id not found for value [{}]

BUSINESS BUS-026 Party [{}] is not a valid URI [CORE] 5.2.2.3

Page 28/ 36

Domibus 3.3

Software Architecture Document

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUSINESS

BUS-027

BUS-028

BUS-029

BUS-030

BUS-031

BUS-032

BUS-033

BUS-034

BUS-035

BUS-036

BUS-037

BUS-038

BUS-039

BUS-040

BUS-041

BUS-042

Message service [{}] found for value [{}]

Message service not found for value [{}]

Message service [{}] is not a valid URI [CORE] 5.2.2.8

Leg name found [{}] for agreement [{}], senderParty [{}],
receiverParty [{}], service [{}] and action [{}]

Leg name not found found for agreement [{}], senderParty [{}],
receiverParty [{}], service [{}] and action [{}]

Preparing to send message

Message sent successfully

Message send failure

No Attachment found for cid [{}]

More than one Partinfo referencing the soap body found

Payload profile validation skipped: payload profile is not
defined for leg [{}]

Payload profiling for this exchange does not include a payload
with CID [{}]

Payload profiling for this exchange requires all message parts
to declare a MimeType property [{}]

Payload profiling error, missing payload [{}]

Payload profile [{}] validated

Property profile validation skipped: property profile is not
defined for leg [{}]

Page 29/ 36

Domibus 3.3 Software Architecture Document

BUSINESS BUS-043 Property profiling for this exchange does not include a
property named [{}]

BUSINESS BUS-044 Property profile [{}] validated

BUSINESS BUS-045 Message persisted

BUSINESS BUS-046 Message receipt generated with nonRepudiation value [{}]

BUSINESS BUS-047 Message receipt generation failure

BUSINESS BUS-048 Message status updated to [{}]

BUSINESS BUS-049 All payloads data for user message [{}] have been cleared

BUSINESS BUS-050 Security policy [{}] was not found for outgoing message

BUSINESS BUS-051 Security policy [{}] is used for outgoing message

BUSINESS BUS-052 Security algorithm [{}] is used for outgoing message

BUSINESS BUS-053 | Security algorithm [{}] is used for incoming message

BUSINESS BUS-054 Security encryption username [{}] is used for outgoing message

BUSINESS BUS-055 | Security policy [{}] for incoming message was not found

BUSINESS BUS-056 Security policy [{}] for incoming message is used

BUSINESS BUS-057 No Role with value [{}] has been found

BUSINESS BUS-058 Party with name [{}] has not been found

BUSINESS BUS-059 Message with id [{}] has not been found

BUSINESS BUS-060 Message with id [{}] has been consumed from the queue [{}]

Page 30/ 36

Domibus 3.3 Software Architecture Document

Page 31/ 36

Domibus 3.3 Software Architecture Document

13. CACHING

In order to enhance the performance domibus uses caching in specific areas of the application:
e caching of security policies
e caching of backend filter configuration

e caching of pmodes, when using the “CachingPModeProvider”

This is the default configuration of ehcache defines the following properties:

maxBytesLocalHeap 5m
timeToLiveSeconds 3600
overflowToDisk= false

Page 32/ 36

Domibus 3.3 Software Architecture Document

14. EXTERNAL API

Before the introduction of the external APl module, the API that was exposed to the plugin
implementers was strictly coupled with the internal core. If the signature of one of methods from
the APl changed, it affected both the plugin implementers and the internal core. There was no
easy way to guarantee backward compatibility of the API to the plugin implementers.

The goal of the external API module is to tackle the two issues explained above: guarantee the
backward compatibility to the plugin implementers and decouple the internal core from the
external API.

The external API will not change so frequently as Domibus. Therefore, it makes sense that the
external API has different lifecycle than the one of the Domibus lifecycle and it can evolve
independently. Technically this means that a new release of Domibus does not necessarily mean
a new release of the external API.

The external API functionality can be accessed in two ways:
e Java API

It can be used by the plugin implementers in the custom plugins. The following Maven
dependency is necessary in order to have access to the external API:

<dependency>
<groupId>eu.domibus</groupId>
<artifactId>domibus-ext-services-api</artifactId>
<version>${domibus-ext-services-api.version}</version>
<scope>provided</scope>

</dependency>

e REST interface

The REST interface can be used directly by the C1/C4 backends if the network configuration
allows it.

The documentation of the REST interface can be found on CEF Digital under the following link
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus+v3.3+REST+servicestdocume
ntation

14.1. Message acknowledgement service

This service is used to acknowledge when a message is:
e delivered from C3 to the backend

e processed by the backend

Page 33/ 36

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus+v3.3+REST+services+documentation
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus+v3.3+REST+services+documentation

Domibus 3.3 Software Architecture Document

Here are the typical use cases for using the MessageAcknowledgementService:

e amessage is received by C3 from C2: the plugin that handles the message registers an
acknowledgment before delivering the message to the backend

e amessage is processed by the backend and it informs C3 via the plugin; the plugin
registers an acknowledgment that the message has been processed by the backend

e amessage is processed by the backend and informs C3 directly via the REST service
exposed by the core; a REST service is exposed containing the same signature as {@link
MessageAcknowledgeService}

There are two ways of performing message acknowledgments between C3 and the backend:

e synchronous

C3(via the plugin) notifies the backend synchronously and the backend process the messages also
synchronously. In this case, there is no need for the backend to send a separate message
acknowledgement so the plugin at the C3 side registers the processing of the message by the
backend.

Eg:

BackendResponse backendResponse = plugin.callBackendWS(message)
messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(),
new Timestamp(System.currentTimeMillis()))
messageAcknowledgeService.acknowledgeMessageProcessed(message.getId(),
new Timestamp(System.currentTimeMillis()))

e asynchronous

C3 notifies the backend synchronously and the backend process the messages asynchronously. In
this case, the backend will send a separate message acknowledgement when it manages to
process the message successfully.

Eg:
plugin.sendMessageToTheBackend(message)
messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(),

new Timestamp(System.currentTimeMillis()))

14.2. Monitoring service

This service is used to monitor failed messages and to restore them if necessary.

Assuming that "failed message" means failed to be sent by the sender access point and getting
the status set to SEND_FAILURE, the service gives the possibility to:

o list all the failed messages
e restore a failed message

e restore all messages failed during a specific period

Page 34/ 36

Domibus 3.3 Software Architecture Document

e know how long time a message has been failed
e get the history of all delivery attempts

e delete the message payload of a failed message

14.3. Architecture

To offer a better picture of the architecture that has been implemented you can find below as an
example the class diagram of one of the services exposed, the message acknowledgment service.

Page 35/ 36

Domibus 3.3 Software Architecture Document

External AP Runtime Exception
1
domibus-ext-services-api
<<interface>>
Domibus ServiceException <<enumeration>>
B Ting, ACKNOWIEGGE TIMESIEMP: T MEStamp, FOM-SINg, (0: Sng) errorCode, DomibusErrorCade DomibusErroCode
-get, g tring) List<Message: entDT0> Son o
pom_o0z
T
i
1
] <=throws=>
1
] MessageAcknowledgementDTO
<<uses= G Tnieger
i ;:Ue’is:‘gw:g Stiing MessageAcknowle dgementException MessageAcknowledgementException
i to:string
“—=>properties: Map=String, String>
acknowlegeDate Timestamp
createDate Timestamp vi§
createlserSiring h
’— i
<<throws>>
1
domibus-ext-services-delegate
e ey <<interface>>
domibusDomainConverter. DomibusDomainConverier ¢ DomibusDomainConverter g
E ei0:String, acknowledgeTmestamp Timestamp
Jirom String, to:String) esListL ent-).
et g tring) List<MessageACknowledgeTO> <Message AcknowledgementTO> L
7Y
Domibu sDomainDefaultConverter

RuntimeE xception
I
1
domibus-api
MessageAcknowiedgement DomibusCoreException|
@ nteger <<interface=> I
messageld:string MessageAcknowledgementService I
from String 7
o:strin ST —
properties: Map-<string, String> & -+ eidString, Timestamp
acknowlegeDate Tmestamp from:Stiing, to:String)
createDate Timesiamp 9 0 tring)List<Message. ent> 1
createUserstring ~<throns~>
; WessageAcknowledgementException
- I
I
1
domibus-core
MessageAcknowledgementEntity
@ inieger
messageld String
itService <Sinterfaces> [rom S0
" AcknowledgementDay
e properties: Set=hessageAcknowledgementPropertyEntity>
B eid SN, Timestamp, & acknowlegeDate Timestamp
Jfrom:String. to-String fring enEni createDate Timestamp
g 9 tring}List<Message. ent- ~create(entity: MessageAcknowiedgementEnity) teUser String
MessageAcknowledg ementHibernateDac oS sageAcknowiedgementPTopeTiyERTY
name:String
eniEnty [value: String
+create(entity:VessageAcknowiedgementEntity)

Page 36/ 36

