

© European Union, 2018

Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the
reuse of Commission documents.

Date: 26/09/2018

EUROPEAN COMMISSION

DIGIT
Connecting Europe Facility

Domibus

Interface Control Document

Default JMS Plugin

Version [1.25]

Status [Final]

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 2 / 29

Document Approver(s):

Approver Name Role

Joao RODRIGUES Program Manager

Document Reviewers:

Reviewer Name Role

Joao RODRIGUES Program Manager

Adrien FERIAL Product Owner

Daniels MAARTEN Tester

Ioana DRAGUSANU Developer

Yves ADAM Quality Manager

Christian Koch eCodex team

Cosmin BACIU Developer

Tiago MIGUEL Developer

Caroline AEBY and Chaouki BERRAH Technical Writers

Summary of Changes:

Version Date Created by Short Description of Changes

0.01 18/03/2016 Pedro TAVARES Initial version

0.02 31/03/2016

Pedro TAVARES Update with comments of eCodex +
Update section 4.1 with simple function
for submitting a message

0.03 06/04/2016

Pedro TAVARES Update section 4.1 with simple function
for submitting a message

1.00 15/05/2016 Pedro TAVARES Update document with the new format

1.01 08/08/2016 Pedro TAVARES Update document with Yves ADAM
comments

1.02 31/08/2016 Yves ADAM Upgrade from version 3.1.1 to 3.2

1.03 22/03/2017 Cosmin BACIU Upgrade from version 3.2 to 3.2.3

1.04 10/04/2017 Cosmin BACIU Use a Domibus generic version instead of
a specific version

1.05 29/06/2017 Cosmin BACIU Updated the JMS properties to use _
instead of -

1.06 07/09/2017 Tiago MIGUEL Updated the JMS plugin properties to
expose in the OUT queue the message
payload's file location. Reviewed
document contents and formatting

1.07 09/10/2017 CEF Support List of reviewers updated.

1.08 04/12/2017 CEF Support References updated for Domibus 3.3.1
release.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 3 / 29

1.09 08/03/2018 CEF Support References to Domibus 3.3.2 & links
updated

1.10 20/03/2018 CEF Support Reuse notice added; e-Sens AS4 profile
replaced by eDelivery AS4 profile.

1.20 16/07/2018 Chaouki BERRAH "payload_[NUM]_description: A
description of the payload" removed

1.21 25/07/2018 Cosmin BACIU

Ioana DRAGUSANU

Multi-tenancy

JMS plugin configuration

1.22 30/08/2018 Cosmin BACIU Multi-tenancy updated

1.23 07/09/2018 Cosmin BACIU Additional information for multi-tenancy

1.24 17/09/2018 Caroline AEBY multi-tenancy => Multitenancy

1.25 26/09/2018 Caroline AEBY End of the standby service

Table of Contents

1. INTRODUCTION ... 5

1.1. Purpose .. 5

1.2. Scope ... 5

1.3. Audience .. 6

1.4. References ... 6

1.5. Acronyms ... 8

2. INTERFACE FUNCTIONAL SPECIFICATION .. 9

2.1. The four corner model .. 9

2.2. Introduction to Domibus - AS4 .. 10

3. INTERFACE BEHAVIOURAL SPECIFICATION .. 11

3.1. JMS-Messages ... 13

3.2. JMS-Queues ... 15

3.2.1. domibus.backend.jmsInQueue ... 15

3.2.2. domibus.backend.jms.replyQueue .. 16

3.2.3. domibus.backend.jms.outQueue ... 17

3.2.4. domibus.backend.jms.errorNotifyProducer .. 18

3.2.5. domibus.backend.jms.errorNotifyConsumer ... 19

3.3. JMS Plugin Configuration .. 19

3.3.1. Message properties .. 19

3.3.2. General properties ... 20

4. MULTITENANCY ... 21

4.1. Domain specific properties .. 22

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 4 / 29

5. ANNEXE 1 – INTERFACE POLICY SPECIFICATION .. 23

6. ANNEX 2 - ERRORS CODES TABLE ... 24

7. ANNEXE 3 – DOCUMENT PARTS ... 27

8. LIST OF FIGURES .. 28

9. LIST OF TABLES .. 28

10. CONTACT INFORMATION ... 29

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 5 / 29

1. INTRODUCTION

1.1. Purpose

The purpose of this document is to outline the JMS Data Format Exchange to be used as part of the default JMS
backend integration solution for the Domibus Access Point1.
According to CEF eDelivery, an Access Point is an implementation of the OpenPEPPOL AS2 Profile or the
eDelivery AS4 Profile. The data exchange protocols of CEF eDelivery are profiles, meaning that several options
of the original technical specifications were narrowed down in order to increase consistency, interoperability
and to simplify deployment. The profile of AS2 was developed by OpenPEPPOL2, and the profile of AS4 was
developed by e-SENS3 in collaboration with several service providers while being implemented in the e-Justice
domain by e-CODEX. An Access Point exposes two interfaces:

 An interface to connect the Backend system with the Access Point. Typically, this interface is

customisable as communication between Access Points and Backend systems may use any messaging

or transport protocol.

 A standard messaging interface between Access Points, this interface is configurable according to the

options of the profiles supported by CEF eDelivery. It is important to note that CEF eDelivery

standardises the communication only between the Access Points.

This document will univocally define the JMS plugin that acts as an interface to the Access Point (Corner Two
and Corner Three in the four corner topology that will be explained later in this document) component of the
CEF eDelivery building block.

There is 1 interface described in this document:

Interface Description Version

JMS backend integration The JMS plugin 3.x.y

Table 1 - Interface described

1.2. Scope

This document covers the service interface of the Access Point from the perspective of the JMS backend
integration. It includes information regarding the description of the JMS-Queues, information model and the
types of messages for the services provided. This specification addresses no more than the service interface of
the Access Point. All other aspects of its implementation are not covered by this document (i.e. the service
consumer). The ICD specification provides both the provider (i.e. the implementer) of the services and their
consumers with a complete specification of the following aspects:

1 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

2 http://www.peppol.eu/

3 http://www.esens.eu/

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus
http://www.peppol.eu/
http://www.esens.eu/

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 6 / 29

 Interface Functional Specification, this specifies the set of services and the operations provided by each
service;

 Interface Behavioural Specification, this specifies the expected sequence of steps to be respected when
calling a service or a set of services;

 Interface Message standards, this specifies the syntax and semantics of the data and metadata;

 Interface Policy Specification, this specifies constraints and policies regarding the operation of the service.

1.3. Audience

This document is intended to the Directorate Generals and Services of the European Commission, Member
States (MS) and also companies of the private sector wanting to set up a connection between their backend
systems and the Access Point.

In particular:

 Architects will find it useful for determining how to best exploit the Access Point to create a fully-
fledged solution and as a starting point for connecting a Back-Office system to the Access Point.

 Analysts will find it useful to understand the Access Point that will enable them to have a holistic and
detailed view of the operations and data involved in the use cases.

 Developers will find it essential as a basis of their development concerning the Access Point plugin
services.

 Testers can use this document in order to test the interface by following the use cases described.

1.4. References

The table below provides the reader with the list of reference documents.

Document Contents outline

[REF1] Introduction to the Connecting
Europe Facility - eDelivery
building block

Overview of eDelivery

[REF2] Using HTTP Methods for RESTful
Services

Short description of HTTP Methods for RESTful Services

[REF3] Business Document Metadata
Service Location - Software
Architecture Document

This document is the Software Architecture document of the
CIPA eDelivery Business Document Metadata Service Location
application (BDMSL) sample implementation. It intends to
provide detailed information about the project: 1) An
overview of the solution 2) The different layers 3) The
principles governing its software architecture.

[REF4] ebXML (Electronic Business using
eXtensible Markup Language)

ebXML (Electronic Business using eXtensible Markup
Language)

[REF5] Web Services Description
Language (WSDL) 1.1

Web Services Description Language (WSDL) 1.1
WS-I Basic Profile Version 1.1

[REF6] XML Schema 1.1 XML Schema 1.1

[REF7]

Extensible Markup Language
(XML) 1.0

Extensible Markup Language (XML) 1.0

[REF8]

Hypertext Transfer Protocol 1.1 Hypertext Transfer Protocol 1.1

https://joinup.ec.europa.eu/sites/default/files/ckeditor_files/files/(Building%20Block%20DSI_IntroDocument)%20(eDelivery)%20(v1%2002).pdf
http://www.restapitutorial.com/lessons/httpmethods.html
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
http://www.ebxml.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 7 / 29

Document Contents outline

[REF9] SOAP Messages with Attachments SOAP Messages with Attachments

[REF10] AS4 Profile of ebMS 3.0 Version
1.0

AS4 Profile of ebMS 3.0 Version 1.0

[REF11] eDelivery - profile https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eDeli
very+AS4

[REF12] eDelivery – Pmode Configuration eDelivery – Pmode Configuration
(will be available at a later stage)

[REF13] http://docs.oasis-
open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/

XSDs for ebms3

[REF14]

http://docs.oasis-
open.org/ebxml-
msg/ebms/v3.0/core/cs02/ebms_
core-3.0-spec-cs-02.pdf

ebXML (Electronic Business using eXtensible Markup
Language)

http://www.w3.org/TR/SOAP-attachments
http://wiki.ds.unipi.gr/display/ESENS/PR+-+AS4
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eDelivery+AS4
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eDelivery+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/cs02/ebms_core-3.0-spec-cs-02.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/cs02/ebms_core-3.0-spec-cs-02.pdf

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 8 / 29

1.5. Acronyms

Acronym Definition

ebMS ebXML Messaging Service Specification

MEP Message Exchange Pattern
A Message Exchange Pattern describes the pattern of messages required by a communications
protocol to establish or use a communication channel.

ebXML

Electronic Business XML
Project to use XML to standardise the secure exchange of business data.

P-Mode Processing Mode

MSH Message Service Handler
The MSH is an entity that is able to generate or process messages that conform to the ebMS
specification, and which act in at least one of the two ebMS roles: Sender and Receiver.
In terms of SOAP processing, an MSH is either a SOAP processor or a chain of SOAP processors.
In either case, an MSH has to be able to understand the eb:Messaging header (qualified with
the ebMS namespace).

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 9 / 29

2. INTERFACE FUNCTIONAL SPECIFICATION

2.1. The four corner model

In order to understand the Use Cases that will be described below it is important to explain the topology; i.e.
the four – corner model.

Figure 1 - The four corner model

In this model we have the following elements:

 Corner One (C1): Backend C1 is the system that will use the sending AP (Access Point)

 Corner Two (C2): Sending Access Point C2

 Corner Three (C3): Receiving Access Point C3

 Corner Four (C4): Backend C4 is the system that will use the receiving AP (Access Point)

The JMS backend is described in this document. JMS (Java Message Service) is an API that provides the facility

to create, send and read messages. It provides loosely coupled, reliable and asynchronous communication. JMS

is also known as the standard for Java asynchronous messaging service. Messaging is a technique to enabling

inter-application communications.

There are two types of messaging domains in JMS.

 Point-to-Point Messaging Domain

 Publisher/Subscriber Messaging Domain

The present JMS backend integration uses Publisher/Subscriber Messaging pattern where senders of

messages, called publishers, do not plan the messages to be sent directly to specific receivers (called

subscribers) but, instead, characterize published messages into classes without knowledge of which subscribers

will be. Similarly, subscribers express interest in one or more classes and only receive the messages that are of

their interest, without knowledge of which publishers are sending those messages. The intent of interest is

done by means of a subscription.

Backend C1

Access Point
Sending

C2

Access Point
Receiving

C3

Backend C4

Submit

Notify

PULL

Corner One

Corner Two Corner Three

Corner Four

Send Receive

Internet

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 10 / 29

2.2. Introduction to Domibus - AS4

Using as reference CEF DIGITAL4, Domibus is the Open Source project of the AS4 Access Point maintained by
the European Commission. Third-party software vendors offer alternative implementations of the eDelivery
AS4 Profile (commercial or open-source). Each software vendor also provides different added-value services
from integration to the support of day-to-day operations. For safeguarding interoperability, CEF eDelivery
encourages implementers to consult the list of software products that have passed the conformance tests by
the European Commission of the eDelivery AS4 profile5.

The sample software, Domibus, may be used to test other implementations of the AS4 profile or as a working
solution in a production environment. The users of the sample implementation remain fully responsible for its
integration with backend systems, deployment and operation. The support and maintenance of the sample
implementation, as well as any other auxiliary services, are provided by the European Commission according to
the terms defined in the CEF eDelivery Access Point Component Offering Description.

It is also important to comment on the PMode. A processing mode – or PMode – is a collection of parameters
that determine how user messages are exchanged between a pair of Access Points with respect to Quality of
Service, Transmission Mode and Error Handling. A PMode maps the recipient Access Point from the partyId,

which represents the backend offices associated to this Access Point.

4 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

5 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/e-SENS+AS4+conformant+solutions#e-

SENSAS4conformantsolutions-otherAS4

http://www.e-codex.eu/about-the-project/technical-solution/domibus-software.html
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/e-SENS+AS4+conformant+solutions#e-SENSAS4conformantsolutions-otherAS4
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/e-SENS+AS4+conformant+solutions#e-SENSAS4conformantsolutions-otherAS4

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 11 / 29

3. INTERFACE BEHAVIOURAL SPECIFICATION

A JMS queue is a staging area that contains messages that have been sent and are waiting to be read. Contrary

to what the name queue suggests, messages don't have to be received in the order in which they were sent. A

JMS queue only guarantees that each message is processed only once.

Domibus queues are classified in 3 types:

 Internal queues: are accessed only by the core of the system

 Notification queues: are populated by the core of the system in order to be retrieved by the plugins

deployed on the local access points

 Backend queues: are accessed by the backend themselves to either insert into or retrieve message

from it.

Role of the plugins: plugins are the intermediate components that will allow incoming messages from corner 1
to enter corner 2 and outgoing messages to exit corner 3 to reach corner 4. These plugin must be compliant to
Domibus specifications, and are specific to the backend implementation.

The following will introduce the queues chronologically, i.e. following the flow of message processed from

corner 1 to corner 4.

The processing of a message, in short is processed as follows:

1. Corner 1 sends a message to an (input) plugin of corner 2.

2. The (input) plugin calls a set of API’s exposed by the core to store the message into the database,

generates a unique message ID and put that ID the internal dispatch queue referring to it.

3. The core of corner 2 discovers the message ID in the internal dispatch queue and the dispatcher sends

it to the appropriate access point (corner 3).

4. The core of corner 3 stores it into the database, and creates a message into the internal notification

queue referring to it

5. The notification listener of corner 3 discovers the message ID in the internal notification queue and

makes it available into the notification dedicated queue of the appropriate (output) plugin of corner 3.

6. The (output) plug-in discovers the message ID into its dedicated queue and retrieves the message

from the database

 JMS (output) plugins will put it into the outQueue onto which its back-end (corner 4) is

listening to.

 Web service (output) plugin (Future implementation) will be send it directly to its back-end

(retry will be done later in case of temporary unavailability of corner 4).

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 12 / 29

Figure 2 – Messages processing

The following section specifies the data format to be used to enable the following functions via JMS:

 Submit a message to the Access Point

 Push pending messages to a queue for retrieval

It uses the JMS MapMessage type in order to implement the request and response data formats for each of the
functions mentioned above. The Meta data in each case will be set in the JMS message properties using
name/value pairs and these will be outlined in each case.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 13 / 29

3.1. JMS-Messages

Before going into the detail of the JMS queues it is important to describe the meaning of each tag included in
the message that will be sent. It is Important to note that most values (parties, services, actions, etc…) are
specified by the use case and multilateral agreements and thus not to be chosen by the caller when the
message is submitted. They are underlined in the table below.

Name Description

action This element is a string identifying an operation or an activity within a Service. Its
actual semantics is beyond the scope of this specification. Action SHALL be unique
within the Service in which it is defined. The value of the Action element is
specified by the designer of the service.

service This element identifies the service that acts on the message. Its actual semantics is
beyond the scope of this specification. The designer of the service may be a
standards organization, or an individual or enterprise. In other words, service
element denotes the service that processes the message at the destination. As an
example of what might exist in the Service element, consider the text urn:Invoice,
denoting a message that should be processed by the invoice service.

serviceType The Service element MAY contain a single @type attribute, that indicates how the
parties sending and receiving the message will interpret the value of the element.
There is no restriction on the value of the type attribute. If the type attribute is not
present, the content of the Service element MUST be a URI.

conversationId The Party initiating a conversation determines the value of the ConversationId
element that SHALL be reflected in all messages pertaining to that conversation.
The actual semantics of this value is beyond the scope of this specification.
Implementations SHOULD provide a facility for mapping between their
identification scheme and a ConversationId generated by another implementation.

messageId This element has a value representing – for each message - a globally unique
identifier. Note: In the Message_Id and Content_Id MIME headers, values are
always surrounded by angle brackets. However references in mid: or cid: scheme
URI's and the MessageId and RefToMessageId elements MUST NOT include these
delimiters.

refToMessageId This element occurs at most once. When present, it MUST contain the MessageId
value for which the message is related.

agreementRef AgreementRef is a string value that identifies the agreement that governs the
exchange. The value of an AgreementRef element MUST be unique within a
namespace mutually agreed by the two parties. This could be a concatenation of
the From and To PartyId's values, a URI containing the Internet domain name of one
of the parties, or a namespace offered and managed by some other naming or
registry service. It is RECOMMENDED that the AgreementRef is a URI.

agreementRefType This attribute indicates how the parties sending and receiving the message will
interpret the value of the reference. There is no restriction on the value of the type
attribute. If the type attribute is not present, the content of the eb:AgreementRef
element MUST be a URI.

fromRole This element occurs once, and identifies the authorized role (fromAuthorizedRole)
of the Party sending (present as a child of the From element) the message. The
value of the fromRole element is a non- empty string, with a default value of
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole.
Other possible values are subject to partner agreement.

toRole This element occurs once, and identifies the authorized role (toAuthorizedRole) of
the Party receiving (present as a child of the To element) the message. The value of
the toRole element is a non- empty string, with a default value of http://docs.oasis-

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 14 / 29

Name Description

open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole. Other possible
values are subject to partner agreement.

messageType A string representing the type of the message.

JMScorrelationId The JMSCorrelationID header field is used for linking one message with another. It
typically links a reply message with its requesting message.

JMSCorrelationID can hold a provider-specific message ID, an application-specific
String object, or a provider-native byte[] value.

fromPartyId Access Point C2.This element has a string value content that identifies a party, or
that is one of the identifiers of this party who is sending the message.

fromPartyType A string that identifies the type of the sender partyId. The type attribute indicates
the domain of names to which the string in the content of the fromPartyId element
belongs. It is RECOMMENDED that the value of the type attribute be a URI. It is
further RECOMMENDED that these values be taken from the EDIRA , EDIFACT or
ANSI ASC X12 registries. Technical specifications for the first two registries can be
found at and [ISO6523] and [ISO9735], respectively.

toPartyId Access Point C3. This element has a string value content that identifies a party, or
that is one of the identifiers of this party. The one who is receiving the message.

toPartyType A string that identifies the type of the receiver partyId. The type attribute indicates
the domain of names to which the string in the content of the toPartyId element
belongs. It is RECOMMENDED that the value of the type attribute be a URI. It is
further RECOMMENDED that these values be taken from the EDIRA , EDIFACT or
ANSI ASC X12 registries. Technical specifications for the first two registries can be
found at and [ISO6523] and [ISO9735], respectively.

originalSender Backend C1. This element has a string value content that identifies a party, or that is
one of the identifiers of this party. Who is sending the message.

finalRecipient Backend C2. This element has a string value content that identifies a party, or that is
one of the identifiers of this party. Who is receiving the message.

protocol The description of the protocol used. For the scenario described in this document it
MUST be AS4.

totalNumberOfPayloads Defines the number of payloads available in the message.

P1InBody (true/false) Boolean that indicates if the payload is in the body of the AS4 message or not. If the
payload is not in the body of the AS4 message it will be sent as attachment in the
SOAP message.

putAttachmentInQueue If true, all the payloads from the User Message will be stored as bytes in the JMS
message. If false and Domibus is configured to save the payloads on the file
system(property domibus.attachment.storage.location), the payloads file locations
will be stored in the JMS message This property should be disabled for large file
transfers.

username Mandatory in Multitenancy mode. The user that submits messages to Domibus. It is
used to associate the current user with a specific domain

password Mandatory in Multitenancy mode. The credentials of the user defined under the
property username

Table 2 – JMS Message fields

The only mandatory rule is that only messageType=submitMessage messages may be put on the
domibus.backend.jmsInQueue. All other queues (that go from the plugin to the backend) can be freely
aggregated. I.e. if you only want one replyQueue you are free to send all success and errorMessages there.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 15 / 29

3.2. JMS-Queues

3.2.1. domibus.backend.jmsInQueue

Description:

Submit a message from a Backend to Domibus. If a property is set in the plugin properties (jms-
plugin.properties) but not in the message itself, the value from the properties file will be used.

Message type: javax.jms.MapMessage

Property name Optional Available in
plugin
properties

Notes

messageType No No Value = submitMessage

messageId Yes No Must be a globally unique Id

action No Yes

conversationId Yes No

JMScorrelationId No No

fromPartyId No Yes

fromRole No Yes

fromPartyType No Yes

toPartyId No Yes

toRole No Yes

toPartyType No Yes

originalSender Yes No

finalRecipient Yes No

service No Yes

serviceType Yes Yes Only optional if the service is untyped

protocol Yes No Values other than AS4 or empty will
raise an exception

refToMessageId Yes No

agreementRef Yes Yes

totalNumberOfPayloads No No Outlining the total number of payloads,
0 payloads is valid

P1InBody (true/false) Yes Yes If true, payload_1 will be sent in the
body of the AS4 message. Only XML
payloads may be sent in the AS4
message body.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 16 / 29

putAttachmentInQueue
(true/false)

Yes Yes If true, all the payloads from the User
Message will be stored as bytes in the
JMS message. If false and Domibus is
configured to save the payloads on the
filesystem (property
domibus.attachment.storage.location),
the payloads file locations will be
stored in the JMS message This
property should be disabled for large
file transfers.

username Yes No Mandatory in Multitenancy mode

password Yes No Mandatory in Multitenancy mode

Table 3 - domibus.backend.jmsInQueue message fields

Payload handling:

The following properties should be set for each payload in the message. In the list below, the string “[NUM]” of
each property name should be replaced with a numerical value representing each payload. The payload with
the prefix payload_1 is transported inside the body of the AS4 message if the property p1InBody is set to true.

Each payload can: either be sent in byte format and set in the MapMessage using the setBytes method of the
MapMessage class or an URL from where the payload can be downloaded by the Domibus Access Point. Each
payload should be identified by the property payload_[NUM].

The following properties can be set for each payload using the setStringProperty method of the MapMessage
class:

 payload_[NUM]_MimeContentID: For example the MimeContentID for the first payload will be

identified by the property payload_1_MimeContentID. This is the payload contentId. Setting it is

required if the pmode payload profiling is used. If unset Domibus generates an UUID for it.

 payload_[NUM]_MimeType: The mime type of the payload. If not provided the mime type

application/octet-stream is assumed

 payload_[NUM]_FileName: The file location of the payload, if putAttachmentInQueue is set.

Property Handling

Message properties are handled in the following way:

 Properties named property_[NAME] are put into the outgoing message using [NAME] as key inside the

AS4 message.

 For each property_[NAME] property there MAY be a corresponding propertyType_[NAME] property

set. The corresponding value MAY be NULL, indicating an untyped property. Older AS4

implementations which do not have implemented the latest errata MIGHT REJECT messages where a

property type is NOT NULL

3.2.2. domibus.backend.jms.replyQueue

Description: The result of the submit operation and contains either the messageId or an error. The messageId
is (usually) generated by Domibus. If the submission is rejected, no messageId is generated. Additionally, there
is no guarantee that the set MessageId of a rejected message can be read. This message has to be correlated

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 17 / 29

using the JMSCorrelationID. Corner 2 reports back to corner 1 about the success/failure of an intended
message submission.

Message type: javax.jms.Message

Property name Optional Notes

messageType No Value=submitResponse

messageId Yes null, if there is an errorDetail

errorDetail Yes null, if there is a messageId

Table 4 - domibus.backend.jms.replyQueue message fields

Description: A message has been successfully sent to another AS4 Access Point. The status changes to
messageSent when the message has been sent from C2 to C3. The reason why this is a different logical queue is
to allow better configuration options, i.e. you might want to send those messages to a monitoring system (or
dev/null) and not to the back office application. As this is only a logical queue, nothing prevents it from using
the same physical queue if all of those messages have the same recipient.

Property name Optional Notes

messageType No Value=messageSent

messageId No

Table 5 - domibus.backend.jms.replyQueue message fields

Payload handling: N/A

Property Handling: N/A

3.2.3. domibus.backend.jms.outQueue

Description: submit a message from Domibus (corner 3) to a backend (corner4)

Message type: javax.jms.MapMessage

Property name Optional Notes

messageType No Value = incomingMessage

messageId No Must be a globally unique Id

action No

conversationId No

fromPartyId No

fromRole No

fromPartyType No

toPartyId No

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 18 / 29

Property name Optional Notes

toRole No

toPartyType No

originalSender Yes

finalRecipient Yes

service No

serviceType Yes Only optional if the service is
untyped

protocol No Value = AS4

refToMessageId Yes

agreementRef Yes

totalNumberOfPayloads No outlining the total number of
payloads, 0 payloads is valid

Table 6 - domibus.backend.jms.outQueue message fields

Payload handling:

The following properties are set for each payload in the message. In the list below, the string “[NUM]” of each
property name is replaced with a numerical value representing each payload. If a payload has been transported
in the message body of the corresponding AS4 message, this is always the payload with the prefix payload_1.
Each payload is sent in byte format. Each payload is identified by the property payload_[NUM].

The following properties may be available for each payload:

 payload_[NUM]_MimeContentID: For example the MimeContentID for the first payload will be

identified by the property payload_1_MimeContentID. This is the payload contentId. Setting it is

required if the pmode payload profiling is used. If unset Domibus generates an UUID for it.

 payload_[NUM]_MimeType: The mime type of the payload

 payload_[NUM]_FileName: The file location of the payload, if putAttachmentInQueue is set.

Property Handling

Message properties are handled in the following way:

 Properties named [NAME] are put into the incoming message using property_[NAME] as key inside

the JMS message

 For each property_[NAME] property there is a corresponding propertyType_[NAME] property set. The

corresponding value MAY be NULL, indicating an untyped property. Older AS4 implementations which

do not have implemented the latest errata will only ever send untyped properties

3.2.4. domibus.backend.jms.errorNotifyProducer

Description: A message that was accepted as submission could not be sent to the recipient.

Message type: javax.jms.Message

Property name Optional Notes

messageType No Value=messageSendFailure

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 19 / 29

messageId No

errorCode No The ebMS3 error code of the corresponding error

errorDetail No A textual description of the error
Table 7 - domibus.backend.jms.errorNotifyProducer message fields

Payload handling: N/A

3.2.5. domibus.backend.jms.errorNotifyConsumer

Description: An incoming message was rejected because of an error or agreement violation. To generate such a
message, the Domibus Access Point must, at least, be able to determine the intended recipient for the original
message. If this is not possible, no messageReceiveFailure will be generated.

Message type: javax.jms.Message

Property name Optional Notes

messageType No Value=messageReceiveFailure

messageId No

errorCode No The ebMS3 error code of the corresponding error

errorDetail No A textual description of the error

endPoint Yes The internet address of the access point that tried
to send the message

Table 8 - domibus.backend.jms.errorNotifyConsumer message fields

Payload handling: N/A

Property Handling: N/A

3.3. JMS Plugin Configuration

The Default JMS Plugin is configured using the jms-plugin.properties file. Below we describe the
available properties from the configuration file:

3.3.1. Message properties

This set of properties contains default values for the business process. When a message is submitted
to the JMS backend with missing business values, those values are defaulting to the business values
configured in the jms-plugin.properties file.

Default values are defined for properties identifying the sending and the receiving parties, the
business agreement and process. The complete list is available in section 3.2.1.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 20 / 29

3.3.2. General properties

Property name Default value Description Domain
specific

jmsplugin.queu
e.notification

jms/domibus.notifica
tion.jms

This queue is used by Domibus to notify the
JMS Plugin about message events.

No

jmsplugin.queu
e.in

jms/domibus.backen
d.jms.inQueue

This queue is the entry point for messages to
be sent to Domibus via the JMS plugin

No

jmsplugin.queu
e.in.concurrenc
y

5-20 Concurrency setting for the in queue

Concurrency limits via a "lower-upper" String,
e.g. "5-10", or a simple upper limit String, e.g.
"10" (the lower limit will be 1 in this case)

No

jmsplugin.queu
e.out

jms/domibus.backen
d.jms.outQueue

This queue contains the received messages,
the backend listens to this queue to consume
the received messages

Yes

jmsplugin.queu
e.reply

jms/domibus.backen
d.jms.replyQueue

This queue is used to inform the backend
about the message status after sending a
message to Domibus

Yes

jmsplugin.queu
e.consumer.not
ification.error

jms/domibus.backen
d.jms.errorNotifyCon
sumer

This queue is used to inform the backend that
an error occurred during the processing of
receiving a message

Yes

jmsplugin.queu
e.producer.noti
fication.error

jms/domibus.backen
d.jms.errorNotifyPro
ducer

This queue is used to inform the backend that
an error occurred during the processing of
sending a message

Yes

Table 9 - General properties

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 21 / 29

4. MULTITENANCY

The Default JMS Plugin can be used when Domibus is configured in Multitenancy mode.

In Multitenancy mode the plugins security is activated by default, no matter if value configured in
domibus.properties for the domibus.auth.unsecureLoginAllowed property.

As a result, every request sent to the domibus.backend.jmsInQueue queue via the Default JMS
Plugin needs to be authenticated via the user and password JMS properties. More information on
how to create plugin users used for authentication can be found in the Domibus Administration
Guide, in the section Plugin Users.

Please note that the default domain is already configured to use the Default JMS Plugin in
Multitenancy mode and the below steps must be followed only for additional domains.

Each configured domain that is using the Default JMS Plugin to send messages to Domibus has to
create the following JMS queues that will be used exclusively by the domain:

 DOMAIN.domibus.backend.jms.outQueue

 DOMAIN.domibus.backend.jms.replyQueue

 DOMAIN.domibus.backend.jms.errorNotifyConsumer

 DOMAIN.domibus.backend.jms.errorNotifyProducer

where DOMAIN is the domain name.

The backend C1 linked to a specific domain must subscribe to the associated JMS domain queues in
order to receive notifications linked to that domain

More details on the above queues and the structure of the sent and received messages via the
Default JMS Plugin can be found in the previous chapter.

The above mentioned queues have to be configured in the JMS broker specific to the chosen server:
activemq.xml for Tomcat and in the application server configuration for WebLogic and WildFly. The
details on how to configure JMS queues specific to a server can be found in the Domibus
Administration Guide.

Once created the domain queues have to be configured in the jms-plugin.properties configuration
file.

#Domain configuration

#The following queues need to be created per domain. Please replace the "DOMAIN" value with the
domain code.

#It is recommended to secure the queues so that only users belonging to "DOMAIN" can read.

DOMAIN.jmsplugin.queue.out=DOMAIN.domibus.backend.jms.outQueue

DOMAIN.jmsplugin.queue.reply=DOMAIN.domibus.backend.jms.replyQueue

DOMAIN.jmsplugin.queue.consumer.notification.error=DOMAIN.domibus.backend.jms.errorNotifyCo
nsumer

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 22 / 29

DOMAIN.jmsplugin.queue.producer.notification.error=DOMAIN.domibus.backend.jms.errorNotifyPro
ducer

4.1. Domain specific properties

The JMS Plugin configuration allows configuring specific properties per domain. The entire properties

specific to a domain must be prefixed by the domain name.

Domain configuration Property Description

DOMAIN.jmsplugin.fromPartyId
Sender party ID

DOMAIN.jmsplugin.fromPartyType
Sender party type

DOMAIN.jmsplugin.fromRole
Sender party role

DOMAIN.jmsplugin.toPartyId
Receiver party ID

DOMAIN.jmsplugin.toPartyType
Receiver party type

DOMAIN.jmsplugin.toRole
Receiver party role

DOMAIN.jmsplugin.agreementRef
Agreement reference

DOMAIN.jmsplugin.service
Service value

DOMAIN.jmsplugin.serviceType
Service type

DOMAIN.jmsplugin.action
Action value

DOMAIN.jmsplugin.putAttachmentInQueue

Default value is true.
If configured to true, all the payloads from the
User Message will be stored as bytes in the JMS
message.
If configured to false and Domibus is configured
to save the payloads on the file system(property
domibus.attachment.storage.location is
configured), the payloads file locations will be
stored in the JMS message.
This property should be disabled for large file
transfers.

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 23 / 29

5. ANNEXE 1 – INTERFACE POLICY SPECIFICATION

The Party initiating a conversation MUST determine the value of the ConversationId element that is reflected in
all messages pertaining to that conversation. The actual semantics of this value is beyond the scope of this
specification. Implementations SHOULD provide a facility for mapping between their identification scheme and
a ConversationId generated by another implementation.

The following details a simple function for submitting a message in the correct format to a queue where it will
be picked up by a MessageListener on the Access Point.

package eu.domibus.plugin.jms;

import org.apache.activemq.ActiveMQConnectionFactory;

import org.junit.Ignore;

import org.junit.Test;

import javax.jms.*;

import javax.naming.NamingException;

public class MessageSender {

 @Test

 @Ignore //This is just an example the used PMode does not actually exist

 public void sendMessage() throws NamingException, JMSException {

 ActiveMQConnectionFactory connectionFactory = new

ActiveMQConnectionFactory("tcp://localhost:61616");//default port of activeMQ

 Connection connection = null;

 MessageProducer producer = null;

 connection = connectionFactory.createConnection("domibus", "changeit"); //username and password of

the default JMS broker

 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 Destination destination = session.createQueue("domibus.backend.jms.inQueue");

 producer = session.createProducer(destination);

 producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

 MapMessage messageMap = session.createMapMessage();

 // Declare message as submit

 messageMap.setStringProperty("messageType", "submitMessage");

 // Set up the Communication properties for the message

 messageMap.setStringProperty("service", "demoService");

 messageMap.setStringProperty("action", "demoAction");

 messageMap.setStringProperty("conversationId", "");

 messageMap.setStringProperty("fromPartyId", "GW1");

 messageMap.setStringProperty("fromPartyIdType", "urn:oasis:names:tc:ebcore:partyid-type:iso3166-

1");

 messageMap.setStringProperty("fromRole", "buyer");

 messageMap.setStringProperty("toPartyId", "GW1");

 messageMap.setStringProperty("toPartyIdType", "urn:oasis:names:tc:ebcore:partyid-type:iso3166-1");

 messageMap.setStringProperty("toRole", "seller");

 messageMap.setStringProperty("originalSender", "sending_buyer_id");

 messageMap.setStringProperty("finalRecipient", "receiving_seller_id");

 messageMap.setStringProperty("serviceType", "");

 messageMap.setStringProperty("protocol", "AS4");

 messageMap.setStringProperty("refToMessageId", "");

 messageMap.setStringProperty("agreementRef", "");

 messageMap.setJMSCorrelationID("MESS1");

 //Set up the payload properties

 messageMap.setStringProperty("totalNumberOfPayloads", "3");

 messageMap.setStringProperty("payload_1_mimeContentId", "cid:cid_of_payload_1");

 messageMap.setStringProperty("payload_2_mimeContentId", "cid:cid_of_payload_2");

 messageMap.setStringProperty("payload_3_mimeContentId", "cid:cid_of_payload_3");

 messageMap.setStringProperty("payload_1_mimeType", "application/xml");

 messageMap.setStringProperty("payload_2_mimeType", "application/xml");

 messageMap.setStringProperty("payload_3_mimeType", "application/xml");

 messageMap.setStringProperty("payload_1_description", "description1");

 messageMap.setStringProperty("payload_2_description", "description2");

 messageMap.setStringProperty("payload_3_description", "description3");

 messageMap.setStringProperty("payload_1_fileName", "filenameLocation1");

 messageMap.setStringProperty("payload_2_fileName", "filenameLocation2");

 messageMap.setStringProperty("payload_3_fileName", "filenameLocation3");

 String pay1 = "<XML><test></test></XML>";

 byte[] payload = pay1.getBytes();

 messageMap.setBytes("payload_1", payload);

 messageMap.setBytes("payload_2", payload);

 messageMap.setBytes("payload_3", payload);

 producer.send(messageMap);

 connection.close();

 }

}

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 24 / 29

6. ANNEX 2 - ERRORS CODES TABLE

The following tables summarize all possible errors returned by the Access Point services:

Error Code Short Description
Recommended

Severity
Category Value Description or Semantics

EBMS_0001 ValueNotRecognized failure Content Although the message document is well formed
and schema valid, some element/attribute
contains a value that could not be recognized and
therefore could not be used by the MSH.

EBMS_0002 FeatureNotSupported warning Content Although the message document is well formed
and schema valid, some element/attribute value
cannot be processed as expected because the
related feature is not supported by the MSH.

EBMS_0003 ValueInconsistent failure Content Although the message document is well formed
and schema valid, some element/attribute value is
inconsistent either with the content of other
element/attribute, or with the processing mode of
the MSH, or with the normative requirements of
the ebMS specification.

EBMS_0004 Other failure Content

EBMS_0005 ConnectionFailure failure Communication The MSH is experiencing temporary or permanent
failure in trying to open a transport connection
with a remote MSH.

EBMS_0006 EmptyMessagePartitionChannel warning Communication There is no message available for pulling from this
MPC at this moment.

EBMS_0007 MimeInconsistency failure Unpackaging The use of MIME is not consistent with the
required usage in this specification.

EBMS_0008 FeatureNotSupported failure Unpackaging Although the message document is well formed
and schema valid, the presence or absence of
some element/ attribute is not consistent with the
capability of the MSH, with respect to supported
features.

EBMS_0009 InvalidHeader failure Unpackaging The ebMS header is either not well formed as an
XML document, or does not conform to the ebMS
packaging rules.

EBMS_0010 ProcessingModeMismatch failure Processing The ebMS header or another header (e.g.
reliability, security) expected by the MSH is not
compatible with the expected content, based on
the associated P-Mode.

EBMS_0011 ExternalPayloadError failure Content The MSH is unable to resolve an external payload
reference (i.e. a Part that is not contained within
the ebMS Message, as identified by a
PartInfo/href URI).

EBMS_0101 FailedAuthentication failure Processing The signature in the Security header intended for
the "ebms" SOAP actor could not be validated by
the Security module.

EBMS_0102 FailedDecryption failure Processing The encrypted data reference the Security header
intended for the "ebms" SOAP actor could not be
decrypted by the Security Module.

EBMS_0103 PolicyNoncompliance failure Processing The processor determined that the message's
security methods, parameters, scope or other
security policy-level requirements or agreements
were not satisfied.

EBMS_0201 DysfunctionalReliability failure Processing Some reliability function as implemented by the
Reliability module is not operational, or the
reliability state associated with this message
sequence is not valid.

EBMS_0202 DeliveryFailure failure Communication Although the message was sent under Guaranteed
delivery requirement, the Reliability module could
not get assurance that the message was properly
delivered, in spite of resending efforts.

EBMS_0301 MissingReceipt failure Communication A Receipt has not been received for a message
that was previously sent by the MSH generating
this error

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 25 / 29

Error Code Short Description
Recommended

Severity
Category Value Description or Semantics

EBMS_0302 InvalidReceipt failure Communication A Receipt has been received for a message that
was previously sent by the MSH generating this
error, but the content does not match the
message content (e.g. some part has not been
acknowledged, or the digest associated does not
match the signature digest, for NRR).

EBMS_0303 DecompressionFailure failure Communication An error occurred during the decompression

EBMS_0020 RoutingFailure failure Processing An Intermediary MSH was unable to route an
ebMS message and stopped processing the
message.

EBMS_0021 MPCCapacityExceeded failure Processing An entry in the routing function is matched that
assigns the message to an MPC for pulling, but the
intermediary MSH is unable to store the message
with this MPC

EBMS_0022 MessagePersistenceTimeout failure Processing An intermediary MSH has assigned the message to
an MPC for pulling and has successfully stored it.
However the intermediary set a limit on the time
it was prepared to wait for the message to be
pulled, and that limit has been reached.

EBMS_0023 MessageExpired warning Processing An MSH has determined that the message is
expired and will not attempt to forward or deliver
it.

EBMS_0030 BundlingError failure Content The structure of a received bundle is not in
accordance with the bundling rules.

EBMS_0031 RelatedMessageFailed failure Processing A message unit in a bundle was not processed
because a related message unit in the bundle
caused an error.

EBMS_0040 BadFragmentGroup failure Content A fragment is received that relates to a group that
was previously rejected.

EBMS_0041 DuplicateMessageSize failure Content A fragment is received but more than one
fragment message in a group of fragments
specifies a value for this element.

EBMS_0042 DuplicateFragmentCount failure Content A fragment is received but more than one
fragment message in a group of fragments
specifies a value for this element.

EBMS_0043 DuplicateMessageHeader failure Content A fragment is received but more than one
fragment message in a group of fragments
specifies a value for this element.

EBMS_0044 DuplicateAction failure Content A fragment is received but more than one
fragment message in a group of fragments
specifies a value for this element.

EBMS_0045 DuplicateCompressionInfo failure Content A fragment is received but more than one
fragment message in a group of fragments
specifies a value for a compression element.

EBMS_0046 DuplicateFragment failure Content A fragment is received but a previously received
fragment message had the same values for
GroupId and FragmentNum

EBMS_0047 BadFragmentStructure failure Unpackaging The href attribute does not reference a valid
MIME data part, MIME parts other than the
fragment header and a data part are in the
message. are added or the SOAP Body is not
empty.

EBMS_0048 BadFragmentNum failure Content An incoming message fragment has a a value
greater than the known FragmentCount.

EBMS_0049 BadFragmentCount failure Content A value is set for FragmentCount, but a previously
received fragment had a greature value.

EBMS_0050 FragmentSizeExceeded warning Unpackaging The size of the data part in a fragment message is
greater than Pmode[].Splitting.FragmentSize

EBMS_0051 ReceiveIntervalExceeded failure Unpackaging More time than Pmode[].Splitting.JoinInterval has
passed since the first fragment was received but
not all other fragments are received.

EBMS_0052 BadProperties warning Unpackaging Message properties were present in the fragment
SOAP header that were not specified in
Pmode[].Splitting.RoutingProperties

EBMS_0053 HeaderMismatch failure Unpackaging The eb3:Message header copied to the fragment
header does not match the eb3:Message header
in the reassembled source message.

EBMS_0054 OutOfStorageSpace failure Unpackaging Not enough disk space available to store all

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 26 / 29

Error Code Short Description
Recommended

Severity
Category Value Description or Semantics

(expected) fragments of the group.

EBMS_0055 DecompressionError failure Processing An error occurred while decompressing the
reassembled message.

EBMS_0060 ResponseUsingAlternateMEP Warning Processing A responding MSH indicates that it applies the
alternate MEP binding to the response message.

Table 10 - Annex 2 - Errors codes table

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 27 / 29

7. ANNEXE 3 – DOCUMENT PARTS

(eDelivery)(Domibus)
(ICD)(Default JMS Plugin)(1.06).pptx

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 28 / 29

8. LIST OF FIGURES

Figure 1 - The four corner model .. 9
Figure 2 – Messages processing .. 12

9. LIST OF TABLES

Table 1 - Interface escribed ... 5
Table 2 – JMS Message fields .. 14
Table 3 - domibus.backend.jmsInQueue message fields .. 16
Table 4 - domibus.backend.jms.replyQueue message fields .. 17
Table 5 - domibus.backend.jms.replyQueue message fields .. 17
Table 6 - domibus.backend.jms.outQueue message fields ... 18
Table 7 - domibus.backend.jms.errorNotifyProducer message fields .. 19
Table 8 - domibus.backend.jms.errorNotifyConsumer message fields .. 19
Table 9 - Annex 2 - Errors codes table ... 26

 Default JMS Plugin Interface Control Document

Domibus- Default JMS Plugin Page 29 / 29

10. CONTACT INFORMATION

CEF Support Team

By email: CEF-EDELIVERY-SUPPORT@ec.europa.eu

Support Service: 8am to 6pm (Normal EC working Days)

