

© European Union, 2018

Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the
reuse of Commission documents.

Date: 11/02/2019

EUROPEAN COMMISSION

DIGIT
Connecting Europe Facility

Domibus 4.0.2

Software Architecture Document

Domibus 4.0.2 Software Architecture Document

Page 2 / 46

Document Approver(s):

Approver Name Role

Adrien FERIAL IT Project officer

Document Reviewers:

Reviewer Name Role

Cosmin BACIU Developer

Caroline AEBY and Chaouki BERRAH Technical Writer

Catalin-Emanuel ENACHE Developer

Summary of Changes:

Version Date Created by Short Description of Changes

0.1 21.07.2016 Christian KOCH Initial draft

0.2 27.09.2016 Christian KOCH,
Stefan MÜLLER

Changes according to comments

0.3 30.09.2016 Stefan MÜLLER Chapters about logging and caching added

0.4 05.10.2016 Federico Martini Added information about
TB_MESSAGE_LOG and TB_ERROR_LOG

0.5 06.10.2016 Christian KOCH,
Stefan MÜLLER

Information about certificate handling and
retry mechanism added. Graphics updated.

1.0 10.10.2016 Adrien FERIAL Fist published version

1.1 13.01.2017 Cosmin BACIU Documented new Domibus logging
framework

1.2 29.06.2017 Cosmin BACIU Documented the domibus-ext-services-api

1.3 03.10.2017 Cosmin BACIU Documented the messageStatusChanged
method and updated the diagrams for the
outgoing/incoming message flows

1.4 09.10.2017 CEF Support Update list of reviewers

1.5 24/11/2017 CEF Support Updates for Domibus 3.3.1

1.6 03/01/2018 Tiago MIGUEL Update Log Codes for Domibus 3.3.2

1.7 20/03/2018 CEF Support Reuse notice added, e-Sens AS4 profile
replaced by eDelivery AS4 profile

1.8 21/06/2018 CEF Support Updated for Domibus 3.3.4 link to REST
api)

1.9 30/07/2018 Cosmin BACIU & CEF
Support

Documented multi-tenancy; moved the
External API documentation in the Plugin
Cookbook

1.10 04/09/2018 CEF Support Domibus 4.0

1.11 17/09/2018 Caroline AEBY Multi-tenancy => Multitenancy

1.12 18/09/2018 Chaouki BERRAH
Catalin-Emanuel ENACHE

Update
UIReplication added

1.13 26/09/2018 Caroline AEBY CEF Support contact information added

1.14 07/12/2018 Caroline AEBY Domibus 4.0.1 update

1.15 11/02/2019 Caroline AEBY Domibus 4.0.2 update

Domibus 4.0.2 Software Architecture Document

Page 3 / 46

Table of Contents

1. INTRODUCTION ... 6

1.1. Purpose.. 6

1.2. Scope ... 6

1.3. References ... 6

1.4. Document Content Overview .. 8

2. ARCHITECTURAL REPRESENTATION .. 9

3. ARCHITECTURAL GOALS AND CONSTRAINTS ... 10

4. SECURITY ... 11

4.1. Introduction... 11

4.2. Corner 1 - Corner 2 Communication ... 11

4.3. Corner 2 – Corner 3 Communication .. 11

4.3.1. Certificate Configuration .. 11

4.3.2. Client Certificate ... 11

4.4. Corner 3 – Corner 4 Communication .. 11

4.5. Administrative Sites... 12

5. USE-CASE VIEW .. 13

6. LOGICAL VIEW ... 15

6.1. Overview ... 15

6.2. Architecturally Significant Design Packages .. 15

6.2.1. Back office system (Corner 1/4) ... 15

6.2.2. Domibus plugin implementation .. 15

6.2.3. Domibus default plugins .. 16

6.2.4. Domibus plugin API .. 16

6.2.5. Domibus MSH (Corner 2/3) .. 16

6.2.6. Administrative GUI ... 16

7. DEPLOYMENT VIEW ... 17

8. IMPLEMENTATION VIEW .. 18

8.1. Overview ... 18

9. DATA VIEW .. 20

9.1. Data Model .. 20

9.2. State Machines .. 23

9.2.1. Outgoing Message State Machine ... 23

9.2.2. Incoming Message State Machine ... 23

10. SIZE AND PERFORMANCE ... 24

Domibus 4.0.2 Software Architecture Document

Page 4 / 46

10.1. Size .. 24

10.2. Performance .. 24

11. QUALITY .. 25

11.1. Extensibility ... 25

11.2. Reliability ... 25

11.3. Portability .. 25

12. LOGGING ... 26

12.1. Implementation ... 26

12.2. Domibus log codes .. 27

13. CACHING ... 33

14. MULTITENANCY ... 34

14.1. General .. 34

14.1. Identifying the domain (tenant) .. 34

14.1.1. Selecting the database schema .. 35

14.2. User association to a domain .. 35

14.3. UI ... 35

14.3.1. Managing multiple domains from the Domibus Administration Console 35

14.3.2. Security ... 36

14.4. Plugins ... 36

14.4.1. Security ... 36

14.4.2. Plugin API.. 37

14.4.3. WS Plugin.. 37

14.4.4. JMS Plugin .. 37

14.4.5. FS Plugin ... 38

14.5. Domibus Properties ... 38

14.6. Logging .. 39

14.7. Message Payloads ... 39

14.8. Quartz .. 40

15. UI REPLICATION MECHANISM .. 41

15.1. TB_MESSAGE_UI table and V_MESSAGE_UI_DIFF view ... 41

15.1.1. TB_MESSAGE_UI .. 41

15.1.2. V_MESSAGE_UI_DIFF ... 42

15.1.3. Native tables... 43

15.2. UIReplication queue, JMS message producer and consumer ... 43

15.3. UIReplication Quartz Job ... 44

15.4. UIReplication REST methods ... 44

15.5. Migration script ... 44

15.6. Enabling/disabling the UIReplication mechanism ... 45

16. CONTACT INFORMATION ... 46

Domibus 4.0.2 Software Architecture Document

Page 5 / 46

Domibus 4.0.2 Software Architecture Document

Page 6 / 46

1. INTRODUCTION

1.1. Purpose

This document provides a comprehensive architectural overview of the system, using a number
of different architectural views to depict individual aspects of the system. It is intended to
capture and convey the significant architectural decisions that have been made on the system.

1.2. Scope

The architecture described in this document concerns the middleware Domibus created by the e-
CODEX project and adopted by the CEF as sample platform for e-delivery. It is compliant with the
eDelivery profile [REF2] of the OASIS ebMS3/AS4 standard. This document is not intended to
explain the ebMS3/AS4 standards, the four-corner model or any other concepts described in the
provided references.

1.3. References

Document Contents outline

[REF1] eDelivery AS4 Profile The eDelivery AS4 Profile is a profile of
the ebMS3 and AS4 OASIS Standards. It has
provisions for use in four-corner topologies, but
it can also be used in point-to-point exchanges.

[REF2] OASIS AS4 Profile AS4 Profile of ebMS 3.0 Version 1.0. OASIS
Standard, 23 January 2013.

[REF3] ebMS3 Core OASIS ebXML Messaging Services Version 3.0:
Part 1, Core Features. OASIS Standard. 1
October 2007.

[REF4] Domibus plugin cookbook Technical manual on Domibus plugin
development.

[REF5] Apache CXF Apache CXF is an open source services
framework. These services can speak a variety
of protocols such as SOAP, XML/HTTP, RESTful
HTTP, or CORBA and work over a variety of
transports such as HTTP, JMS or JBI.

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eDelivery+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/AS4-profile-v1.0.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/
http://cxf.apache.org/

Domibus 4.0.2 Software Architecture Document

Page 7 / 46

[REF6] Apache WSS4J The Apache WSS4J™ project provides a Java
implementation of the primary security
standards for Web Services, namely the OASIS
Web Services Security (WS-Security)
specifications from the OASIS Web Services
Security TC

[REF7] WS-Policy Specification The Web Services Framework provides a
general-purpose model and corresponding
syntax to describe the policies of entities in a
Web services-based system.

[REF8] Spring Security Spring Security is a framework that focuses on
providing both authentication and authorization
to Java applications. It can easily be extended to
meet custom requirements.

[REF9] Bcrypt Provos, Niels; Mazières, David; Talan Jason
Sutton 2012 (1999). "A Future-Adaptable
Password Scheme". Proceedings of 1999 USENIX
Annual Technical Conference: 81–92.

[REF10] JMS The Java Message Service (JMS) API is a Java
Message Oriented Middleware API for sending
messages between two or more clients.

[REF11] e-CODEX The e-CODEX project improves the cross-border
access of citizens and businesses to legal means
in Europe and furthermore creates the
interoperability between legal authorities
within the EU.

[REF12] Java Servlet 3.0 A Java servlet is a Java program that extends
the capabilities of a server. Although servlets
can respond to any types of requests, they most
commonly implement applications hosted on
Web servers. Such Web servlets are the Java
counterpart to other dynamic Web content
technologies such as PHP and ASP.NET.

[REF13] Xtext Xtext is a framework for development of
programming languages and domain-specific
languages.

[REF14] SOAP Simple Object Access Protocol

https://ws.apache.org/wss4j
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://www.w3.org/TR/ws-policy/
http://projects.spring.io/spring-security/
http://www.usenix.org/events/usenix99/provos/provos_html/node1.html
http://www.usenix.org/events/usenix99/provos/provos_html/node1.html
https://www.jcp.org/en/jsr/detail?id=914
http://www.e-codex.eu/home.html
https://www.jcp.org/en/jsr/detail?id=315
http://www.eclipse.org/Xtext/
http://www.w3.org/TR/soap/

Domibus 4.0.2 Software Architecture Document

Page 8 / 46

[REF15] HTTP Chunking A mechanism by which data is broken up into a
number of chunks when sent over an HTTP
connection.

1.4. Document Content Overview

After summarizing the architectural representation, goals and constraints, this document
describes the system using several architectural views (Use Case, logical, process, deployment,
implementation and data) and then concludes with size, performance and quality considerations.

http://en.wikipedia.org/wiki/Chunked_transfer_encoding

Domibus 4.0.2 Software Architecture Document

Page 9 / 46

2. ARCHITECTURAL REPRESENTATION

The next two sections of the document describe the architectural goals and constraints.

Architecturally relevant Use Cases are described by a Use Case diagram and a short explanation
of their impact on the architecture. The following views will also be provided:

• A logical view provides a high-level view of the platform presenting the structure of the
system through its components and their interactions.

• An implementation view describes the software layers and the main software
components. A component diagram is used in this view.

• A deployment view provides a description of the hardware components and how they
are linked together. This view gives a technical description of protocols and hardware
nodes used.

• A data view provides information about the data persistency. A class diagram will be used
to model the main system data.

UML diagrams are systematically used to represent the different views of the system.

Domibus 4.0.2 Software Architecture Document

Page 10 / 46

3. ARCHITECTURAL GOALS AND CONSTRAINTS

The following non-functional requirements that affect the architectural solution have been
identified:

Non-functional requirement Description

Adaptability The application shall be easy to be integrated into
existing business workflows using different
communication protocols and data formats

Portability The application shall be able to be deployed on a wide
variety of software/hardware systems

Interoperability The system shall be interoperable with both commercial
and free alternative implementations of the eDelivery
profile.

Domibus 4.0.2 Software Architecture Document

Page 11 / 46

4. SECURITY

4.1. Introduction

The Domibus middleware provides built-in security in accordance to the implemented [REF2]
specification and industry best practices. It can also be easily integrated into existing security
domains.

4.2. Corner 1 - Corner 2 Communication

As no assumptions can be made about the security architecture of corner 1/4 (back office), the
integration into the existing architecture has to be provided by the Domibus plugins. While the
default plugins do not include any security constraints they can be easily extended to
accommodate most of the security requirements.

4.3. Corner 2 – Corner 3 Communication

The communication between corner 2 and corner 3 is able to fulfil all the security requirements
specified in the eDelivery AS4 profile. The configuration is handled via WS-Policy files and PMode
configuration. All webservice security is enforced by the Apache CXF framework [REF5].

4.3.1. Certificate Configuration

The location and credentials of private and public certificates used by CXF are configured in the
“domibus.properties” property configuration file.

4.3.2. Client Certificate

The client certificate for use with client authentication (two-way SSL) is configured in the
“clientauthentication.xml” spring configuration file. Incoming TLS secured connections terminate
at the proxy server (e.g. Apache httpd) and must be configured according to the employed proxy
servers documentation.

4.4. Corner 3 – Corner 4 Communication

The security between corner 3 and corner 4 is handled via the same mechanisms used in the
communication corner 1 – corner 2.

Domibus 4.0.2 Software Architecture Document

Page 12 / 46

4.5. Administrative Sites

Access to the Domibus administration page is secured with username/password. The credentials
are managed by a Spring authentication manager and multiple authentication providers can be
plugged into it By default, the credentials are stored in the database and they are managed by an
authentication provider that uses a Bcrypt strong hashing function for encoding them.
Integration into an existing authentication scheme (i.e. LDAP) can be performed via Spring
configuration.

SECURITY DISCLAIMER

On top of the security that Domibus provides, the user shall take additional security measures
according to best practices and regulations. This includes, but is not limited to, using firewalls, IP
whitelists and file system/database encryption. DIGIT shall not be held responsible for any
security breach that might occur due to User not respecting this recommendation.

Domibus 4.0.2 Software Architecture Document

Page 13 / 46

5. USE-CASE VIEW

This section provides a representation of the use cases relevant for the architecture.

5.1. Selection Rationale

The use cases relevant for the architecture have been selected based on the following criteria:

 Use cases affecting the exchange between the back office system and the Domibus MSH.

 Use cases representing critical parts of the architecture, thereby addressing the technical
risks of the project at an earlier stage.

The following use cases have been selected:

• Back office integrations using pull communication (i.e. WebService)

• Back office integrations using push communication (i.e. JMS)

• Usage of the administrative GUI

Back Office System

Domibus Plugin
Implementation (pull)

Send Message

Receive Pending
Message

Request Errors for
Message

Request List of
pending Messages

Request Message
Status

«uses»

«uses»

«uses»

«uses»

«uses»

Domibus MSH

«uses»

«uses»

«uses»

«uses»

«uses»

Domibus 4.0.2 Software Architecture Document

Page 14 / 46

Back Office System

Domibus Plugin
Implementation (push)

Send Message

Push Received
Message

Notify of Status
Change for Message

«uses»

«uses»

«uses»

Domibus MSH

«uses»

«uses»

«uses»

User

Administrative GUI

Upload
Configuration

Show Message Log

Show Error Log

«uses»

«uses»

«uses»

Authenticate User

<<include>>

<<include>>

<<include>>

Domibus 4.0.2 Software Architecture Document

Page 15 / 46

6. LOGICAL VIEW

6.1. Overview

This chapter describes the main application modules, how they interact and how they implement
the specification and profile.

6.2. Architecturally Significant Design Packages

The following diagram provides a high-level view of the main packages composing the system.
The Database persistence and file system persistence are logical packages representing the
physical data storages used by the platform. The others represent different application layers and
give an overview of the organisation of the platform's code.

6.2.1. Back office system (Corner 1/4)

The whole purpose of Domibus is to connect different back office systems via structured, secure
message exchange. While, regarding a single message exchange, corner 1 and 4 are usually
different applications running in different environments, within a single deployment the role of
corner 1 and corner 4 (for different message exchanges) is usually occupied by the same
application. Therefore, from a logical point of view, corner 1 and 4 are the same package.

6.2.2. Domibus plugin implementation

This module is responsible for the communication between the back office system and Domibus
and for the mapping from the back office internal data format to Domibus internal data format.
The communication and the mapping of the data can be done in both directions. Integration into
existing security architecture can also be implemented here.

As there can be made few assumptions about the back office system, this module is commonly
implemented by the Domibus user. Details on this process can be found inside the Domibus
Plugin Cookbook.

Domibus 4.0.2 Software Architecture Document

Page 16 / 46

6.2.3. Domibus default plugins

Domibus provides three default plugins, which serve for testing purposes and as examples for
custom implementations. They were initially developed to accommodate the needs of the e-
CODEX project and thus will not be suitable for every use case.

6.2.4. Domibus plugin API

This package contains all necessary interfaces and classes required to implement a Domibus
plugin

6.2.5. Domibus MSH (Corner 2/3)

The Domibus MSH (Message Service Handler) is the main module, representing corner 2 and/or 3
in a 4-corner message exchange. All the implementation relevant to the eDelivery profile is done
inside this package. It is deployable on any Container supporting the Java Servlet Specification
v 3.0.

To support the required AS4 retry mechanisms a spring configured cronjob regularly checks for
messages that need to be resent. The cronjob is configured using Spring and it uses the property:
“domibus.msh.retry.cron” defined in the configuration file domibus.properties. This does not
configure the retry interval for messages (which is done via PModes).

6.2.6. Administrative GUI

This package contains of a Spring MVC web application providing basic monitoring and
configuration options.

Domibus 4.0.2 Software Architecture Document

Page 17 / 46

7. DEPLOYMENT VIEW

The following is a description of the hardware nodes running the execution environment for the
system.

The following diagram provides a view of hardware components involved in this project. Note
that a clustered environment is shown. If a single server deployment is sufficient (i.e. for testing
purposes), a load balancer and multiple hardware nodes are not required.

It is important to note that not all physical nodes are represented on this diagram. Indeed load
balancers, database servers and JMS servers could be duplicated for scalability, performance and
availability reasons. Furthermore, security mechanisms like firewalls are not shown.

These are the identified hardware nodes.

• Load balancers are responsible for distributing requests among multiple Domibus nodes.
A random round robbing/no sticky session setup is recommended.

• Java servlet containers with deployed Domibus instances are responsible for message
processing

• A database server (MySQL 5.5+ or Oracle 10g+) is responsible for storing messages and
PMode configuration data

• The shared file system contains shared Domibus configuration data, file based PMode
data (Keystores) and, depending on configuration, binary data of message attachments.

Domibus has been successfully tested on Tomcat 8, WebLogic 12.1.x and WildFly 9.0.2 servers.

Domibus 4.0.2 Software Architecture Document

Page 18 / 46

8. IMPLEMENTATION VIEW

8.1. Overview

The following diagram describes the software layers of the system and their components.

The AS4 MSH Service is the web service which accepts the AS4 requests and it is the one that is
called by the external systems. External MSH services are accessed through the AS4 Message
Dispatch Service, which is a web service client capable of sending AS4 requests. The Back office
systems can access the platform through their respective plugin implementations. The Web
Layer is accessed typically by a web browser. The MSH SOAP handling is implemented using the
Apache CXF framework.

The Integration Layer uses the Spring framework and is responsible for the integration of custom
plugins and all communication processes and data format translations between back office
systems and Domibus.

The Services Layer offers access to the domain objects of the platform as well as to the platform
data layer. These services are Plain Old Java Objects relying on the Spring framework for
dependency injection and for transaction management.

The Types Layer contains all the java objects generated from the XSDs used by the platform.
These are JAXB generated objects.

The Domain Layer holds all the platform entities. The persistence of these entities is
implemented using the Java Persistence API version 2.0.

Finally, the Data Persistence relies on the database and the file system to persist the data. The
file system is used to store configuration data and the database to persist the incoming and
outgoing messages.

All these layers run on a Java Servlet Container. The platform has been tested on Tomcat 8.x,
WildFly 9.0.2 and WebLogic 12.1.x.

Domibus 4.0.2 Software Architecture Document

Page 19 / 46

Spring MVC

Web Layer

Spring SecurityServlet API

Configuration Upload Message Monitoring

Plugin API

Integration Layer

Plugin Callbacks Back Office System Integration Control Chain Plugin Configuration

Service Layer

PMode Discovery Service

AS4 Message Dispatch Service
AS4 MSH Service AS4 Retry Service

Back Office Notification Service Receipt Generation Service

Compression Service

Routing Service

Decompression Service

Spring Core

Domain Layer

Domain Entities JPA 2

Data Access Layer

Database Persistance Filesystem Persistance

Routing Configuration

Types Layer

PMode XML Types ebMS3 XML Types Internal Java AS4 Representation JAXB

Domibus 4.0.2 Software Architecture Document

Page 20 / 46

9. DATA VIEW

9.1. Data Model

The following diagrams show a high-level abstraction of the data entities, which must be
implemented by the system:

The above tables represent a 1:1 mapping of the ebMS3 XSD to database tables.

Domibus 4.0.2 Software Architecture Document

Page 21 / 46

Domibus 4.0.2 Software Architecture Document

Page 22 / 46

The above tables represent a 1:1 mapping of the PMode configuration XSD to database tables.

Routing criteria contains the data that are needed to perform the routing of the messages to a
specific plugin implementation.

Backend filters are collections of routing criteria associated with a specific backend
representation.

The TB_MESSAGE_LOG table contains information about the User Messages and the Signal
Messages (both sent and received ones). The stored values are the following:

MESSAGE_ID, MESSAGE_STATUS, MESSAGE_TYPE, MPC, MSH_ROLE, NEXT_ATTEMPT,
NOTIFICATION_STATUS, RECEIVED, SEND_ATTEMPTS, SEND_ATTEMPTS_MAX, BACKEND,
ENDPOINT, DELETED

The TB_ERROR_LOG table contains information of the errors occurred during message
transmission. The stored values are the following:

ERROR_CODE, ERROR_DETAIL, ERROR_SIGNAL_MESSAGE_ID, MESSAGE_IN_ERROR_ID,
MSH_ROLE, NOTIFIED, TIME_STAMP

Domibus 4.0.2 Software Architecture Document

Page 23 / 46

9.2. State Machines

9.2.1. Outgoing Message State Machine

The outgoing messages have the following state machine:

9.2.2. Incoming Message State Machine

The incoming messages have the following state machine:

Domibus 4.0.2 Software Architecture Document

Page 24 / 46

10. SIZE AND PERFORMANCE

10.1. Size

Size restrictions applied on the data that is exchanged by the back office systems, but not on the
application or its components themselves, have an impact on the architecture and on the
configuration of the system.

To support the exchange of large binary files, the plugin API supports payload submission by
reference, meaning that Domibus is able to download a payload from a given URI. Additionally
payloads can be stored on the file system instead of the database to avoid the processing of huge
blobs.

As the eDelivery AS4 profile provides no provisions for ebMS large file handling (split/join) the
transfer of data is limited by bandwidth and memory constraints.

Extra restrictions can be implemented via the business process PModes. These restrictions
concern the maximum size of a payload and the maximum number of payloads in a message.

10.2. Performance

An important architectural decision that benefits the performance of Domibus includes the
decoupling of the solution into corner 1/4 representing the back office systems and corner 2/3
representing the Domibus Access Point.

The back office systems (corner1/4) interact with the Domibus MSH (corner 2/3) via the
interfaces (web services, JMS, REST, etc) exposed by the plugins deployed on the Domibus MSH
side.

Domibus MSH is using internally JMS queues to perform the processing of the messages coming
from the back office systems via the plugins or from other access points.

All this architectural decisions lead to an improved throughput and load distribution of the
messages.

Domibus 4.0.2 Software Architecture Document

Page 25 / 46

11. QUALITY

The architecture of Domibus contributes to improve extensibility, reliability and portability.

11.1. Extensibility

Domibus is designed in a layered fashion and consists of multiple interconnected modules. This
modular design facilitates the upgrades by replacing existing modules and extensions by adding
additional modules.

11.2. Reliability

The reliability of Domibus is enhanced through the decoupling of each architectural layer by JMS
queues. A store and forward mechanism and automatic retry policy ensures that parts of the
system can continue functioning without losing data when an issue occurs in a specific
component.

11.3. Portability

Currently the application can be deployed on Tomcat 8, WebLogic 12.1.x and WildFly 9.0.2 and
can connect to Oracle and MySQL databases.

With minor changes, it might be deployed on any Java Servlet 3.0-compliant server and it might
connect to any RDBMS (Relational Database Management System).

Besides being extensible, Domibus is carefully designed in such a way that it is independent of
the specific external system that communicates with. The use of a generic plugin API leaves the
different layers unaffected when an additional external systems need to be supported by
Domibus.

The usage of JPA to access the database makes it easy for implementers to change the relational
database used to store the platform data.

Domibus 4.0.2 Software Architecture Document

Page 26 / 46

12. LOGGING

12.1. Implementation

The logging framework used by Domibus is SLF4J API together with Logback as the SLF4j
implementation.

The domibus-logging module provides the custom SLF4J logger DomibusLogger. This logger must
be used for all the logs within the Domibus application.

There are three types of logs: security logs, business logs and miscellaneous logs. Each log
category has its own marker defined in the DomibusLogger class. By default, each category will
be logged in a separate file:

 domibus-security.log : This log file contains all the security related information. For
example, you can find information about the clients who connect to the application.

 domibus-business.log: This log file contains all the business related information. For
example, when a message is sent or received, etc.

 domibus.log : This log file contains both the security and business logs plus miscellaneous
logs like debug information, logs from one of the framework used by the application, etc.

Domibus 4.0.2 Software Architecture Document

Page 27 / 46

The security and business logs require a code that is defined in the DomibusMessageCode class.

The logs pattern is defined in the logback.xml file. The default pattern is:

%d{ISO8601} [%X{d_user}] [%X{d_messageId}] %5p %c{1}:%L - %m%n

 d_user: The authenticated user.

 d_messageId: The message id currently being sent/received.

The values for the d_user and d_messageId properties can be set by calling the method
DomibusLogger.putMDC(String key, String value). The prefix d_ is added automatically by the
DomibusLogger in order to easily identity the Domibus specific MDC properties.

Eg:

LOGGER.putMDC(DomibusLogger.MDC_USER, authenticationResult.getName());

The MDC values need to be always cleaned after the thread execution. Otherwise, the thread
might be returned back to the thread pool with previously set MDC values and on the next thread
execution, the old MDC values will be used.

In order to easily clear the MDC values after a method execution a custom annotation, MDCKey,
has been created in order to mark a method that is setting values in the MDC. An AOP aspect is
detecting the methods annotated with the MDCKey annotation and after the execution of the
method it is clearing the MDC values.

Eg:

@MDCKey(DomibusLogger.MDC_MESSAGE_ID)

public String submit(final Submission messageData, final String backendName)

12.2. Domibus log codes

Category Event code Description

SECURITY SEC-001 Unsecure login is allowed, no authentication will be performed

SECURITY SEC-002 Basic authentication is used

SECURITY SEC-003 X509Certificate authentication is used

SECURITY SEC-004 Blue coat authentication is used

SECURITY SEC-005 The host [{}] attempted to access [{}]

Domibus 4.0.2 Software Architecture Document

Page 28 / 46

SECURITY SEC-006 The host [{}] has been granted access to [{}] with roles [{}]

SECURITY SEC-007 The host [{}] has been refused access to [{}]

SECURITY SEC-008 Certificate is not valid at the current date [{}]. Certificate valid
from [{}] to [{}]

SECURITY SEC-009 Certificate is not yet valid at the current date [{}]. Certificate
valid from [{}] to [{}]

SECURITY SEC-010 No security policy (intended for testing alone) is used. Security
certificate validations will be bypassed!

SECURITY SEC-011 User [{}] is trying to access a message having final recipient: [{}]

SECURITY SEC-012 X509Certificate invalid or not found

SECURITY SEC-013 The user [{}] is unknown

SECURITY SEC-014 The user [{}] is not active

SECURITY SEC-015 The user [{}] is suspended

SECURITY SEC-016 The user [{}] is trying to login with bad credentials

SECURITY SEC-017 The user [{}] is locked after trying to login for [{}] wrong
attempts.

SECURITY SEC-018 The certificate with alias [{}] will be revoked on [{}]

SECURITY SEC-019 The certificate with alias [{}] is revoked since [{}]

BUSINESS BUS-001 Message successfully received

BUSINESS BUS-002 Failed to receive message

BUSINESS BUS-003 Failed to validate message

Domibus 4.0.2 Software Architecture Document

Page 29 / 46

BUSINESS BUS-004 Failed to notify backend for incoming message

BUSINESS BUS-005 Invalid charset [{}] used

BUSINESS BUS-006 Invalid NonRepudiationInformation: no security header found

BUSINESS BUS-007 Invalid NonRepudiationInformation: multiple security headers
found

BUSINESS BUS-008 Invalid NonRepudiationInformation: eb:Messaging not signed

BUSINESS BUS-009 Invalid NonRepudiationInformation: non repudiation
information and request message do not match

BUSINESS BUS-010 There is no content inside the receipt element received by the
responding gateway

BUSINESS BUS-011 Reliability check failed, check your configuration

BUSINESS BUS-012 Reliability check was successful

BUSINESS BUS-013 Compression failure: no mime type found for payload with cid
[{}]

BUSINESS BUS-014 Error compressing payload with cid [{}]

BUSINESS BUS-015 Payload with cid [{}] has been compressed

BUSINESS BUS-016 Decompression failure: no mime type found for payload with
cid [{}]

BUSINESS BUS-017 Payload with cid [{}] will be decompressed

BUSINESS BUS-018 Decompression is not performed: leg compressPayloads
parameter is false

BUSINESS BUS-019 Decompression is not performed: partInfo with cid [{}] is in
body

Domibus 4.0.2 Software Architecture Document

Page 30 / 46

BUSINESS BUS-020 Message action [{}] found for value [{}]

BUSINESS BUS-021 Message action not found for value [{}]

BUSINESS BUS-022 Message agreement [{}] found for value [{}]

BUSINESS BUS-023 Message agreement not found for value [{}]

BUSINESS BUS-024 Party id [{}] found for value [{}]

BUSINESS BUS-025 Party id not found for value [{}]

BUSINESS BUS-026 Party [{}] is not a valid URI [CORE] 5.2.2.3

BUSINESS BUS-027 Message service [{}] found for value [{}]

BUSINESS BUS-028 Message service not found for value [{}]

BUSINESS BUS-029 Message service [{}] is not a valid URI [CORE] 5.2.2.8

BUSINESS BUS-030 Leg name found [{}] for agreement [{}], senderParty [{}],
receiverParty [{}], service [{}] and action [{}]

BUSINESS BUS-031 Leg name not found found for agreement [{}], senderParty [{}],
receiverParty [{}], service [{}] and action [{}]

BUSINESS BUS-032 Preparing to send message

BUSINESS BUS-033 Message sent successfully

BUSINESS BUS-034 Message send failure

BUSINESS BUS-035 No Attachment found for cid [{}]

BUSINESS BUS-036 More than one Partinfo referencing the soap body found

BUSINESS BUS-037 Payload profile validation skipped: payload profile is not

Domibus 4.0.2 Software Architecture Document

Page 31 / 46

defined for leg [{}]

BUSINESS BUS-038 Payload profiling for this exchange does not include a payload
with CID [{}]

BUSINESS BUS-039 Payload profiling for this exchange requires all message parts
to declare a MimeType property [{}]

BUSINESS BUS-040 Payload profiling error, missing payload [{}]

BUSINESS BUS-041 Payload profile [{}] validated

BUSINESS BUS-042 Property profile validation skipped: property profile is not
defined for leg [{}]

BUSINESS BUS-043 Property profiling for this exchange does not include a
property named [{}]

BUSINESS BUS-044 Property profile [{}] validated

BUSINESS BUS-045 Message persisted

BUSINESS BUS-046 Message receipt generated with nonRepudiation value [{}]

BUSINESS BUS-047 Message receipt generation failure

BUSINESS BUS-048 Message status updated to [{}]

BUSINESS BUS-049 All payloads data for user message [{}] have been cleared

BUSINESS BUS-050 Security policy [{}] was not found for outgoing message

BUSINESS BUS-051 Security policy [{}] is used for outgoing message

BUSINESS BUS-052 Security algorithm [{}] is used for outgoing message

BUSINESS BUS-053 Security algorithm [{}] is used for incoming message

Domibus 4.0.2 Software Architecture Document

Page 32 / 46

BUSINESS BUS-054 Security encryption username [{}] is used for outgoing message

BUSINESS BUS-055 Security policy [{}] for incoming message was not found

BUSINESS BUS-056 Security policy [{}] for incoming message is used

BUSINESS BUS-057 No Role with value [{}] has been found

BUSINESS BUS-058 Party with name [{}] has not been found

BUSINESS BUS-059 Message with id [{}] has not been found

BUSINESS BUS-060 Message with id [{}] has been consumed from the queue [{}]

BUSINESS BUS-061 Received payload with cid [{}] for message [{}] of size [{}] (in
bytes)

BUSINESS BUS-062 Saved payload with cid [{}] for message [{}] of size [{}] (in
bytes) for sending

BUSINESS BUS-063 Notifying about message status change from [{}] to [{}]

Domibus 4.0.2 Software Architecture Document

Page 33 / 46

13. CACHING

In order to enhance the performance domibus uses caching in specific areas of the application:

 caching of security policies

 caching of backend filter configuration

 caching of pmodes, when using the “CachingPModeProvider”

This is the default configuration of ehcache defines the following properties:

 maxBytesLocalHeap = 5m

 timeToLiveSeconds = 3600

 overflowToDisk= false

Domibus 4.0.2 Software Architecture Document

Page 34 / 46

14. MULTITENANCY

14.1. General

There were multiple options to choose from to support Multitenancy:

1. Selected option: One Schema per tenant: tenant's data is saved in the same database for
all tenants but in different schemas. When a new tenant needs to be added a new
related DB schema is created in the same database instance. It is easier to add new
tenants comparing with the DB per tenant approach, as the same connection pool can be
reused. Switching between tenants is performed centrally by selecting the DB schema
related to the tenant. A huge advantage of this approach is that the application code
impact is limited compared to the Discriminator field approach described below.

2. One DB per tenant: each tenant has its own separate database. This is the highest level
of isolation, however it is complex and cumbersome to maintain. Whenever a new tenant
has to be added a new database instance needs to be created, a new database
connection pool also needs to be created in Domibus which points to the tenant
database, etc…

3. Discriminator field: All tenants' data is saved on common tables, and each table holds a
discriminator field to distinguish data from each tenant. This approach has quite some
disadvantages: no physical isolation of data between tenants (a bug in the application
might leak between tenants), performance decrease as the data for all the tenants are
saved into the same tables (resulting in bigger tables and more complex/heavier queries),
significant changes to the application code to take into account that discriminator field.

The solution that has been chosen to implement Multitenancy in Domibus is "One Schema per
tenant" due its many advantages. Hibernate 5.0, already used in Domibus, comes by default with
support for "One Schema per tenant" strategy, more info about Multitenancy in Hibernate
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiT
enancy.html .

In the following document the term tenant is (the technical) synonym with the (more business-
oriented) term domain.

14.1. Identifying the domain (tenant)

For every outgoing/incoming message, the related unique domain needs to be identified in order
to use the configuration related to the appropriate domain (DB schema, PMode, keystore,
truststore, Domibus properties, etc).

For outgoing messages, sent by C2 to C3, the association to a specific domain is performed based
on the Spring Security info available in the current thread after the authentication has been done
by the plugins.

For incoming messages, received by C3 from C2, the association to a domain is based on an HTTP
parameter ("domain") appended by C2 to the MSH endpoint of C3. In case the domain name sent
by C2 is not defined in C3, an EBMS3 exception will be sent to C2.

https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html

Domibus 4.0.2 Software Architecture Document

Page 35 / 46

Example:

Let us suppose that C3 exposes the MSH endpoint with URL:
http://localhost:8080/domibus/service/msh. Then C2 belonging to the domain DIGIT will
call the MSH C3 endpoint using
http://localhost:8080/domibus/service/msh?domain=DIGIT.

Please note that adding the HTTP parameter in the MSH endpoint is in-line with
eDelivery AS4 specification.

14.1.1. Selecting the database schema

In Multitenancy mode, the database schema has to be configured per domain in the Domibus
domain properties. More information on how to configure it please refer to the Domibus
Administration Console.

14.2. User association to a domain

When a user authenticates in the Admin Console, the domain is not yet identified and Domibus
must find out which DB schema to select. In order to achieve this, a general DB schema is used.
In this general DB schema, a table tells which user that has access to the Admin Console (defined
in the tb_user table) and to the domain he belongs to. This association is automatically updated
by Domibus when users are added or removed. Therefore, a constraint has been added in
Domibus: a username needs to be unique amongst the existing domains. The same mechanism
and constraints applies to the tb_user table and has been implemented for the table supporting
plugins security: tb_authentication_entry.

14.3. UI

14.3.1. Managing multiple domains from the Domibus Administration Console

All the screens from Domibus Administration Console have been adapted in order to support
Multitenancy. This paragraph briefly summarizes these changes throughout the application.

The Login page does not require filling in the domain. Once the user is authenticated, Domibus
automatically identifies its associated domain based on the association of the users to their
domain contained in the general schema. For more information how this mechanism works
please check 14.1 Identifying the domain (tenant) section.

There is a new super admin user for the Administration Console that has access to all domains'
data but only one domain at a time. This solution has been chosen in order to simplify the user
interface. In addition, the super admin user is responsible to manage admin users for every
domain and is the only one authorized to do so.

http://localhost:8080/domibus/service/msh
http://localhost:8080/domibus/service/msh?domain=DIGIT

Domibus 4.0.2 Software Architecture Document

Page 36 / 46

14.3.2. Security

The UI is communicating with the Domibus backend via REST resources.

The UI REST resources are protected so that users belonging to domain A are forbidden to modify
the configuration belonging to any other domain. This is implemented with an interceptor acting
on the all the UI REST resources that automatically identify the DB schema associated to the
logged in user (please check the 14.1.1 Selecting the database schema section for more details).
Using this strategy, a user belonging to domain A is not able to access the data of any other
domain.

14.4. Plugins

The introduction of Multitenancy has an impact on how the plugins manage the
incoming/outgoing messages.

For outgoing messages, C1 to C2, the plugins need to authenticate first so that Domibus can
identify the domain of the user and treat the message accordingly.

Domibus identifies the associated domain of the user based on the Spring Security information
from the current thread (for instance the logged in user id) and the users configuration in table
tb_authentication_entry. As a result, it is mandatory for C1 to authenticate itself so that
Domibus is able to determine the domain related to the authenticated user. It is possible for the
same C1 to send messages to different domains C1 needs to authenticate with different user
credentials

For incoming messages, e.g. from C3 to C4, the plugins have to segregate the messages based on
the domain name received from Domibus and deliver to C4 only the messages associated to the
C4's domain.

The changes implemented in the Default Plugin for Multitenancy are described in the following
sections.

14.4.1. Security

The plugins security configuration is stored in databse table tb_authentication_entry. As every
domain has its own separate schema, the table tb_authentication_entry will contain entries
specific to each domain.

Example of the data in tb_authentication_entry

As mentioned in section 14.1 Identifying the domain (tenant) the username should be unique
amongst all domains. Moreover, there is a table tb_user_domain in the general DB schema that
maps all usernames defined in the tb_authentication_entry to one associated domain.

When multiple domains are configured in Domibus, the plugins security activates automatically
overriding the value configured using the following property.

Domibus 4.0.2 Software Architecture Document

Page 37 / 46

#To activate security set this to false

domibus.auth.unsecureLoginAllowed=false

If Domibus is running only with one domain, the plugins security activation is optional.

14.4.2. Plugin API

As every domain has its own dedicate DB schema, there are little changes required in the Plugin
API. The only change that is required is to include in the class eu.domibus.plugin.Submission a
new field named domain. This way the plugins can select the domain for a specific message. This
is specifically useful for the incoming messages, C3 to C4, when the plugins need to segregate
messages and expose to C4 only messages that are intended to C4 domain.

14.4.3. WS Plugin

Security is already implemented in the WS Plugin using the CustomAuthenticationInterceptor
and the eu.domibus.ext.services.AuthenticationService, which retrieves information from the
DB table tb_authentication_entry. For the WS Plugin security, activation is mandatory in order to
use Domibus with multiple domains.

The implementation of the WS Plugin has been changed to take into account the domain
according with the general requirements stated in the 14.4 Plugins section.

14.4.4. JMS Plugin

The JMS Plugin is implemented using 5 queues:

 One queue for outgoing messages, C1 to C2: domibus.backend.jms.inQueue

 One queue for incoming messages, C3 to C4: domibus.backend.jms.outQueue

 Three queues for reporting message statuses and errors:
domibus.backend.jms.replyQueue, domibus.backend.jms.errorNotifyConsumer,
domibus.backend.jms.errorNotifyProducer

C1 and C4 interact with the JMS Plugin by sending/receiving messages from queues mentioned
above so the JMS Plugin does not really have control on the messages once they are put in a JMS
queue.

In order to segregate the data between domains, the JMS Plugin needs to connect to queues
dedicated to each domain. Therefore, every domain will have its own set of 4 queues mentioned
above with the exception of the domibus.backend.jms.inQueue. The queue
domibus.backend.jms.inQueue is common to all the domains but when sending message to
Domibus, C1 needs to authenticate with specific domain credentials. This is needed to allow
Domibus to associate the submitted message with a specific domain. The association of the JMS
queues and the domain are be done in the jms-plugin.properties file .

In order to make the migration easier the existing queue names used by the JMS plugin and
associated to the default domain will not be modified.

The following convention to prefix the JMS queues with the domain name must be used to
associate the JMS queues to a specific domain in the jms-plugin.properties file:

Domibus 4.0.2 Software Architecture Document

Page 38 / 46

domain_name.domibus.backend.jms.inQueue

where domain_name is the name of the domain.

For outgoing messages, C1 to C2, C1 sends JMS messages containing the credentials of a specific
domain to the IN queue domibus.backend.jms.inQueue. The JMS Plugin reads the JMS message,
performs the authentication using the credentials sent by C1 and determines the domain based
on Spring Security information from the current thread.

For incoming messages, C3 to C4, the JMS Plugin receives the domain name from Domibus'API
and then sends the incoming message to the JMS OUT queue associated to the domain where C4
is listening to.

14.4.5. FS Plugin

The FS Plugin has been designed in such a way that it is already domain aware. Briefly, the
domain concept is implemented in the FS Plugin as follows:

 A file system location is defined per domain, which is protected with
username/password. The username/password credentials are defined per domain in the
FS Plugin property file

 In order to send messages, a user belonging to domain A will copy the payloads to be

"sent" directory in the file system location configured for domain A (the user must
have access to the protected file location). A similar process is happening when user A
wants to retrieve messages.

For outgoing messages (C1 to C2), the FS Plugin authenticates itself using credentials
(username/password) configured per FS Plugin domain. These new credentials are configured in
the FS Plugin properties file. Once the user is authenticated, user information is extracted from
the Spring Security data, associated to the current thread and passed to the Domibus Core.

For incoming messages (C3 to C4), the FS Plugin receives the domain name from Domibus so that
the incoming messages are into the directory associated to the respective domain.

The domains configured in Domibus and the domains configured in the FS Plugin properties must
match. An error will be raised if the domain is not configured as needed in the FS Plugin
properties.

14.5. Domibus Properties

The Domibus properties defined in the domibus.properties file are used for the default domain,
when Domibus manages one single domain.

When Domibus is configured with multiple domains, several properties will have to be
customized per domain. More information on which properties can be overridden per domain
are available in the Domibus Administration Guide. In order to customize a property the
following convention is used:

DEFAULT domain property name DOMAIN1 domain property name

Domibus 4.0.2 Software Architecture Document

Page 39 / 46

domibus.security.keystore.location DOMAIN1.domibus.security.keystore.location

14.6. Logging

In order to associate each log statement to a specific domain the Logback format pattern
contains the domain name.

Eg: <pattern>%d{ISO8601} [%X{d_user}] [%X{d_domain}] [%X{d_messageId}] %5p %c{1}:%L -
%m%n</pattern>

The domain name is added in the MDC context so that every log statement contains the domain
name.

The domain name is added in the MDC context as soon as a thread is started:

 For a web service, a CXF interceptor is adding the domain to MDC as close as possible to
the START phase. The MDC context value is cleared with a CXF interceptor added at
before the END phase.

 For a JMS message listener, the domain name is extracted from the JMS message that is
being consumed and added programmatically to MDC.

The separation of logs per domain is achieved using the existing Logback marker mechanism and
a Logback configuration file distributed in each server configuration archive. As a result, separate
log files are created containing only the logs for one domain. For instance for a domain named
DOMAIN1 the following log files are saved under the logs/DOMAIN1 directory: DOMAIN1-
domibus.log, DOMAIN1-business.log, DOMAIN1-security.log provided that the DOMAIN1-
logback.xml is configured.

This configuration is managed in the Domibus logback.xml file and it is independent of the
Domibus application.

For more detail on how to configure the Domibus logging can be found in the Domibus
Administration Guide.

14.7. Message Payloads

Domibus supports two strategies for saving the messages payloads: in the database or in a local
directory on the file disk. Each domain can customize the strategy for saving the payloads via the
domibus.properties file.

In case a domain chooses to save the payloads in the database, the payloads segregation is
ensured as only the users registered in that domain have access to the domain specific schema.

In case a domain chooses to save the payloads in a local filesystem directory configured per
domain, the payloads segregation needs to be ensured via OS access rights. It is recommended
that each domain configures its own dedicated filesystem directory.

Domibus 4.0.2 Software Architecture Document

Page 40 / 46

14.8. Quartz

In the current version of Domibus, each domain can customize the Quartz jobs (like the retry job
expression defined with the property domibus.msh.retry.cron). The Quartz jobs are saved in the
database schemas of each domain. A Quartz Scheduler can only be configured to work with one
DB schema at a time. In order to support Multitenancy, a Quartz Scheduler instance is created
for each domain with specific properties for that domain. The creation of a Quartz Scheduler per
domain is performed at runtime during the Domibus starts up.

Domibus 4.0.2 Software Architecture Document

Page 41 / 46

15. UI REPLICATION MECHANISM

There have been situations when due to a large volume of data in the database message tables
(from 100k to even 5M messages) the search in the Domibus GUI messages page takes longer
than few seconds – up to 30 seconds.

The UI Replication mechanism consists in using a dedicated flat table (optimized with indexes for
search) which is asynchronously populated when native message tables are populated. If the
mechanism is enabled the search screen will use this table which should perform faster on large
amount of data.

Below will follow description for main components:

15.1. TB_MESSAGE_UI table and V_MESSAGE_UI_DIFF view

15.1.1. TB_MESSAGE_UI

TB_MESSAGE_UI table is the main table which is asynchronously populated when UI replication is
enabled. It has the following structure:

Column name Data type (Oracle)

ID_PK NUMBER(38,0)

MESSAGE_ID
VARCHAR2(255
BYTE)

MESSAGE_STATUS
VARCHAR2(255
BYTE)

NOTIFICATION_STATUS
VARCHAR2(255
BYTE)

MSH_ROLE
VARCHAR2(255
BYTE)

MESSAGE_TYPE
VARCHAR2(255
BYTE)

DELETED TIMESTAMP(6)

RECEIVED TIMESTAMP(6)

SEND_ATTEMPTS NUMBER(38,0)

SEND_ATTEMPTS_MAX NUMBER(38,0)

NEXT_ATTEMPT TIMESTAMP(6)

CONVERSATION_ID
VARCHAR2(255
BYTE)

FROM_ID
VARCHAR2(255
BYTE)

TO_ID
VARCHAR2(255
BYTE)

FROM_SCHEME
VARCHAR2(255
BYTE)

TO_SCHEME VARCHAR2(255

Domibus 4.0.2 Software Architecture Document

Page 42 / 46

BYTE)

REF_TO_MESSAGE_ID
VARCHAR2(255
BYTE)

FAILED TIMESTAMP(6)

RESTORED TIMESTAMP(6)

MESSAGE_SUBTYPE
VARCHAR2(255
BYTE)

LAST_MODIFIED TIMESTAMP(6)

LAST_MODIFIED2 TIMESTAMP(6)

Where ID_PK is the generated sequence, LAST_MODIFIED and LAST_MODIFIED2 are columns
dedicated for the mechanism of replication. All the other columns (from MESSAGE_ID to
MESSAGE_SUBTYPE) are used for search on message page and populated with data from native
tables.

15.1.2. V_MESSAGE_UI_DIFF

V_MESSAGE_UI_DIFF is a control view. His purpose is to show in real time how many records
from native tables are not in sync with TB_MESSAGE_UI – as this number is always 0 everything is
in sync. Also this view is used for UIReplicationJob to update the TB_MESSAGE_U records not in
sync.

Column name Data type (Oracle)

MESSAGE_ID VARCHAR2(255)

MESSAGE_STATUS VARCHAR2(255)

NOTIFICATION_STATUS VARCHAR2(255)

MSH_ROLE VARCHAR2(255)

MESSAGE_TYPE VARCHAR2(255)

DELETED TIMESTAMP(6)

RECEIVED TIMESTAMP(6)

SEND_ATTEMPTS NUMBER

SEND_ATTEMPTS_MAX NUMBER

NEXT_ATTEMPT TIMESTAMP(6)

CONVERSATION_ID VARCHAR2(255)

FROM_ID VARCHAR2(255)

TO_ID VARCHAR2(255)

FROM_SCHEME VARCHAR2(255)

TO_SCHEME VARCHAR2(255)

REF_TO_MESSAGE_ID VARCHAR2(255)

FAILED TIMESTAMP(6)

RESTORED TIMESTAMP(6)

MESSAGE_SUBTYPE VARCHAR2(255)

Domibus 4.0.2 Software Architecture Document

Page 43 / 46

15.1.3. Native tables

These tables are the source for populating TB_MESSAGE_UI and for the V_MESSAGE_UI_DIFF
view:

TB_MESSAGE_LOG

TB_MESSAGE_INFO

TB_USER_MESSAGE

TB_PROPERTY

TB_PARTY_ID

TB_MESSAGING

TB_SIGNAL_MESSAGE

15.2. UIReplication queue, JMS message producer and

consumer

There is a UIReplication JMS queue which is defined as internal queue

#Domibus internal queue used for UI replication

domibus.jms.queue.ui.replication=domibus.internal.ui.replication.queue

The name of the queue could be overwritten as is defined in domibus-default.properties file

There is a producer defined for this JMS queue which will produce messages in the following
situations:

- creation of a User or Signal message

- update of status, notification status and other fields of a User or Signal message

For this we create several types of JMS messages:

USER_MESSAGE_RECEIVED,

USER_MESSAGE_SUBMITTED,

MESSAGE_STATUS_CHANGE,

MESSAGE_NOTIFICATION_STATUS_CHANGE,

MESSAGE_CHANGE,

SIGNAL_MESSAGE_SUBMITTED,

SIGNAL_MESSAGE_RECEIVED

The consumer on the other hand is multi-thread (in order to speed up the replication process)
and is able to insert or update a row into TB_MESSAGE_UI based on the type of JMS messages
above. Also a type of Optimistic Lock mechanism based on LAST_MODIFIED (status) and
LAST_MODIFIED2 (notification status) is in place which assures that only latest relevant
information is updated or inserted.

Domibus 4.0.2 Software Architecture Document

Page 44 / 46

The level of the multi-threading of the consumer is defined by this property form domibus-
default.properties files:

#concurrency (no of threads) for dispatching messages of ui replication queue

domibus.ui.replication.queue.concurency=3-10

15.3. UIReplication Quartz Job

The purpose of the job is to check regularly (once per day) any unsynchronized data between
native tables and TB_MESSAGE_UI.

The frequency to run is defined in the following domibus-default.properties key:

#Cron job that will check unsynchronized data between native tables and

TB_UI_MESSAGE_UI

domibus.ui.replication.sync.cron=0 0 2 * * ?

And it could be overridden in the domibus.properties if the user wants a different moment of
time.

If there are more rows to be synchronized than the following property:

#max number of records that will be processed by cron job

domibus.ui.replication.sync.cron.max.rows=10000

Then the job will stop and issue a warning to use the REST method.

15.4. UIReplication REST methods

The purpose of the REST service is to offer a manual synchronization between the native tables
and TB_MESSAGE_UI.

There are two methods:

GET /rest/uireplication/count – it will just count the differences

GET /rest/uireplication/sync?limit=x – this will sync the first x unsynchronized rows where x has a
default value of 10.000

15.5. Migration script

Migration script (oracel10g/mysql5innoDb-xyz-uireplication-insert.sql) is intended to be run for
both Oracle and MySQL database and is provided within distribution packages.

It performs an INSERT into TB_MESSAGE_UI and it should be run with the table having no
records:

Domibus 4.0.2 Software Architecture Document

Page 45 / 46

-- ***

-- This script should be run if UIReplication feature is enabled

-- (before setting domibus.ui.replication.enabled=true).

--

--

-- ***

INSERT /*+ append*/ INTO tb_message_ui (

 id_pk,

 message_id,

 message_status,

 notification_status,

 msh_role,

 message_type,

 deleted,

 received,

 send_attempts,

 send_attempts_max,

 next_attempt,

 conversation_id,

 from_id,

 to_id,

 from_scheme,

 to_scheme,

 ref_to_message_id,

 failed,

 restored,

 message_subtype

)

SELECT

...

15.6. Enabling/disabling the UIReplication mechanism

There is a property defined into domibus-default.properties:

#enabled or disabled the UI Replication mechanism

domibus.ui.replication.enabled=false

The value set to false will disable:

- JMS consumer and producer

- UIReplication Job to run

- UIReplication REST methods – just to show a message and not to execute the sync

More information about configuring UIReplication mechanism could be found in the Admin
Guide for Domibus.

Domibus 4.0.2 Software Architecture Document

Page 46 / 46

16. CONTACT INFORMATION

CEF Support Team

By email: CEF-EDELIVERY-SUPPORT@ec.europa.eu

Support Service: 8am to 6pm (Normal EC working Days)

