

© European Union, 2019

Reuse of this document is authorised provided the source is acknowledged. The Commission's
reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the
reuse of Commission documents.

Date: 31/07/2019

EUROPEAN COMMISSION

DIGIT
Connecting Europe Facility

Access Point

Domibus 4.1

Plugin Cookbook

Version [2.7]

Status [Final]

 Plugin Cookbook Domibus 4.1

 Page 2 / 20

Document Approver(s):

Approver Name Role

Adrien FERIAL Project Manager

Document Reviewers:

Reviewer Name Role

Caroline AEBY and Chaouki BERRAH Technical Writers
Cosmin BACIU Developer

Summary of Changes:

Version Date Created by Short Description of Changes

0.01 21.06.2016 Christian KOCH Initial version

0.02 14.07.2016 Christian KOCH Changes according to comments
0.03 21.07.2016 Christian KOCH Added link to administration guide

0.04 29.07.2016 Christian KOCH Changes according to comments

0.05 11.08.2016 Christian KOCH Changes according to comments
1.00 11.08.2016 Cosmin BACIU Describe how perform the validation of the

submission. First version published

1.01 15.09.2016 Cosmin BACIU Updated the document for 3.2-RC1
1.02 04.10.2016 Ioana DRAGUSANU Added authentication details for 3.2.0

1.03 10.10.2016 Adrien FERIAL Finalization of the document
1.04 19.01.2017 Cosmin BACIU Documented the new messageReceiveFailed method

1.05 22.03.2017 Cosmin BACIU Upgrade the version to 3.2.3
1.06 10.04.2017 Cosmin BACIU Upgrade the version to 3.2.4

1.07 22/05/2017 Yves ADAM Upgrade the version to 3.2.5

1.08 20/06/2017 Ioana
DRAGUSANU,
Cosmin BACIU

Add 3.3-RC1 changes, ext-services, domibus-logging,
getStatus API

1.09 03/10/2017 Cosmin BACIU Documented the new messageStatusChanged
method

2.00 05/10/2014 Caroline AEBY Document review and corrections.

2.01 09/10/2017 CEF Support List of reviewers updated.

2.02 24/11/2017 CEF Support Update with Domibus 3.3.1
2.03 08/02/2018 CEF Support Update with Domibus 3.3.2

2.04 20/03/2018 CEF Support Reuse notice added, update with Domibus 3.3.3
2.05 16/04/2018 CEF Support Update with Domibus 3.3.4

2.06 01/08/2018 Caroline AEBY Updated for Domibus 4.0. Added info on notification
listener. Plugin services documented.

2.07 04/09/2018 Caroline AEBY Removed references to release candidate version

2.08 07/09/2018 Cosmin BACIU Updated for multi-tenancy
2.09 14/09/2008 Chaouki BERRAH Minor Update from Ioana DRAGUSANU

2.10 26/09/2018 Caroline AEBY Contact information update

2.20 27/11/2018 Caroline AEBY Domibus 4.0.1 update

 Plugin Cookbook Domibus 4.1

 Page 3 / 20

2.3 11/02/2019 Caroline AEBY Domibus 4.0.2 update
2.4 16/04/2019 Caroline AEBY Domibus 4.1 updates

2.5 17/04/2019 Cosmin BACIU Domibus 4.1 updates: added payloadSubmittedEvent
& payloadProcessedEvent

2.6 07/05/2019 Cosmin BACIU Domibus 4.1-RC1 updates

2.7 15/07/2019 Caroline AEBY 4.1-RC1 => 4.1

Table of Contents

41. INTRODUCTION ... 4

1.1. Purpose... 4

1.2. Users .. 4

2. BACKEND INTEGRATION... 5

2.1. General Overview .. 5

2.2. Plugin Structure ... 5

2.3. Message Flow.. 6

3. IMPLEMENTING A PLUGIN.. 8

3.1. Pull and Push plugins ... 8

3.2. Extending eu.domibus.plugin.AbstractBackendConnector.. 8

3.2.1. eu.domibus.plugin.BackendConnector.Mode.PULL ... 8

3.2.2. eu.domibus.plugin.BackendConnector.Mode.PUSH .. 8

3.3. Implementing eu.domibus.plugin.transformer.MessageSubmissionTransformer and
eu.domibus.plugin.transformer.MessageRetrievalTransformer... 9

3.4. Notification Listener .. 9

3.5. Validation of the submission ...10

3.6. Plugin Security..13

3.6.1. Authentication...13

3.6.2. Authorization...14

3.7. Logging ..15

3.8. Plugin Services..15

3.8.1. Message acknowledgement service ..15

3.8.2. Monitoring service ...16

4. PLUGIN CONFIGURATION AND DEPLOYMENT ..17

5. API DOCUMENTATION ..18

6. LIST OF FIGURES..19

7. LIST OF TABLES ...19

8. CONTACT INFORMATION ..20

 Plugin Cookbook Domibus 4.1

 Page 4 / 20

1. INTRODUCTION

This document describes the Domibus plugin architecture and plugin API.

1.1. Purpose

After reading this document, the reader should be aware of the capabilities provided by the
Domibus plugin system. Additionally, a developer familiar with the AS4 protocol will be able to
implement a plugin integrating an existing back office application into Domibus.

1.2. Users

This document is intended for the Directorate Generals and Services of the European
Commission, Member States (MS) and also companies of the private sector wanting to set up a
connection between their backend system and the Access Point.

In particular:

o Business Architects will find it useful for determining how to best exploit the Access
Point to create a fully-fledged solution.

o Analysts will find it useful to understand the Use-Cases of the Access Point.

o Architects will find it useful as a starting point for connecting a Back-Office system to
the Access Point.

o Developers will find it essential as a basis of their development concerning the Access
Point services.

o Testers can use this document in order to test the use cases described.

 Plugin Cookbook Domibus 4.1

 Page 5 / 20

2. BACKEND INTEGRATION

2.1. General Overview

The purpose of Domibus is to facilitate B2B communication. To achieve this goal it provides a
very flexible plugin model which allows the integration with nearly all back office applications.

There are three default plugins available with the Domibus distribution:

 the domibus-default-jms-plugin

 the domibus-default-ws-plugin.

 The domibus-default-fs-plugin.

Further documentation about those plugins can be found at
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus .

2.2. Plugin Structure

A plugin is dependent on the domibus-plugin-api module which is released together with the
main Domibus application. Any changes to previous API versions will be addressed in a migration
guide.

In addition to this required module, another module is available (more information about this
module can be found in the Domibus Software Architecture Document1):

 domibus-logging: may be used to maintain a uniform logging style with the
Domibus core.

A plugin consists of the implementation of at least two interfaces,
eu.domibus.plugin.transformer.MessageSubmissionTransformer and
eu.domibus.plugin.transformer.MessageRetrievalTransformer, and the extension of one abstract
class, eu.domibus.plugin.AbstractBackendConnector.

This way multiple plugins can share the same data formats while using different transport
protocols or enforcing different security policies. It is also possible to implement transport
handlers for protocols while keeping the actual data format pluggable as those classes are not
necessarily coupled and can be reused independently from each other.

1 The document can be downloaded at https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

in the documentation section.

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

 Plugin Cookbook Domibus 4.1

 Page 6 / 20

2.3. Message Flow

Figure 1 - Message Submission from the backend

 Plugin Cookbook Domibus 4.1

 Page 7 / 20

Figure 2 - Message reception by the backend and delivery to the plugin (PUSH/PULL mode)

 Plugin Cookbook Domibus 4.1

Access Point Page 8 / 20

3. IMPLEMENTING A PLUGIN

3.1. Pull and Push plugins

There are two different ways of communicating with the backend. The first one is
eu.domibus.plugin.BackendConnector.Mode.PULL. A plugin operation under this mode initiates all
communications with Domibus MSH by itself and is never called from Domibus itself. This mode is
intended mostly for backend applications that are not always online (e.g. mobile devices).

The default Webservice plugin bundled with Domibus is an example of such a plugin. The major
disadvantage of this mode is that there is no way for Domibus to report processing errors back to the
plugin, relying on calls to getStatus(java.lang.String) by the backend to be informed about any error
conditions.

The preferred way of implementing a plugin is eu.domibus.plugin.BackendConnector.Mode.PUSH.
This mode allows Domibus to push notifications and incoming messages to the backend. In case the
backend is not reachable the notification will be retried according to the backend queue definition as
described in Section B.3, “Plugin configuration and deployment”. The default bundled JMS plugin is
an example of such a plugin.

3.2. Extending eu.domibus.plugin.AbstractBackendConnector

eu.domibus.plugin.AbstractBackendConnector provides implementations of most methods defined in
eu.domibus.plugin.BackendConnector. eu.domibus.plugin.AbstractBackendConnector should be used
as basis for every plugin.

3.2.1. eu.domibus.plugin.BackendConnector.Mode.PULL

• getMessageSubmissionTransformer()
• getMessageRetrievalTransformer()
• payloadSubmittedEvent (eu.domibus.common.PayloadSubmittedEvent): Notifies the
plugins for every payload that has been submitted to C2 but not yet saved
• payloadProcessedEvent (eu.domibus.common.PayloadProcessedEvent): Notifies the
plugins for every payload that has been saved by C2

To submit a message to the MSH the submit(U) implementation of
eu.domibus.plugin.AbstractBackendConnector should be used.

To download a message a combination of listPendingMessages() and
downloadMessage(java.lang.String, T) should be used.

3.2.2. eu.domibus.plugin.BackendConnector.Mode.PUSH

• getMessageSubmissionTransformer()
• getMessageRetrievalTransformer()
• deliverMessage(java.lang.String)
• messageReceiveFailed(eu.domibus.common.MessageReceiveFailureEvent)

 Plugin Cookbook Domibus 4.1

Access Point Page 9 / 20

• messageSendFailed(java.lang.String)
• messageSendSuccess(java.lang.String)
•messageStatusChanged(eu.domibus.common.MessageStatusChangeEvent event)
• payloadSubmittedEvent (eu.domibus.common.PayloadSubmittedEvent): Notifies the
plugins for every payload that has been submitted to C2 but not yet saved
• payloadProcessedEvent (eu.domibus.common.PayloadProcessedEvent): Notifies the
plugins for every payload that has been saved by C2

Additionally listPendingMessages() is only callable from Mode.PULL plugins. To submit a message to
the MSH the submit(U) implementation of eu.domibus.plugin.AbstractBackendConnector should be
used. Additional details on these methods can be found in the Javadoc (see chapter 5).

3.3. Implementing
eu.domibus.plugin.transformer.MessageSubmissionTransformer

and eu.domibus.plugin.transformer.MessageRetrievalTransformer

The implementations of the transformer classes are responsible for transformation between the
native backend formats and eu.domibus.plugin.Submission. As there are two different interfaces to
implement it is possible to use different DTOs for message submission and reception. This is
convenient when those tasks are handled by different backend applications.

As eu.domibus.plugin.Submission is able to represent all kinds of messages there are many
parameters that must be set, with some of them unknown to the backend application. One approach
is to statically set those values in the transformer classes. Another, more flexible approach is the
usage of overridable default settings as used in the bundled default JMS plugin. For further details,
see the documentation and implementation of the default JMS plugin.

3.4. Notification Listener

Domibus core sends notifications to the plugins on the occurrence of different events via the
backend notification queue. For example, the WebService plugin receives notifications on the
jms/domibus.notification.webservice queue.

The Notification Types are:

public enum NotificationType {

 MESSAGE_RECEIVED, MESSAGE_FRAGMENT_RECEIVED, MESSAGE_SEND_FAILURE,
MESSAGE_FRAGMENT_SEND_FAILURE, MESSAGE_RECEIVED_FAIL URE,
MESSAGE_FRAGMENT_RECEIVED_FAILURE, MESSAGE_SEND_SUCCESS ,
MESSAGE_FRAGMENT_SEND_SUCCESS, MESSAGE_STATUS_CHANGE,

MESSAGE_FRAGMENT_STATUS_CHANGE ;
}

Each plugin may configure its own list of notification types for which it expects to be notified. This l ist is
optional. By default, plugins that use PULL mode receive notifications for MESSAGE_RECEIVED,

MESSAGE_SEND_FAILURE, MESSAGE_RECEIVED_FAILURE while the PUSH plugins receive notification for all.

This l ist is passed as a constructor to the notification listener bean, in the *-plugin.xml fi le.

Example:

 <util:list id="requiredNotificationsList" value-type="eu.domibus.common.NotificationType">

 Plugin Cookbook Domibus 4.1

Access Point Page 10 / 20

 <value>MESSAGE_RECEIVED</value>

 <value>MESSAGE_SEND_FAILURE</value>

 <value>MESSAGE_STATUS_CHANGE</value>

 </util:list>

 <bean id="webserviceNotificationListenerService"

 class="eu.domibus.plugin.NotificationListenerService"

 c:queue-ref="notifyBackendWebServiceQueue" c:mode="PULL"

 p:backendConnector-ref="backendWebservice"/>

 p:backendConnector-ref="backendWebservice">

 <constructor-arg ref="requiredNotificationsList"/>

 </bean>

3.5. Validation of the submission

There are uses cases when it is required that the Submission object is validated before it is being
delivered to the plugin. For instance, the user might want to verify that one of all the payloads is
valid against a custom XSD schema. In this case, it does not make sense to deliver the message to the
plugin for processing if it is not valid.

In order to better understand why the current API is not sufficient for this use case we have to
understand first how the Submission object is delivered to the plugin for processing.

There are two transactions involved in the Submission processing:

1. In the first transaction the message is stored in the database and a signal is sent internally via JMS
to trigger the Submission processing.

2. A JMS listener is listening to Submission processing events and triggers the processing.

If the Submission is validated in the second step it would be too late because the Submission has
been already saved and accepted for processing in the first step. This is the reason why we need to
perform the Submission validation in the first step. If the Submission is not valid an exception will be
raised and the processing will not be performed.

The API for Submission validation can be found in the plugin API under the package
eu.domibus.plugin.validation.

Hereunder you can find the class diagram of the classes involved in the submission validation:

 Plugin Cookbook Domibus 4.1

Access Point Page 11 / 20

Figure 3 – Submission validation class diagram

In order to validate the Submission object, one has to declare in the plugin Spring context a bean of
type eu.domibus.plugin.validation.SubmissionValidatorList. The bean id needs to contain the plugin
name. The core will automatically discover the bean of type SubmissionValidatorList and perform the
validation by calling the validate method on each configured SubmissionValidator.

In the plugin API there is already a default implementation of the SubmissionValidatorList interface
DefaultSubmissionValidatorList that has an java.util.ArrayList for maintaining the list of validators.

By default Domibus comes with 3 implementations of the SubmissionValidator interface. An example
how to use them can be found in the next paragraph.

1. eu.domibus.submission.validation.OnePayloadSubmissionValidator – validates that there is at
least one payload present in the Submission

2. eu.domibus.submission.validation.PayloadsRequiredSubmissionValidator – validates that
there is only one payload present in the Submission

3. eu.domibus.submission.validation.SchemaPayloadSubmissionValidator – validates that the
payloads are valid against a custom XSD schema

Below is an extract of a custom plugin Spring context where we can see that a custom validator has
been implemented and there are 3 validators used to validate the Submission:

<!-- custom validator -->

<bean id="customValidator"

class="eu.domibus.submission.validation.CustomSubmissionValidator"/>

<bean id="customJaxbContext" class="javax.xml.bind.JAXBContext" factory-

method="newInstance">

 <constructor-arg type="java.lang.String"

 value="eu.domibus.plugin.custom.domain"/>

</bean>

 Plugin Cookbook Domibus 4.1

Access Point Page 12 / 20

<!-- schema validator -->

<bean id="customPayloadSchemaValidator"

class="eu.domibus.submission.validation.SchemaPayloadSubmissionValidator">

 <property name="jaxbContext" ref="customJaxbContext"/>

 <property name="schema" value="classpath:xsd/as4Payload.xsd"/>

</bean>

<!-- validators list -->

<bean id="customSubmissionValidatorList"

class="eu.domibus.plugin.validation.DefaultSubmissionValidatorList">

 <property name="submissionValidators">

 <list>

 <ref bean="onePayloadSubmissionValidator"/>

 <ref bean="customValidator"/>

 <ref bean="customPayloadSchemaValidator"/>

 </list>

 </property>

</bean>

 Plugin Cookbook Domibus 4.1

Access Point Page 13 / 20

3.6. Plugin Security

By default the plugins security is disabled. Domibus can be configured to require authorization by
setting the following property to false in the domibus.properties configuration file:

domibus.auth.unsecureLoginAllowed=false

Once the plugins security is activated, all the methods of the
eu.domibus.plugin.AbstractBackendConnector class can only be called by authenticated users.

3.6.1. Authentication

The service eu.domibus.ext.services.AuthenticationExtService provided in the plugin API can be
used by the plugins to authenticate the request.

It provides to the plugins two Java methods to authenticate:

1. authenticate (HttpServletRequest httpRequest) throws AuthenticationExtException

This method supports the following authentication types:

• Basic Authentication

• X509Certificates Authentication

• Blue Coat Authentication

Note: Blue Coat is the name of the reverse proxy at the EC. It forwards the request in HTTP with the
certificate details inside the request (“Client-Cert” header key).

The authenticate method evaluates the 3 supported authentication methods in the following
order: Basic Authentication, X509Certificates, Blue Coat certificates. The first authentication method
found will execute, and the remaining authentication methods will not be evaluated anymore.

2. basicAuthenticate(String username, String password) throws AuthenticationExtException;

This method supports only basic authentication.

All the users configured in the Plugin User UI page can authenticate and call any operation of the
eu.domibus.plugin.AbstractBackendConnector.

By default there are two plugin users defined:

 "admin" has the role ROLE_ADMIN

 "user" has the role ROLE_USER, configured with Original User
"urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1"

Custom plugins may use their own custom authentication providers and perform different types of
authentication. In case of custom authentication, the Spring SecurityContextHolder has to set
correctly the authentication parameter after a successful authentication:

 Plugin Cookbook Domibus 4.1

Access Point Page 14 / 20

SecurityContextHolder.getContext().setAuthentication(authentication)

It is mandatory that the method getPrincipal() of the authentication parameter set above returns
the original user value associated to the authenticated user. This original user value is used to
authorize the user to a specific message. More information on how it is implemented can be found in
3.6.2 Authorization.

3.6.2. Authorization

The authorization for the method defined in eu.domibus.plugin.AbstractBackendConnector is
performed at Java method level using Spring @PreAuthorize annotation.

@PreAuthorize("hasAnyRole('ROLE_USER', 'ROLE_ADMIN')")

public void hasUserOrAdminRole() {}

@PreAuthorize("hasAnyRole('ROLE_ADMIN')")

public void hasAdminRole() {}

There are three roles defined for the plugin users ROLE_AP_ADMIN, ROLE_ADMIN and ROLE_USER,
described below.

A user with role ROLE_AP_ADMIN or ROLE_ADMIN has the right to call the following methods of
eu.domibus.plugin.AbstractBackendConnector:

o submit

o downloadMessage

o listPendingMessages

o getStatus

o getMessageErrors

A user with role ROLE_USER associated to an Original User has the right to call the following methods
of eu.domibus.plugin.AbstractBackendConnector:

o submit when the value of the originalSender from the submitted message is equal to the
Original User of the authenticated user

o downloadMessage, only if the finalRecipient value from the message to be downloaded
is equal the Original User of the authenticated user

o listPendingMessages, pending messages for which the finalRecipient value is equal to
the Original User of the authenticated user

o getStatus and getMessageErrors when the value of the originalSender or finalRecipient
of the message is equal to the Original User of the authenticated user.

 Plugin Cookbook Domibus 4.1

Access Point Page 15 / 20

3.7. Logging

The logging service is provided in the domibus-logging module, which is released together with the
main Domibus application. More information about domibus-logging module can be found in the
Domibus Software Architecture Document (the document can be downloaded at
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus in the documentation section).

Example of use:

private static final DomibusLogger LOG = DomibusLoggerFactory.getLogger(BackendWebServiceImpl.class);

3.8. Plugin Services

The Plugin API offers several services like monitoring or message acknowledgment which are
described below.

These services can be accessed in two ways:

 Java API

It can be used by the plugin implementers of the custom plugins.

 REST interface

The REST interface can be used directly by the C1/C4 backends if the network configuration allows it.

The documentation of the REST interface can be found on CEF Digital site.

3.8.1. Message acknowledgement service

This service is used to acknowledge when a message is:

 delivered from C3 to the backend

 processed by the backend

Here are the typical use cases for using the MessageAcknowledgementService:

 a message is received by C3 from C2: the plugin that handles the message registers an
acknowledgment before delivering the message to the backend

 a message is processed by the backend and it informs C3 via the plugin; the plugin registers
an acknowledgment that the message has been processed by the backend

 a message is processed by the backend and informs C3 directly via the REST service exposed
by the core; a REST service is exposed containing the same signature as {@link
MessageAcknowledgeService}

There are two ways of performing message acknowledgments between C3 and the backend:

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

 Plugin Cookbook Domibus 4.1

Access Point Page 16 / 20

 synchronous

C3(via the plugin) notifies the backend synchronously and the backend process the messages also
synchronously. In this case, there is no need for the backend to send a separate message
acknowledgement so the plugin at the C3 side registers the processing of the message by the
backend.

Eg:
BackendResponse backendResponse = plugin.callBackendWS(message)
messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(), new
Timestamp(System.currentTimeMillis()))
messageAcknowledgeService.acknowledgeMessageProcessed(message.getId(), new
Timestamp(System.currentTimeMillis()))

 asynchronous

C3 notifies the backend synchronously and the backend process the messages asynchronously. In this
case, the backend will send a separate message acknowledgement when it manages to process the
message successfully.

Eg:
plugin.sendMessageToTheBackend(message)
messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(), new
Timestamp(System.currentTimeMillis()))

3.8.2. Monitoring service

This service is used to monitor failed messages and to restore them if necessary.

Assuming that "failed message" means failed to be sent by the sender access point and getting the
status set to SEND_FAILURE, the service gives the possibility to:

 list all the failed messages

 restore a failed message

 restore all messages failed during a specific period

 know how long time a message has been failed

 get the history of all delivery attempts

 delete the message payload of a failed message

 Plugin Cookbook Domibus 4.1

Access Point Page 17 / 20

4. PLUGIN CONFIGURATION AND DEPLOYMENT

The documentation for configuration of the message routing and plugin deployment for all
supported deployment platforms can be found in the administration guide. It can be downloaded
from the release page of Domibus, section Documentation:
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

 Plugin Cookbook Domibus 4.1

Access Point Page 18 / 20

5. API DOCUMENTATION

Standard Javadoc documentation for the API can be downloaded on the
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus.

This documentation includes all necessary information required to implement the necessary
methods.

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Domibus

 Plugin Cookbook Domibus 4.1

Access Point Page 19 / 20

6. LIST OF FIGURES

Figure 1 - Message Submission from the backend ... 6
Figure 2 - Message reception by the backend and delivery to the plugin (PUSH/PULL mode) 7
Figure 3 – Submission validation class diagram ..11

7. LIST OF TABLES

No table of figures entries found.

 Plugin Cookbook Domibus 4.1

Access Point Page 20 / 20

8. CONTACT INFORMATION

CEF Support Team

By email: CEF-EDELIVERY-SUPPORT@ec.europa.eu

Support Service: 8am to 6pm (Normal EC working Days)

