

eIDAS-Node National IdP and
SP Integration Guide

Version 1.4.1

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 2 of 23

Document history

Version Date Modification reason Modified by

1.0 16/10/2017 Origination DIGIT

1.4.1 15/06/2018 Document Version changed to

correspond with the release. Reuse of

document policy updated.

DIGIT

Disclaimer

This document is for informational purposes only and the Commission cannot be held

responsible for any use which may be made of the information contained therein.

References to legal acts or documentation of the European Union (EU) cannot be

perceived as amending legislation in force or other EU documentation.

The document contains a brief overview of technical nature and is not supplementing

or amending terms and conditions of any procurement procedure; therefore, no

compensation claim can be based on the contents of the present document.

© European Union, 2018

Reuse of this document is authorised provided the source is acknowledged. The Commission's reuse policy is
implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission
document.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 3 of 23

Table of contents

DOCUMENT HISTORY ... 2

TABLE OF CONTENTS ... 3

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

1. INTRODUCTION .. 6

1.1. Purpose 6

1.2. Document aims .. 6

1.3. Document structure .. 6

1.4. Other technical reference documentation ... 7

2. DEVELOPING MS-SPECIFIC PARTS .. 8

2.1. eIDAS-Node Connector and eIDAS-Node Proxy Service in one product 8

2.2. Required profile and flow of control ... 8

2.3. Use of the provided MS-Specific sample implementation 9

3. INTEGRATION POSSIBILITIES ... 10

3.1. Implementing into SAML infrastructure... 10

3.1.1. Setting up custom attributes ... 10

3.1.2. Attribute registry ... 10

3.1.3. Attribute registry validation and metadata support 11

3.1.4. ProtocolProcessor/ProtocolEngine implementation 11

3.1.5. National scheme of attributes .. 11

3.1.6. Implementing Metadata .. 12

3.1.7. Implementing specific service layer .. 12

3.1.8. Authentication ... 12

3.2. Implementing into other web-based infrastructure 13

3.2.1. ProtocolEngine implementation .. 13

3.2.2. Implementing specific service layer .. 13

3.3. Implementing without re-using sample MS-Specific 13

APPENDIX A. DIAGRAMS .. 15

A.1 Protocol Engine ... 15

A.2 Attribute Registry .. 16

A.2.1 Hard coded attributes ... 17

A.2.2 Class related attribute registries .. 19

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 4 of 23

List of figures

Figure 1: ProtocolEngine — conceptual hierarchy and associations between classes16

Figure 2: Classes related to basic attribute registry ..19

Figure 3: Attribute registry values ...21

Figure 4: Attribute registry value marshalling ..22

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 5 of 23

List of tables

Table 1: Interface objects ...14

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 6 of 23

1. Introduction

This document is intended for a technical audience consisting of developers,

administrators and those requiring detailed technical information on how an eIDAS-Node

can be integrated into the National eID infrastructure.

eID can be integrated into your national eID infrastructure in a number of ways. The

purpose of this document is to provide guidance by recommending one way in which it

can be done.

The advantages of adopting this approach are:

 Sustainability

 Greater Security

 Better Scalability

 More Flexibility

1.1. Purpose

The purpose of this document is to describe how Member States can integrate the eIDAS-

Node into their national infrastructure systems

1.2. Document aims

The aims of this document are to:

 provide information on customisation of attributes;

 provide details of how to develop and tailor the Specific parts for your country;

 provide information on how to integrate with a SAML infrastructure;

 describe implementation into other web-based infrastructure; and

 provide information on the Protocol Engine architecture which is at the heart of all

protocol related operations in the eIDAS-Node.

1.3. Document structure

This document is divided into the following sections:

 Chapter 1 − Introduction this section.

 Chapter 2 − Developing MS-Specific Parts describes considerations of the eIDAS-

Node architecture to be taken into account when developing your integration

strategy.

 Chapter 3 − Integration possibilities describes the recommended integration

approaches, starting with that requiring the least changes.

 Appendix A − Diagrams contains diagrams covering some parts of the software

architecture that are mentioned in this document.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 7 of 23

1.4. Other technical reference documentation

We recommend that you also familiarise yourself with the following eID technical
reference documents which are available on CEF Digital Home > eID > All eID services >
eIDAS Node integration package > eIDAS-Node software releases > Current release:

 eIDAS-Node Installation, Configuration and Integration Quick Start Guide

describes how to quickly install a Service Provider, eIDAS-Node Connector,

eIDAS-Node Proxy Service and IdP from the distributions in the release package.

The distributions provide preconfigured eIDAS-Node modules for running on each

of the supported application servers.

 eIDAS-Node Installation and Configuration Guide describes the steps involved

when implementing a Basic Setup and goes on to provide detailed information

required for customisation and deployment.

 eIDAS-Node Demo Tools Installation and Configuration Guide describes the

installation and configuration settings for Demo Tools (SP and IdP) supplied with

the package for basic testing.

 CEF eID eIDAS-Node and SAML describes the W3C recommendations and how

SAML XML encryption is implemented and integrated in eID. Encryption of the

sensitive data carried in SAML 2.0 Requests and Assertions is discussed alongside

the use of AEAD algorithms as essential building blocks.

 eIDAS-Node Error and Event Logging provides information on the eID

implementation of error and event logging as a building block for generating an

audit trail of activity on the eIDAS Network. It describes the files that are

generated, the file format, the components that are monitored and the events

that are recorded.

 eIDAS-Node Security Considerations describes the security considerations that

should be taken into account when implementing and operating your eIDAS-Node

scheme.

 eIDAS-Node Error Codes contains tables showing the error codes that could be

generated by components along with a description of the error, specific behaviour

and, where relevant, possible operator actions to remedy the error.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 8 of 23

2. Developing MS-Specific Parts

There are multiple ways the reference eIDAS-Node can be integrated with your national

network. Before getting into detail, there is a need to understand the architecture of the

product and set the integration strategy accordingly. Therefore this section describes the

general architecture considerations.

2.1. eIDAS-Node Connector and eIDAS-Node Proxy Service in one

product

The delivered or custom built EidasNode.war web application contains functionalities of

both eIDAS-Node Connector and eIDAS-Node Proxy Service. The actual role is activated

by configuration. It is possible to have both roles activated in one application instance (as

shown in the Basic Setup) though this is not recommended and it is better to have two

different instances for the following main reasons:

 the roles are very different, and since the eIDAS-Node Proxy Service issues

identities, the security level is higher;

 besides the security level, uptime and business continuity requirements will be

different, especially if bilaterally agreed; and

 there can be, and most likely there will be, multiple eIDAS-Node Connectors in the

future for different purposes and sectors.

2.2. Required profile and flow of control

The eIDAS protocol is based on SAML2, implemented with a web profile, so whatever is

used in the national infrastructure, the eIDAS-Node will require an HTTP request, and will

do Redirects or form Posts containing SAML messages. It requires a client browser

capable of understanding HTTP, but does not require cookies or javascript support by

default.

For consuming foreign IDs, the eIDAS-Node Connector will require a browser hit (HTTP

GET or POST) from an SP located in the national infrastructure. After some basic

processing, the request will be forwarded to the MS-Specific code part by Java calls. This

includes the propagation of the Java representation of the HTTP request, from where the

MS-Specific part needs to construct a Java object (LightRequest) to the eIDAS-Node

Connector.

The eIDAS-Node Connector then constructs the eIDAS SAML Request from data provided

by the Java object, places it into the HTTP Request and then issues a redirect command

for the client browser. The redirect target is the eIDAS-Node Proxy Service of the

citizen's country.

The eIDAS SAML Request is processed by the eIDAS-Node Proxy Service through the

optional consent pages, then converted into a Java object (LightRequest again). The

MS-Specific part of the eIDAS-Node Proxy Service receives this object along with the

HTTP Request/Response context, so it can implement the required specific action.

The above communication pattern is the architectural solution for delivering the

Response also. Note that in this case the Java object will be LightResponse instead of

LightRequest.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 9 of 23

2.3. Use of the provided MS-Specific sample implementation

There is a sample MS-Specific implementation provided with the eIDAS-Node package.

This is provided as a demonstration for the Basic Setup, capable of working together with

Demo SP and Demo IdP. The code can be found in the eIDAS-Specific module. It is
compiled and built into a JAR file called eidas-specific.jar. This JAR file is then placed

into the libraries folder of the main EidasNode.war application during the build process.

eIDAS by definition is not suitable for national authentication. The provided sample

module uses the eIDAS protocol in the whole authentication process which SHOULD NOT

be the case in a real production environment.

The eIDAS protocol is intended for the purposes of cross-border authentication. Any use

of it in national infrastructure is not advised and would not be supported.

CEF eID software is provided as a sample implementation to meet the goals and strategy

of the Technical Specifications for cross border authentication. Any modifications of the

code for other purposes would result in software that is not eIDAS compliant. This would

cause compatibility problems as the Technical Specifications evolve and further iterations

of the CEF eID software are released.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 10 of 23

3. Integration possibilities

This section describes the recommended integration approaches, starting with that

requiring the least changes.

3.1. Implementing into SAML infrastructure

You should read this section if your national infrastructure is based on SAML, and you

wish to implement an eIDAS-Node directly to the existing network. In this case, the

provided sample MS-Specific can be reused with minimal changes.

3.1.1. Setting up custom attributes

By default, the EIDAS-SAMLEngine module only supports the attributes included in eIDAS

core dataset (see the document eIDAS SAML Attribute Profile from the eIDAS Technical

Sub-group).

3.1.2. Attribute registry

Attribute registry is responsible for holding and supplying information of types, value

format and namespace for creating and validating requests and responses. The registry

basically contains Attribute Definition objects built from custom XML files or a hard-coded

list of supported core attributes in:

 LegalPersonSpec

 NaturalPersonSpec

 RepresentativeLegalPersonSpec

 RepresentativeNaturalPersonSpec.

The hard coded list is necessary to get a reference of attribute definitions to perform

business rule-based validations on requests and replies.

The core attributes come from the hardcoded set, but this can be partly overridden by

coreAttributeRegistryFile set in SAML engine configuration (see how saml-engine-

eidas-attributes.xml is used in SPSamlEngine.xml). This might help in testing and

implementing aspects of the MS-Specific part, but should not be used in production for

the eIDAS-Node itself.

There is another XML file specified by the optional additionalAttributeRegistryFile

parameter in the SAML Engine configuration. This file can be used to support additional
attributes, sometimes referred as dynamic attributes (the sample filename is saml-
engine-additional-attributes_EidasNode.xml). Each SAML Engine instance can have

different configurations specified in the SamlEngine.xml files.

The following is an example of code to introduce a new attribute to the XML

configuration:

 <entry

key="19.NameUri">http://eidas.europa.eu/attributes/natural/NewSomething</entry>

 <entry key="19.FriendlyName">NEW_SOMETHING</entry>

 <entry key="19.PersonType">NaturalPerson</entry>

 <entry key="19.Required">false</entry>

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 11 of 23

 <entry

key="19.XmlType.NamespaceUri">http://eidas.europa.eu/attributes/naturalperson</entr

y>

 <entry key="19.XmlType.LocalPart">NewSomethingType</entry>

 <entry key="19.XmlType.NamespacePrefix">eidas-natural</entry>

 <entry

key="19.AttributeValueMarshaller">eu.eidas.auth.commons.attribute.impl.LiteralStrin

gAttributeValueMarshaller</entry>

For the key prefix number, take the last one and increment it. For eIDAS protocol the

person type (NaturalPerson, LegalPerson, RepresentativeNaturalPerson or

RepresentativeLegalPerson) must be specified and aligned with namespace.

3.1.3. Attribute registry validation and metadata support

The list of supported attributes is published in the eIDAS-Node Proxy Service Metadata.

The list includes all the eIDAS core and additional attributes, specified in the additional

attributes XML file mentioned above.

3.1.4. ProtocolProcessor/ProtocolEngine implementation

The ProtocolProcessor needs to be implemented to apply special validation and

processing rules of the SAML message format, because the AbstractProtocolEngine is

designed to support a generic SAML2 profile. The base can be copied from

EidasProtocolProcessor.

To utilise your ProtocolProcessor, the configuration file named

SpecificSamlEngine.xml must be modified: ProtocolProcessorConf/class must point

to the exact implementing class.

However, if there are extra SAML features used, it is possible that classes of

AbstractProtocolEngine and/or other parts needs to be amended. In this case it is

recommended to copy the modified classes into the MS-Specific part of the code (by

package namespace and by physical location to the specific JAR too).

To use your ProtocolEngine, the ProtocolEngineFactory and

ProtocolEngineConfiguration/ProtocolEngineConfigurationFactory should be

copied or customised also, so in this case the EIDAS-SAMLEngine module should be

copied to a new namespace.

These are all referenced from Spring application context

specificApplicationContext.xml, therefore the references need to be updated.

3.1.5. National scheme of attributes

The ProtocolEngine manages the AttributeRegistries. The national set of attributes

must be introduced to the MS-Specific ProtocolEngine. It can be done via a

programmatic AttributeRegistry or via XML files.

If the mapping between eIDAS and your national scheme is straight-forward, and can be

carried out by the 'derivation' sample feature you can find in the sample MS-Specific,

then adding an XML file should be enough. To do so, define a

saml-engine-<mycountryspecific>-attributes.xml and reference it

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 12 of 23

'SpecificSamlEngine.xml' (coreAttributeRegistryFile). Then make your derivation

rules accordingly.

If you need to perform special actions when translating attributes, like validation,

concatenation or similar, then you need to reference them in Java, so you must also add

your attributes using the programmatic way. To do this, just replicate the code hierarchy

coming with EidasSpec class.

3.1.6. Implementing Metadata

The Metadata generation/consumption for the MS-Specific part may need to be changed,

not to consume or produce eIDAS-format metadata.

If your national metadata does not include custom extensions, the MetadataFetcher can

be used without modifications. If there are custom elements, the MetadataUtil can be

extended to add any extra accessors.

On Metadata provision the EidasNodeMetadataGenerator class is used directly from the

Servlet. It provides metadata capabilities according to eIDAS Metadata format, so if there

is a need to customise it, a similar class can be implemented. The beans

connectorMetadataGeneratorIDP and serviceMetadataGeneratorSP need to be defined

in Spring context file of specificApplicationContext.xml.

3.1.7. Implementing specific service layer

If there are specific validations needed for your SAML protocol on service level, the

sample EIDAS-Specific code can be modified.

There are several classes that might need to be changed:

 SpecificEidasService and SpecificEidasConnector – these classes contain

the details of the Member State's specific implementation.

 SpecificProxyServiceImpl – the class that is responsible for converting the

LightRequest coming from the eIDAS Proxy Service into the IdP's specific

protocol and the external IdP response into the LightResponse format.

 SpecificConnectorImpl – The class that is responsible for converting the SP's

request into the LightRequest and the LightResponse into the SP's response

specific protocol.

If your national network contains multiple IdPs to serve the eIDAS-Node Proxy Service,

you will need to implement an IdP selector logic to SpecificEidasService and/or

SpecificProxyServiceImpl.

3.1.8. Authentication

When you have only one IdP, or there is an HTTP redirection-routing component, the

external.authentication must be set to "true", and the URL of the IdP (idp.url)

needs to be set in eidas_Specific.xml. Otherwise the above mentioned customisation

in the service layer implementation is required.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 13 of 23

3.2. Implementing into other web-based infrastructure

You should read this section if your national infrastructure is not based on SAML, but is

Web Profile-based, and you choose to implement the eIDAS-Node directly to your

network.

3.2.1. ProtocolEngine implementation

The supplied ProtocolProcessor implementation supports only SAML, however the

ProtocolEngineI interface is probably generic enough for most Web Profile-based

authentication protocols. Implementing your own ProtocolEngine lets you reuse some

parts of the provided sample MS-Specific:

 With some modifications, the ProtocolEngineFactory and

ProtocolEngineConfiguration/Factory can be reused, so the design of the

application can remain the same;

 Some parts of the service layer can be re-used.

3.2.2. Implementing specific service layer

Please follow the instructions in section 3.1.7 — Implementing specific service layer.

3.3. Implementing without re-using sample MS-Specific

There is a way to implement your specific part or an isolated component by realizing

interfaces defined for communicating with MS-Specific parts.

In this case you can exclude EIDAS-Specific from your build and implement

ISpecificConnector and ISpecificProxyService interfaces defined in module EIDAS-

SpecificCommunicationDefinition. And also the interfaces IAUConnector and IAUService

may have to be implemented also.

The implemented classes corresponding ISpecificConnector and

ISpecificProxyService must be injected to connectorController (at

specificConnector) and serviceController (at specificProxyService) beans with

Spring applicationContext.xml.

For the implementing classes of interfaces IAUConnector and IAUService, these should

be injected in specificConnectorNode and specificServiceNode respectively. These

will be used by springManagedSpecificConnector and

springManagedSpecificProxyService beans at Spring applicationContext.xml.

The definition of these interface classes contain detailed information on usage in

comments. The HTTP Request/Response context is always propagated, and the actual

data is exchanged via objects implemented with ILightRequest and ILightResponse

interfaces.

To populate ILightRequest and ILightResponse with transfer objects, the EIDAS-

Commons and EIDAS-LightCommons should be used.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 14 of 23

Table 1: Interface objects

Parameters Description

ILightRequest

lightRequest

The data transfer object exchanged between the eIDAS
protocol and the specific protocol

HttpServletRequest

httpServletRequest

The HTTP Servlet Request

HttpServletResponse

httpServletResponse

The HTTP Servlet Response

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 15 of 23

Appendix A. Diagrams

A Software Architecture Document (SAD) is planned to help the implementation and

integration, meanwhile this section contains diagrams covering some parts already

mentioned in this document.

A.1 Protocol Engine

The Protocol Engine is the heart of all protocol related operations in the eIDAS-Node.

ProtocolEngineI is a generic interface for realising an eIDAS-enabled protocol over

primitives and components. The ProtocolEngine class encapsulates four major

components responsible for constructing, validating and interpreting authentication

messages. These are:

 Protocol Processor: responsible for creating and parsing binary messages (eIDAS

SAML), encapsulates supported Attribute Registry;

 Protocol Signer: offers signing and signature validation services for Engine,

containing certificate/key used for signing messages (but not for validation);

 Protocol Cipher: composition of services performing message encryption and

decryption, contains certificates/keys used for decryption, encryption

key/certificate must be supplied; and

 Engine Clock: provides current date/time information for messaging.

The following diagram shows the conceptual hierarchy and associations between classes

aggregated in the context of the Protocol Engine:

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 16 of 23

Figure 1: ProtocolEngine — conceptual hierarchy and associations between

classes

A.2 Attribute Registry

AttributeRegistry is a catalogue of attributes defined for the eIDAS-Node. The

attribute registry is implemented in the class

eu.eidas.auth.commons.attribute.AttributeRegistry. An attribute registry can be

instantiated programmatically with the AttributeRegistry class or loaded from a file.

The attribute registry file is composed of attribute definitions. They represent the

eu.eidas.auth.commons.attribute.AttributeDefinition class.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 17 of 23

An attribute definition is composed of the following properties:

1. NameUri : [mandatory]: the name URI of the attribute (full name and must be a

valid URI)

2. FriendlyName : [mandatory]: the friendly name of the attribute (short name)

3. PersonType : [mandatory]: either NaturalPerson, LegalPerson,

RepresentativeNaturalPerson or RepresentativeLegalPerson .

4. Required : [optional]: whether the attribute is required by the specification (and

is part of the minimal data set which must be requested).

5. TransliterationMandatory : [optional]: whether the attribute values must be

transliterated if provided in non LatinScript variants.

6. UniqueIdentifier : [optional]: whether the attribute is a unique identifier of the

person (at least one unique identifier attribute must be present in authentication

responses).

7. XmlType.NamespaceUri : [mandatory]: the XML namespace URI for the attribute

values, for example: http://www.w3.org/2001/XMLSchema for an XML Schema

string

8. XmlType.LocalPart : [mandatory]: the name of the XML type for the attributes

values, for example: 'string' for an XML Schema string

9. XmlType.NamespacePrefix : [mandatory]: the name of the XML namespace

prefix for the attributes values, for example: 'xs' for an XML Schema string

10. AttributeValueMarshaller : [mandatory]: the name of a class available in the

classpath which implements the

eu.eidas.auth.commons.attribute.AttributeValueMarshaller interface

Each attribute definition in the properties file is assigned a unique ID followed by a dot (.)

which allows the parser to associate properties to one given attribute definition. The

unique ID can be any string not containing a period. A convention can be to use numbers

as unique IDs as in the example above.

All properties used by the parser can be found in

eu.eidas.auth.commons.attribute.AttributeSetPropertiesConverter.Suffix.

A.2.1 Hard coded attributes

In the eIDAS-Node, the eIDAS standard attributes are hard coded in classes

NaturalPersonSpec, LegalPersonSpec, RepresentativeNaturalPersonSpec and

RepresentativeLegalPersonSpec. The reasons for hard coding is that they change only

when the Technical Specifications are changed, and strong reference of the attributes are

needed to carry out eIDAS-based validations. Beside this hard-wired specification, there
are also XML schema definitions saml_eidas_natural_person.xsd,

saml_eidas_legal_person.xsd, saml_eidas_representative_natural_person.xsd

and saml_eidas_representative_legal_person.xsd in SAMLEngine common resources

folder, loaded by SAML bootstrap and used only to validate not encrypted response

assertions (thus may never be used in production environment).

There is another set of attribute definitions that can be configured by specifying

additionalAttributeRegistryFile in SamlEngine.xml - as a general xml definition for

so called "additional attributes". By default the package comes with a saml-engine-

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 18 of 23

additional-attributes.xml example file configured for the specific ProtocolEngine

instance.

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 19 of 23

A.2.2 Class related attribute registries

The Demo Tools use file/memory based registries instead of hard coded.

Figure 2: Classes related to basic attribute registry

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 20 of 23

The diagram above shows the classes related to basic attribute registry. The AttributeRegistries class acts like a static factory for

creating registries. Depending on which method is called, it provides an AttributeRegistry encapsulating a

MemoryAttributeDefinitionDao (method 'of') or a FileAttributeDefinitionDao (fromFile), both extending the

AttributeDefinitionDao interface. Both are based on SingletonAccessors of ImmutableSortedSets containing the actual

AttributeDefinitions.

AttributeRegistry class also provides an interface called AttributeDefinitionFilter, what enables quick filtering of received attributes

based on anonymous classes. The example legal MDS filter from EidasProtocolProcessor:

public static final AttributeRegistry.AttributeDefinitionFilter MANDATORY_LEGAL_FILTER =

 new AttributeRegistry.AttributeDefinitionFilter() {

 @Override

 public boolean accept(@Nonnull AttributeDefinition<?> attributeDefinition) {

 return attributeDefinition.isRequired()

 && attributeDefinition.getPersonType() == PersonType.LEGAL_PERSON;

 }

 };

An AttributeRegistry contains definitions only, where values are also needed ImmutableAttributeMap are being used.

ImmutableAttributeMap is thread safe, serializable and immutable - instantiated by builder pattern - follows the heterogeneous container

pattern. When built, internally contains ImmutableValueMap, but basically a set of AttributeDefinitions with associated

AttributeValue(s).

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 21 of 23

Figure 3: Attribute registry values

The values are typed, therefore can contain complex elements like PostalAddressAttributeValue. The generic

AbstractAttributeValue is responsible to hold any information on SAML attribute level (only transliteration by now).

Since the values are needed to be converted between user types and XML representation eligible for SAML Assertion, there are

AttributeValueMarshallers defined for each type:

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 22 of 23

Figure 4: Attribute registry value marshalling

eIDAS-Node National IdP and SP Integration Guide Version 1.4.1

 Copyright European Commission — DIGIT Page 23 of 23

The marshaller interface definition is actually a part of the attribute definition.

