

Working group meeting #4

Future of eDelivery (REST API profile and Blockchain under ISA² action)

16 December 2020 14.00 – 16.45 CET

Agenda

Time	Items	Speakers
14.00 - 14.10	Welcome and introduction	Maya Madrid (CEF eDelivery Business Owner, DG CNECT H4)
14.10 - 15.30	 Update on REST API profile: Presentation of early work on REST API profile Presentation of pilot architecture Timeline and next steps 	Bogdan Dumitriu, Jerry Dimitriou, Vlad Veduta (CEF eDelivery Technical team, DIGIT D3)
15.30 - 15.50	 Update on JRC's work on API guidelines for government Presentation of deliverable on API management & discoverability Summary of public sector stakeholder engagement activities 	
15.50 - 16.00	Break (10 mins)	
16.00 - 16.20	Q&A on REST API profile	Monica Posada, Lorenzino Vaccari (JRC B6)
16.20 – 16.40	 Update on integration with CEF EBSI (blockchain): Update on functional specifications Timeline and next steps 	Bogdan Dumitriu, Vlad Veduta (CEF eDelivery Technical team, DIGIT D3)

Future of CEF eDelivery and API guidelines for government

Overview of actions and next steps

API guidelines

for government

Action implementers DIGIT + JRC (oversight by DG CONNECT)

Objective

Identification of technical, legal and organizational essentials that ensure usability, stability and continuity of API-enabled digital solutions in governments.

What was done so far?

Delivery of interim reports describing API discoverability solutions and guidelines to manage API life-cycles in governments

What we will be doing next?

 Delivery of interim reports describing API solutions to manage security and solutions to manage privacy aspects: security (eIDAS) + traceability (GDPR)

REST API profile

- Definition of a **REST-based profile** as a candidate profile for future inclusion in CEF eDelivery, in order to support new patterns of data access and data sharing
- Collection of use cases from WG members
- Scoping Document and consultations with WG members
- Ongoing work to define the profile for eDelivery REST API and PoC

- Completion of the profile for eDelivery REST API and consultations with WG members
- Completion of the PoC piloting the profile

Integration with CEF EBSI (blockchain)

- Piloting the use by CEF eDelivery of **blockchain services** offered by the CEF EBSI building block
- Collection of suggestions for functionalities from WG members
- Presentation of proposed functionalities and draft version of functional specifications
- Complete the functional specifications for the eDelivery blockchain pilot and consultations with WG members
- Implementation of features in Domibus (as pilot)

Update on REST API profile:

- Presentation of early work on REST API profile
- Presentation of pilot architecture
- Timeline and next steps

Bogdan Dumitriu, Jerry Dimitriou, Vlad Veduta - CEF eDelivery Technical team, DIGIT D3

Comments/feedback from stakeholders on Scoping document (3)

Author	Key Comments	Reaction (by project team)
Nordic Institute for Interoperability Solutions (NIIS)	 Ideally, the profile should not require adaptation when used in different message/data exchange networks. The profile should define a framework for enabling the use of different security levels. How to carry the client's identity, how to facilitate its verification, how to facilitate the transformation of identities between different schemes. Avoid prescribing a specific format (JSON, XML) for the payload and – in general – remain payload agnostic. Use HTTP headers where possible. Recommendation to analyse 'Signing HTTP Messages' draft for message signing. Recommendation to support all of 2-, 3- and 4-corner models. 	 Most suggestions adopted either as 'will implement' or 'will analyse'. Clarifications in the section 'Identity' for intended authentication scope (end-user, not client). 'Signing HTTP Messages' included in the list of standards to analyse. Full support for 4-corner model is not in scope.
Italian Digital Transformation Department	 Certain protocols should not be specified as part of the profile (e.g., IP, TCP). Suggestion to reconsider definition of "light context" as "relation between the overall resources, the size of the workload and business goals". The profile should define a framework for enabling the use of different security levels. Avoid prescribing a specific format (JSON, XML) for the payload and – in general – remain payload agnostic. Use HTTP features where possible. Recommendation to analyse 'Signing HTTP Messages' and 'Signed HTTP Exchanges' drafts for message signing. 	 Removed protocols that should not be part of the REST API profile. "Light context" meant to capture specific scenarios that should be supported, not be limiting. Now stating that REST API profile should be designed to enable the use of different security levels instead of imposing a single, standard one. Now stating that proposed solutions will avoid constraining the payload to the largest extent possible. RFC 7807 included in the list of standards to analyse. Included suggestion to analyse message-signing approaches in addition to TLS. 'Signing HTTP Messages' and 'Signed HTTP Exchanges' included in the list of standards to analyse.
ETSI Electronic Signatures and Infrastructures Technical Committee (ETSI ESI TC)	 Is eDelivery a fully-fledged trust service as eIDAS ERDS or something broader? No coverage of Evidence generated by ERDS providers (ETSI EN 319 522-2) Recommendation to analyse XAdES and JAdES for message signing. 	 eDelivery aims for alignment with ERDS, but meant to cover broader scope. Relationship between REST API profile and ERDS to be defined. Unclear if the REST API profile can/should be tightly linked with ERDS: new section on "Use in (Q)ERDS context" Clarifications in the section 'Identity' for intended authentication scope (end-user, not client). ETSI EN 319 522-2, XAdES and JAdES included in the list of standards to analyse.

Please consult https://ec.europa.eu/cefdigital/wiki/x/hwZFEw for detailed comment resolutions and https://ec.europa.eu/cefdigital/wiki/x/hwZFEw for detailed comment resolutions and https://ec.europa.eu/cefdigital/wiki/x/hwZFEw for detailed comment resolutions and https://ec.europa.eu/cefdigital/wiki/x/hwZFEw for detailed comment resolutions and https://ec.europa.eu/cefdigital/wiki/x/fgZFEw for final version of Scoping Document.

REST API profile

Structure of the profile

Messaging API Specification

Level 2: API Documentation

Level 1: API Core Profile

Profile enhancement

- √ High security enhancement
- ✓ Discoverability enhancement

Authentication and Authorization

Key aspect

- ✓ Choice on how authorization must be implemented (i.e. using OAuth 2.0)
- ✓ Specifications profiled according to security and interoperability standards/requirements

OAuth 2.0 profile

- 1. Overview of actors:
 - The Resource Owner (RO)
 - The Resource Server (RS)
 - The Client
 - The Authorisation Server (AS)
 - The Identity Provider (IdP)
- 2. OAuth 2.0 for **delegated authorisation** process/model
- 3. OpenID Connect for authentication process/model
- 4. Profiled the following aspects: **token format** (for enhanced identity assurance) and **authorisation grants** (i.e. flows)
- 5. **Different topologies** of authorisation and related restrictions

Authentication and Authorization – Service Topologies

External Authorization Server with external Identity Provider

REST API profile

Core profile

Security

Scope

- ✓ Security as part of communication between the client and the resource server
- ✓ 3 levels of security:

1. Transport

2. Message

3. Payload (algorithms following recent security recommendations)

Design goals

- ✓ Confidentiality
- ✓ Integrity
- ✓ Audit trail
- ✓ Non-repudiation of the server-provided information
- ✓ Support lightweight context (e.g. easy configuration on the client side)

Non goals

- ✓ Message/Payload level encryption
- ✓ Client trust model (i.e. PKI)

Security analysis

- ✓ TLS 1.2 mandatory / TLS 1.3 recommended
 - TLS 1.3 mandatory in high-security profile enhancement
- ✓ Payload security using ETSI JAdES, based on JWS (IETF standard)
- ✓ No established standard for message integrity
 - Use of ETSI JAdES HttpHeaders Mechanism

Analysed and evaluated:

- Signed HTTP Messages Internet-Draft (IETF draft)
- Signed HTTP Exchanges (Google draft)
- JAdES (ETSI draft, extending the JWS standard)
- JSON Web Signature Profile for Open Banking (led by OBE and ETSI, domain standard)

Lifecycle management

Versioning

- ✓ Mandatory use of semantic versioning including
 - Definition of backwards compatible/incompatible changes
 - Specific rules for significant changes
 - Wildcard rule to allow escalation of the impact of a change from minor to major
- ✓ Choice of using URL versioning instead of MediaType versioning (considered safer)
- ✓ Include only **major version number** in URL

Lifecycle management

Deprecation and sunset of APIs

- ✓ Specific HTTP headers (Deprecation Response Header Internet-Draft and Sunset HTTP Response Header)
- ✓ OpenAPI specification property extension for capturing lifecycle events
- ✓ Property extension

```
OpenAPI:
    ...
    info:
        ...
        x-edel-lifecycle:
            maturity: "deprecated"
            deprecated_at: 2020-12-01
            sunset_at: 2021-01-01
```

Common Semantics

1. Common Payload Representations

- Promote semantic interoperability with semantics used in common repositories, such as ISA² Core
 Vocabularies and Schema.org
- OpenAPI mandates the use of JSON schemas
- Selected payload representations are provided as JSON-LD format
- Open question on how to move from JSON-LD to JSON

Common Semantics

2. Common Semantics on Verbs and Status Codes

- Profile use of HTTP verbs
 - When to use POST vs When to use PUT
- Profile use of HTTP Status Codes (i.e. constrain via additional specifications)
 - When 204 (No content) should be returned instead of 200 (OK)

3. Error Messages

- Mandate of specific structure (Problem+JSON)
- Use of Problem+JSON 'type' property to add additional error codes
- Allows future creation of a registry with additional problem types

```
"type": "https://rest.edelivery.ec.europa.eu/problems/resourceNotFound"
"instance": "d9e35127-e9b1-4201-a211-2b52e52508df",
"status": 404,
"title": "Citizen not found",
"detail": "No citizen with ID number 0206731645",
```

Documentation

Principles

- ✓ The API following the specification must be documented using the OpenAPI v3 standard, in the form of an OpenAPI Document
- ✓ The OpenAPI Document must be available under:
 - https://{domain}/{baseURL}/openapi.json
 - https://{domain}/{baseURL}/openapi.yaml
 - https://{domain}/{baseURL}/v{version.major}/openapi.json
 - https://{domain}/{baseURL}/v{version.major}/openapi.yaml
- ✓ The API Documentation section will provide an OpenAPI document containing a
 reference template (covering all the entities defined as part of Section A) to be used
 by the implementer
- ✓ The API Documentation section will also define the **possible OpenAPI specification extensions** (e.g. x-edel-lifecycle)

Discoverability

- Provide the proper mechanisms to become discoverable both in terms of its structure and operations
- To facilitate Discoverability the API MUST Have:
 - A complete OpenAPI v3 document accessible under its base URL
 - The OpenAPI Document MUST contain information on the **servers** property, pointing to all the known deployed instances
 - Use the additional OpenAPI Info Attribute extensions as defined in the Specification that can be used as metadata by repositories (eg. info.x-edel-publisher)

Objectives of the pilot

- Test and validate the draft REST API profile
- Create a **feedback loop** during the development of the profile, ensuring its feasibility and completeness
- Demonstrate an **API specification** conformant to the REST API profiled by the project (the REST API for DSD)
- Demonstrate a client for the **above API** (the Broker)
- Demonstrate an **implementation of the messaging API** provided by the REST API profile by the project (the Broker)
- Demonstrate a client for the **messaging API instantiation** (the JavaScript client)

Pilot architecture overview

OAuth topologies:

- National Broker Internal AS with external IdP
- DSD and ROA External AS with external IdP

REST API:

- Broker API conformant with the API Core Profile
- ROA API conformant with Messaging API specifications
- DSD API conformant with the API Core Profile

Functionality of the pilot

Story 01 – End user authenticated by a central IdP (EU Login) before being authorized to update any of the (simulated) OOP registries

- End user accesses the login page
- End user is redirected to log in when accessing the UI application
- End user is not asked to log in if there is already a valid browser session

Story 02 – End user uses the UI to update the (simulated) OOP registries

- End user selects the organization (s)he represents
- End user creates a request to update a record in ROA/DSD
- End user creates a request to create a record in ROA/DSD
- End user sees the status of its requests
- The Broker application forwards the request to the targeted registry

REST API profile for eDelivery

Indicative timeline and next steps

Update on JRC's work on API guidelines for government

- Presentation of deliverable on API management & discoverability
- Summary of public sector stakeholder engagement activities

Monica Posada - JRC B6

Q&A – REST API profile

Update on Integration with CEF EBSI (blockchain):

- Update on functional specifications
- Timeline and next steps

Bogdan Dumitriu, Vlad Veduta - CEF eDelivery Technical team, DIGIT D3

Scenarios analysed for the eDelivery – EBSI pilot

- 1. Timestamp the WS-Security signature of the AS4 message (*EBSI on-chain*) Validate the timestamp on the receiving side
- Collect transaction data from the APs in an eDelivery network (*EBSI off-chain*)

 Query & aggregate transaction data to generate statistics
- 2. Use the EBSI Distributed Identity Registry as *on-chain (white)list* for authenticating/authorising participants in an eDelivery network

Scenario 2 (new)

Use the EBSI Distributed Identity Registry as on-chain (white)list for authenticating/authorising participants in an eDelivery network

eDelivery authentication/authorisation – standard scenario

Authentication of sending parties based on local trust store

Authorisation of sending parties based on (local) PMode configuration

eDelivery authentication/authorisation – dynamic receiver

Authentication of sending parties based domain rules (PKI, policies) + match From/Partyld – certificate fields

Authorisation of sending parties may use a whitelist

EBSI DID Registry as an eDelivery (white)list

The EBSI DID Registry is suited to be used as a (white)list:

- It can be interrogated via a **public API**
- It is designed to **store and manage lists** of public key hashes
- It is secure since it is **stored on-chain**, and hence it is **immutable**
- It is editable in a **controlled** and **traceable way**

EBSI DID Registry as an eDelivery authentication list

EBSI DID registry as a **certificate list** in a standard eDelivery scenario:

- The registry will store one DID document for each domain
- The document will contain the **list of the hashes** of the certificate + From/Partyld of authorised parties
 - Ensuring authentication only

EBSI DID Registry as an eDelivery whitelist

EBSI DID registry as a **whitelist** in a dynamic receiver eDelivery scenario:

- The registry will store one DID document for each domain
- The document will contain the list of the hashes of the certificate + From/Partyld of authorised parties
 - Ensuring authentication and authorisation

Story 4: Using the EBSI DID registry for authentication/authorisation

- EBSI DID Controller configures the DID document for the eDelivery domain
- Domibus Admin requests the AP to be added to the eDelivery domain, providing the pair AP party id + AP certificate
- 3. eDelivery Domain Owner **approves** the request and **sends the hash** of the AP-provided pair to the EBSI DID Controller
- 4. EBSI DID Controller **adds the hash** to the DID document upon domain owner request
- 5. MSH **performs authentication** by consulting the DID document (standard scenario)
- 6. MSH **performs authorization** by consulting the DID document (dynamic receiver scenario).

MSH performs authorisation by consulting the EBSI DID Registry document

Process for authorisation

Authentication via DID document, authorisation via (local) PMode configuration

Authentication & authorisation via DID document

Functional specifications for eDelivery / Blockchain integration

Indicative timeline

Thank you!

ec.europa.eu/cefdigital

CEF-BUILDING-BLOCKS@ec.europa.eu

