
1

API4IPS essentials

API4IPS WG #6
eDelivery informal cooperation Network

28th June 2021

European Commission – Joint Research Centre

Monica Posada-Sanchez

Lorenzino Vaccari

Katarzyna Pogorzelska

Update on JRC’s work on API guidelines for government

2

API4IPS technical. legal and organisational essentials

Time Items Speakers

12.00 - 13.00
• Security & Privacy essentials highlights
• Empirical analysis contractual conditions of APIs

Monica Posada, Katarzyna Pogorzelska (JRC B6)
Lorenzino Vaccari

3

API4IPS timeline
Where are we?

20212020

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P
R

O
J
E

C
T

 T
IM

E
L

IN
E

Scoping

Stakeholder engagement

Security and privacy aspects

Lifecycle and

discoverability Consolidation

REST-based API extensions for eDelivery

APIdays HSK APIDays Paris

W
O

R
K

 P
A

C
K

A
G

E
S

D
E

L
IV

E
R

A
B

L
E

S

Inception report Interim delivery:

- API discoverability solutions

- Guidelines to manage API cycles

Final report

Interim report:

- legal & organizational

WorkshopInterface Workshop Workshop

Legal and organizational aspects

APIdays HSK Workshop

Interim delivery:

- API solutions for security

- API solutions for privacy,

security (eIDAS) & traceability

(GDPR)

Workshop

https://www.apidays.fi/
https://www.apidays.co/paris
https://www.apidays.fi/
https://www.apidays.fi/

4

2021 Q1:

1. Report published in Science Hub: Workshop on the role of APIs in governance processes

2. Stakeholder management: Uptake of our API reports by Member States

3. Framework of API adoption in the public sector published as ISA2 solution

2021 Q2:

1. Publication of paper on MDPI Data special issue: APIs for EU Governments: A Landscape Analysis

2. Interim deliverable on API technical essentials: API security, traceability and privacy
consolidated draft due end of June

3. Interim deliverable on API legal & organizational essentials
first draft end of June

Accomplishments 2021
[Q1 & Q2]

https://publications.jrc.ec.europa.eu/repository/handle/JRC124758
https://ec.europa.eu/isa2/news/finland-implements-api-framework-proposed-european-commission_en
https://joinup.ec.europa.eu/collection/api4dt/solution/api-use-self-assessment/about
https://www.mdpi.com/2306-5729/6/6/59

5

Technical essentials
SECURITY, PRIVACY & TRACEABILITY

6

The eIDAS (EU Regulation Nr. 910/2014) provides a predictable

regulatory environment to enable secure and seamless electronic

interactions between businesses, citizens and public authorities.

eIDAS provides the regulatory environment for important aspects related

to electronic transactions, including the Advanced electronic signature,

the Qualified electronic signature, the Qualified digital certificate for

electronic signature, the Qualified website authentication certificate

and the Trust service requirements.

eIDAS supporting tools include the following connecting European

Facilities (CEF) building blocks: ‘eID’, ‘eSignature’, ‘eDelivery’ and

‘European Blockchain Services Infrastructure (EBSI)’.

Regulatory context (eIDAS)

7

• In order to facilitate the practical

use of eIDAS of trust services

in an interoperable way and to

provide a solid foundation for a

prosperous and sustainable

eIDAS-Ecosystem, OASIS and

ETSI have recently proposed

‘eIDAS-API’ which adopts API-

standards for the creation,

validation, and long-term

preservation of signatures,

seals, timestamps and

evidence records.

OASIS and ETSI ‘eIDAS-API’

8

Security recommendations for eIDAS are proposed by the European Union Agency for

Cybersecurity (ENISA) that among its publications includes:

• A “Security framework for Trust Service Providers” recommending risks assessment,

analysis and evaluation and appropriate measures to mitigate the impact of security incidents as

well as inform the stakeholders of the adverse effects of any such incidents (identification,

preparation, detection, response and eradication)

• A comprehensive guideline on “Good Practices for Security of IoT - Secure Software

Development Lifecycle” which, among its 81 security best practices, contains useful

recommendations for APIs on:

• People: security training, up to date of new security issues, assign security roles and privileges, establishing the

correct governance

• Processes: proper management of 3rd parties components, correct management of operations (incidents, change

management, etc.), control access and authorization policies, security design, establish internal policies to prevent

any disclosure of information

• Technologies: Use libraries and 3rd parties components patched with last vulnerabilities, use secure and

well known communication protocols, standards, web interfaces, session management, review

security and use whitelists

ENISA general purpose recommendations

9

Most recurrent causes and mitigation measures regarding security aspects

in APIs have been analysed, clustered and prioritised by the Open Web

Application Security Project® (OWASP) foundation.

Each year OWASP identifies 10 most important security risks and

mitigation measures. 2019’s list:

1. Broken Object Level Authorization

2. Broken User Authentication

3. Excessive Data Exposure

4. Lack of Resources & (missing) Rate Limiting

5. Broken Function Level Authorization

Specific API security risks & mitigation
measures

6. Mass Assignment

7. Security misconfiguration

8. Injection

9. Improper Assets Management

10. Insufficient Logging & Monitoring

https://owasp.org/www-project-api-security/

10

1. Broken Object Level Authorisation

“APIs tend to expose endpoints that handle

object identifiers, creating a wide attack surface

Level Access Control issue.“

• Object level authorization checks should be considered in

every function that accesses a data source using an input

from the user.

• System-provided IDs should be granted using a random ID

generation rather than being sequentially allocated.

• IDs used in each session should be drawn from storage rather

than those that the client sends.

• Use an authorization mechanism to check if the logged-in user

has access to perform the requested action on the record in every

function that uses an input from the client to access a record in

the database.

• Implement a proper authorization mechanism that relies on the

user policies and hierarchy.

• Write tests to evaluate the authorization mechanism. Do not

deploy vulnerable changes that break the tests.

2. Broken User Authentication

“Authentication mechanisms are often implemented

incorrectly, allowing attackers to compromise

authentication tokens or to exploit implementation flaws to

assume other user's identities temporarily or permanently.”

• Ensure registration, credential recovery, and API pathways are

hardened against account enumeration attacks by using the same

messages for all outcomes.

• Multi-factor authentication, standard authentication protocols, token

generation, and protected password storage should be used.

• API keys should not be used for user authentication.

• Password must be correctly maintained and protected

• Use a server-side, secure, built-in session manager that generates a new

random session ID with high entropy after login.

• Implement anti brute force mechanisms

• Implement account lockout / captcha mechanism to prevent brute force

against specific users.

OWASP 1 & 2

11

3. Excessive Data Exposure

“Looking forward to generic implementations,

developers tend to expose all object properties

without considering their individual sensitivity,

relying on clients to perform the data filtering

before displaying it to the user .“

• All personally identifiable information transmitted via the API

should be identified and use of private data should be

justified. Classify sensitive and personally identifiable information

(PII) that your application stores and works with, reviewing all API

calls returning such information to see if these responses pose a

security issue.

• Backend engineers should always consider the consumer of the

data before exposing a new API endpoint.

• Avoid using methods to generally return all content of data (such

as “to_json()” and “to_string()”) and consider returning only

specific information (i.e. selected properties of data).

• Implement a schema-based response validation mechanism as

an extra layer of security. As part of this mechanism define and

enforce data returned by all API methods, including errors.

4. Lack of Resources & Rate Limiting

“Quite often, APIs do not impose any restrictions on the

size or number of resources that can be requested by

the client/user. Not only can this impact the API server

performance, leading to Denial of Service (DoS), but also

leaves the door open to authentication flaws such as brute

force.”

• Establish limits to the use of resources by API calls.

• Implement a rate limit, i.e. a limit on how often a client can call the API within

a defined timeframe.

• Checks on compression ratios should be added.

• Add proper server-side validation for query string and request body

parameters, specifically the one that controls the number of records to be

returned in the response.

• Define and enforce maximum size of data on all incoming parameters and

payloads such as maximum length for strings and maximum number of

elements in arrays.

• Notify the client when the limit is exceeded by providing the limit number and

the time at which the limit will be reset.

OWASP 3 & 4

12

5. Broken Function Level Authorization

“Complex access control policies with different

hierarchies, groups, and roles, and an unclear

separation between administrative and regular

functions, tend to lead to authorization flaws. By

exploiting these issues, attackers gain access to other

users’ resources and/or administrative functions.“

• Use strict identity access management processes and only allow

users belonging to specific groups or roles to be enabled.

• The enforcement mechanism(s) should deny all access by default,

requiring explicit grants to specific roles for access to every function.

• Review your API endpoints against function level authorization flaws.

• Make sure that all of your administrative controllers inherit from an

administrative abstract controller.

• Make sure that administrative functions inside a regular controller

implements authorization checks based on the user’s group and role.

• Applications should have a consistent and easy way to analyse

authorization module that is invoked from all your business functions.

6. Mass Assignment

“Binding the client provided data (e.g., JSON) to data

models, without proper properties filtering based on an

allow list, usually leads to Mass Assignment. Either

guessing objects properties, exploring other API endpoints,

reading the documentation, or providing additional object

properties in request payloads, allows attackers to modify

object properties they are not supposed to.”

• Precisely define the schemas, types, and patterns accepted in requests

at design time and enforce them at runtime.

• Explicitly define all the input and output parameters and expected payloads.

• Use a multi-tier architecture and do not automatically bind incoming data and

internal objects.

• Use the “readOnly” property set to true in object schemas for all properties

that can be retrieved through APIs but that should never be modified.

OWASP 5 & 6

13

7. Security misconfiguration

“Security misconfiguration is commonly a result of

insecure default configurations, incomplete or ad-hoc

configurations, open cloud storage, misconfigured

HTTP headers, unnecessary HTTP methods,

permissive Cross-Origin resource sharing (CORS),

and verbose error messages containing sensitive

information.“

• Ensure API can only be accessed by the specified HTTP verbs.

• APIs expecting to be accessed from browser-based

clients (e.g., WebApp front-end) should implement a proper Cross-

Origin Resource Sharing (CORS) policy.

• To prevent exception traces and other valuable information from

being sent back to attackers, if applicable, define and enforce all

API response payload schemas including error responses.

• The API life cycle should include:

• A repeatable hardening process leading to fast and easy deployment of a

properly locked down environment.

• A task to review and update configurations across the entire API stack.

• A secure communication channel for all API interactions access to static

assets.

8. Injection

“Injection flaws, such as SQL, NoSQL, Command

Injection, etc., occur when untrusted data is sent to an

interpreter as part of a command or query. The

attacker's malicious data can trick the interpreter into

executing unintended commands or accessing data without

proper authorization .”

• Keep data separate from commands and queries of the APIs.

• Use safe APIs, reducing the use of an interpreter of data.

• Use positive or “whitelist” server-side input validation and for any residual

dynamic queries, escape special characters using specific escape syntax for

the interpreter.

• Strictly define all input data, such as schemas, types, and string patterns,

and enforce them at runtime.

• Use LIMIT and other SQL controls within queries to prevent mass disclosure

of records in case of SQL injection.

OWASP 7 & 8

14

9. Improper Assets Management

“APIs tend to expose more endpoints than traditional

web applications, making proper and updated

documentation highly important. Proper hosts and

deployed API versions inventory also play an important

role to mitigate issues such as deprecated API versions

and exposed debug endpoints.“

• When newer versions of APIs include security improvements,

perform risk analysis to make the decision of the mitigation actions

required for the older version.

• Keep an up-to-date inventory all API hosts and document important

aspects of each one of them, focusing on the API environment, who

should have network access to the host and the API version.

• Document all aspects of your API.

• Generate documentation automatically and make API documentation

available to those authorized to use the API.

• Limit access to anything that should not be public and to production

data, and segregate access to production and non-production data.

• Implement additional external controls, such as API firewalls.

• Properly retire old versions of APIs or backport security fixes to them.

10. Insufficient Logging & Monitoring

“Insufficient logging and monitoring, coupled with

missing or ineffective integration with incident

response, allows attackers to further attack systems,

maintain persistence, pivot to more systems to tamper with,

extract, or destroy data.”

• Encourage full monitoring and logging of API traffic to enable

behaviour modelling and detection of anomalies, geared towards

enabling investigations, improving security configurations and policies, and

fixing bugs.

• Log everything and meticulously. Log failed attempts, denied access,

input validation failures, or any failures in security policy checks.

• Protect logs to not publish highly sensitive information.

• Use a Security Information and Event Management (SIEM) system to

aggregate and manage logs from all components of the API stack and hosts.

• Configure custom dashboards and alerts, enabling suspicious activities to be

detected and responded to earlier.

• Ensure that logs are formatted so that other tools can consume them as well.

OWASP 9 & 10

15

• Application level

• OAuth 2.0 (Authorisation)

• OpenID Connect (Authorisation & Authentication)

• Transport level

• Transport Layer Security (TLS 1.2, 1.3)

• Message level

• JSON Advanced Electronic Signature (JAdES)

• JSON Web Signatures (JWS)

API security standards

16

APIs privacy and traceability

17

The General Data Protection Regulation (GDPR) Regulation (EU)

2016/679 is about the protection of natural persons with regard to the

processing of personal data and on the free movement of such data

It defines that: “Natural persons may be associated with online identifiers

provided by their devices, applications, tools and protocols, such as

internet protocol addresses, cookie identifiers or other identifiers such as

radio frequency identification tags. This may leave traces which, in

particular when combined with unique identifiers and other

information received by the servers, may be used to create profiles of

the natural persons and identify them.”

Regulatory context (GDPR)

18

APIs represents a common way to exchange digital assets, including private

data about individuals and companies.

Traceability in APIs exchange of information is essential for the functioning of

a digital system in an organisation or in a network of organisations interacting

in a digital ecosystem.

Traceability in APIs brings risks of data privacy breaches

Main elements of traceability are actors participating in the exchange of

information and the timestamp of transactions.

The respect of the requirements of the GDPR regulation must be

considered with great attention during APIs design, implementation and

deployment.

Traceability elements

19

The main techniques and tools adopted to govern APIs in a distributed

systems are API gateways and service mesh:

These two tools have to be configured to avoid data privacy breaches

Governance of traceability

Host/VM/POD

Host/VM/POD

Service

Proxy
- Security

- Retries
- Logging

- Tracing
- Routing

H
o

st
/V

M
/P

O
D

Control
plane

service

Service

Proxy
- Security

- Retries
- Logging

- Tracing
- Routing

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy

API gateway Service Mesh

20

• OWASP suggests best practices for logging & monitoring

• Mydata is an approach that was introduced in 2015 as ‘a Nordic model for human-

centred personal data management and processing'

• The Consent based Personal Data Suite (CaPe) is a consent-based and user-

centric platform targeted at Data Processors, in the private or public sector

• Solid is a mid-course correction for the Web by its inventor, Sir Tim Berners-Lee’.

Solid gives people the power to store and control their data securely in decentralized

Personal Online Data Stores (Pod)

• The AMdEX initiative aim is to create a fair, open and reliable data market. It

contributes to the development of a fair and sustainable digital society and thus to a

smart Amsterdam Metropolitan Area.

• Research in the field is also proposed by “privacyTracker” a framework to support the

GDPR principles. The framework supports data traceability. Allowing a user to get a

cryptographically verifiable snapshot of his/her data trail is also proposed

Protecting traced information

https://owasp.org/www-pdf-archive/OWASP_Logging_Guide.pdf
https://mydata.org/
https://www.cape-suite.eu/
https://solid.github.io/specification/
https://amsterdameconomicboard.com/en/initiative/amdex-fair-open-and-reliable-data-market
https://link.springer.com/chapter/10.1007/978-3-319-46963-8_1

21

Legal & organisational essentials
- API LEGAL AND ORGANISATIONAL CONSIDERATIONS

- ANALYSIS OF THE LEGAL FRAMEWORK FOR APIS

- STRUCTURE AND ANALYSIS OF API TERMS OF SERVICE

22

For an organisation APIs are:

1. Code or Software products  digital assets

− Intellectual Property Rights, Patents

2. Operational services  provided or consumed by organisations

− Liability, accountability, ownership, rights of use.

3. Enablers of the integration into digital ecosystems

− Coordination of responsibilities in all digital chain and ecosystem

API legal and organisational considerations
Why this analysis

23

1. Legal Framework

− laws, regulated topics, regulated sectors, regulations

2. Capacity building

– Infrastructure

– Skills

– Ecosystem stakeholder management

3. Operations

– Monitoring compliance, reporting obligations

– Terms of Services (ToS, ToU, T&C)

API legal and organisational considerations
API service provider and consumer organizations

24

APIs do not operate in a legal vacuum

− EU law applicable to data sharing

− the landscape is changing by the day

DGA, DMA, DA (only in EU)

APIs can be:

− subject of regulation

− Means/tools for regulation

Implementation, monitoring and reporting of data

governance processes

Analysis of API legal framework
European perspective

European Data strategy roadmap

25

HORIZONTAL LEGAL INSTRUMENTS

Data Governance Act

Data Markets Act

Data Act

GDPR

Competition Law - TFEU

Data Base Directive

eCommerce Directive

Copyright DSM Directive

Regulation of the free flow of data

Trade secrets Directive

The Software Directive

The Digital Content Directive

Analysis of API legal framework
European perspective – data governance legal instruments

SECTORAL LEGAL INSTRUMENTS

Open Data - Public Sector Information

PSD2 (banking)

MIFID framework

ePrivacy Directive & EU Electronic Com Code

INSPIRE Directive

Electricity Directive

Gas Directive

Regulation on Road safety (mobility)

Regulation on Vehicle Repair and Maintenance Info

REACH (chemicals)

26

WHAT

API service agreements  contracts

− ToS, ToU, T&C

− These documents define the conditions for

interactions between actors (Citizens,

Business,Platforms)

Examples of ToS in government

Analysis of API legal practices
API service agreements

Source: 2017 Gartner, Inc

Business

Platforms

GEO - CONTEXT SCOPE LINKS

Swedish API licence National https://apilicens.se/en/

Singapore National https://www.mas.gov.sg/terms-of-use/api-terms-of-service

Canada National http://www.ca.gov/Use

Cataluña Regional https://www.idescat.cat/dev/api/?lang=en#cdu

Seattle Local https://data.seattle.gov/stories/s/Data-Policy/6ukr-wvup/

https://apilicens.se/en/
https://www.mas.gov.sg/terms-of-use/api-terms-of-service
http://www.ca.gov/Use
https://www.idescat.cat/dev/api/?lang=en#cdu
https://data.seattle.gov/stories/s/Data-Policy/6ukr-wvup/

27

HOW

Description of Dataset

- snapshot in 2019 provided

- self-declared ToS Documents: 4287

- downloads succeeded with content: 2753

NLP analysis on practices of active players

- Analysis of the structure

- Analysis of the conditions

Analysis of API legal practices
API service agreements

28

Analysis of API Terms of Services
Legal empirics: Structure

[1] Word cloud on collocations in the corpus

Elements and conditions of ToS:

− Contracting parties to the agreement

− Start of the contract

− Termination/suspension/modification/restriction of

service provision

− Payment

− Governing Law

− Liability

− Indemnification

− Warranty

− Privacy

− Severability

− License of the generated content (IPR)

Word clouds obtained from:

[2] ToS headings

[3] ToS words in bold

[4] capitalized words

29

Analysis of API Terms of Services
Legal empirics: examples of termination conditions, complexity

Ongoing analysis of practices:
• big players practices?, ownership practice?, legal framework observed?

30

- Delivery of consolidated interim report on Security, Privacy (Q2)

- Delivery of first draft of legal and organizational essentials (Q2)

- Consolidation analysis of legal and organisational essentials (Q3)

- Analysis of practices, mapping of actors, infrastructures, rights and responsibilities

- Expert validation (workshop, case studies)

What’s next

31

REPORTS

DATASETs

TOOLS & SURVEYS

EVENTS

API4DT joinup collection – stay tuned!

Join our community and stay tuned:

https://joinup.ec.europa.eu/collection/api4dt

Contact us directly jrc-apis4dgov@ec.europa.eu

https://joinup.ec.europa.eu/collection/api4dt
mailto:jrc-apis4dgov@ec.europa.eu
https://joinup.ec.europa.eu/document/digital-government-benchmark-api-study

32

Thank you!

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of

elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

EU Science Hub: ec.europa.eu/jrc

@EU_ScienceHub

EU Science Hub – Joint Research Centre

EU Science, Research and Innovation

Eu Science Hub

https://creativecommons.org/licenses/by/4.0/

