Zero emissions using renewable energies, hydrogen technologies and sustainable mobility

Zero emissions using renewable energies, hydrogen technologies and sustainable mobility
Description

The ZERO-HYTECHPARK project demonstrated a range of applications for the use of renewable hydrogen at the Walqa Technology Park in Spain. These included installing solar panels for heating and air conditioning, and using hydrogen fuel cells for powering vehicles and heating water. Using hydrogen was shown to be an effective way of reducing carbon dioxide emissions.

Results

The ZERO-HYTECHPARK used a number of applications to demonstrate that hydrogen technologies can reduce CO2 emissions. This was achieved through the validation of different types of hydrogen-fuelled energy options at the project site. These were:SOLAR THERMAL INSTALLATION - technology to feed the heating and air-conditioning system of the Aragon Hydrogen Foundation building. Use of this solar panel energy as a support to existing heating systems in the Foundation building provide emission reductions of up to 4 500 kg of CO2 per year.ISOLATED PHOTOVOLTAIC SOLAR INSTALLATION - responsible for powering office IT equipment in the Aragon Foundation building, thereby reducing CO2 emissions by 7 500 kg per year.HY TOW - an automated street cleaning system using a water tank with a pressure hose that allows easy cleaning of streets in urban areas. The fuel cell installed is responsible for powering the water pump and the electric motors responsible for moving the unit.FCEV - converting a vehicle by changing the electric battery to a hydrogen fuel cell. Results provide the car with greater autonomy (up to 50% more) and a reduction in the charging time (from periods of up to eight hours to a charge time of just 3-4 minutes). The electric motor is powered by electrical energy from the fuel cell, which in turn is fed by compressed hydrogen at 350 bars. The car also includes a system capable of retaining heat generated by the fuel cell, which can then be used to heat the car's interior. This has the advantage of reducing the car's total energy consumption.FORKLIFT - transforming a forklift truck by replacing the electric battery with a hydrogen-fed fuel cell. The main problems faced with a traditional electric battery are the long periods needed to recharge it and the lack of autonomy this leads to. In an average eight hours shift, an operator has to stop at least once to replace the spent battery with a charged battery, a process which can take between 15 and 30 minutes. With a hydrogen powered forklift, the recharge is almost immediate. The entire process takes approximately 2-3 minutes, and one charge is sufficient to complete a full eight hours shift.COGENERATION BATTERY - a fuel cell powered by hydrogen was set up as a cogeneration system (combined heat and power use) in a project prototype. The system offers 4 km of electrical power and 3.5 kW of thermal power, which heats water in a 150l tank from 20ºC to 60ºC over a period of two hours. The system yield is 70% - 40% electric, 30% thermal and 30% loss. Hot water can be used as Domestic Hot Water (DHW) or for heating. The main advantage of this system is that it does not produce pollutant emissions.FUEL CELL CONNECTED TO THE POWER GRID - hydrogen cells that reuse the surplus hydrogen from electricity production. Firstly, hydrogen is produced using the surplus of renewable energy generated. The hydrogen is stored in facilities and whenever a boost of extra electricity is needed, the hydrogen fuel cell is used to re-inject electricity into the grid.UPS - an uninterruptible power supply is a device that can supply short-term energy to all devices connected to it when a power cut occurs. The inclusion of a hydrogen fuel cell in an UPS allows the duration of back-up energy provision during a power cut to be increased exponentially. The duration can be days and even weeks compared to the few minutes or hours provided by a conventional system.Improvements in the current hydrogen station were also made by monitoring the main parameters and improving the communication system, as well as developing a system for compressing the gas produced in the foundation through the use of metal hydrides (via a COMURO system). The COMURO compresses hydrogen using thermal energy from a chemical reaction between the hydrogen and a metal alloy containing iron, lanthanum, nickel mixed with other elements. A pressure of 200 bars can be achieved in a single stage. An increase in pressure is possible by increasing the number of stages. In fact experimental systems already exist that can achieve pressure of up to 500 bars. A combination of all these energy applications was shown to reduce CO2 emissions in the Walqa Technology Park, using methods that comply with current legislative standards.Renewable energy installations currently in use in the Walqa Technology Park can now supply between 15% and 45% of the Park’s electricity demand (the difference in the figures is due to seasonal variations in consumption). A second energy evaluation investigated heat consumption, in both the Foundation building and the Technology Park as a whole. A detailed analysis of the energy balance of the Foundation building's solar thermal installation was included in the Zero-Hytechpark project. The result was a reduction of 19% in propane emissions, the energy source of the current heating system. A third energy evaluation studied CO2 emissions from employees' transport journeys to and from their homes to the Technology Park. This study covered Hydrogen Foundation employees as well as staff from other companies based in the Park. The study of the Foundation also included emissions generated by staff's work-related journeys. Key results for both applications found that 885Nm3of hydrogen would be needed each year to meet the demands of a fleet of vehicles. The surplus hydrogen could help produce around 1060kWh of thermal energy, which could be used by the solar thermal system to further reduce the consumption of propane fuel used in the Foundation building's heating system.It is expected that this project can act as a catalyst for new projects in other installations and other applications from these companies. The project will be a model for other buildings and installations in terms of demonstrating that it is possible to be more self-sufficient with renewable energies and hydrogen technologies. An important lesson learned is that projects dealing with very innovative technologies under continued development need to have a good monitoring of the technical advances made in the sector. Such projects also need to have a flexible design so that they easily can be adapted.

Programme name
LIFE+
EC’s priorities
Jobs, Growth and Investment, Energy Union and Climate
EU contribution
€678 080
Project location
Spain
Time frame
2010 to 2013
Project webpage

Share this project

Share this project

2 070 projects found
 A textile revolution |  Laboratories and companies work together on the textiles of tomorrow
Countries
Hauts-de-France
Time frame
2013 to 2020
EU contribution
€5 000 000
'Golden Road' History Park gives a boost to tourism on the Czech/German border
Countries
Czech Republic, Germany
Time frame
2009 to 2013
EU contribution
€2 948 575
'Kleinste Fabrik der Welt' (smallest factory in the world) produces environmentally-friendly homes
Countries
Austria
Time frame
2008 to 2010
EU contribution
€377 900
'Let’s Clean the Water' in Slovenia
Countries
Slovenia
Time frame
2011 to 2013
EU contribution
€100 745

default_picture.png

Default Picture
Countries
Romania
Time frame
2013 to 2015
EU contribution
€270 237
'Urban Business Hub' - addressing local social needs in Brussels
Countries
Belgium
Time frame
2007 to 2017
EU contribution
€10 778 274
'Village goodies' in Lithuania
Countries
Lithuania
Time frame
2014 to 2015
EU contribution
€28 107
0.05 mm: a new accuracy standard for industrial robots
Countries
United Kingdom
Time frame
2010 to 2013
EU contribution
€5 300 000
100 additional training places for young people with disabilities
Countries
Germany
Time frame
2006 to 2015
EU contribution
€25 200 000

Pages