
Hybrid meeting, Schuman room, Berlaymont, Rue de la Loi 200, B-1040 Brussels

Latest JIACRA III report

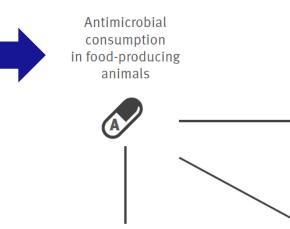
(Joint Inter-Agency Antimicrobial Consumption and Resistance Analysis)

and

Scientific Opinion on AMR outcome indicators

P-A Belœil (EFSA) and Dominique Monnet (ECDC)

Analysis of antimicrobial consumption and antimicrobial resistance



European Surveillance of **Veterinary Antimicrobial** Consumption (ESVAC)

Antimicrobial consumption in humans

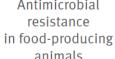
European Surveillance of

Antimicrobial Consumption

Network (ESAC-Net)

European Antimicrobial Resistance Surveillance Network (EARS-Net)

Food- and Water-borne Disease Network (FWD-Net)



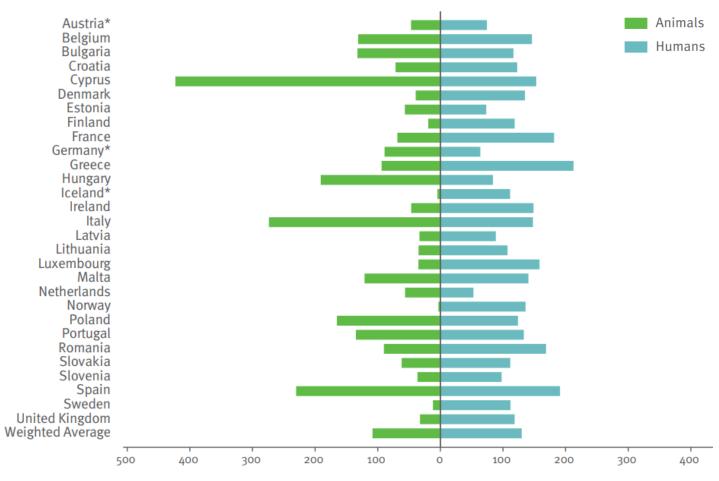
Network on Zoonoses Data Collection

EU Summary Report on AMR in zoonotic and indicator bacteria from humans, animals and food

Antimicrobial resistance animals

- Interagency collaboration
- Analysis of the relationships, in humans/animals, between: antimicrobial consumption (AMC) **vs.** antimicrobial resistance (AMR)
- To cover the years 2016, 2017 and 2018

Consumption of antimicrobials in humans and food-producing animals, 2017


Population-weighted mean AMC, 2017:

	EU/EEA*	Country range
Animals	108 mg/kg	3 – 423
Humans	130 mg/kg	53 – 213

 Antimicrobial consumption (AMC) varied by country.

In 2017, among 29 EU/EEA countries, **AMC** in **food-producing animals** was:

- lower than in humans in 20 countries,
- similar to that in humans in 1 country,
- higher than in humans in 8 countries.

Overall consumption of antimicrobials, 2017 (mg/kg of estimated biomass)

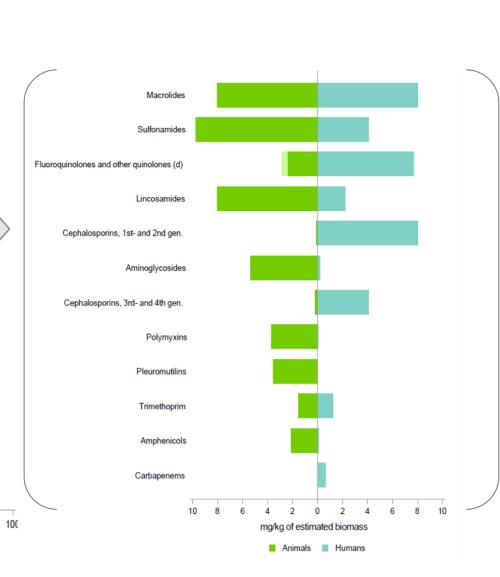
Asterisk (*) denotes that only community consumption was provided for human medicine. The population-weighted mean proportion (%) of hospital sector AMC out of the 2017 total national AMC for EU/EEA countries that provided data for both sectors is 15%.

Notes: 1) The estimates presented are crude and must be interpreted with caution. For limitations hampering comparison of antimicrobial consumption in humans and food-producing animals, see Section 15.1. The weighted mean figure represents the population-weighted mean of data from those countries included.

(a): ATC Jo1 Antibacterials for systemic use.

(b): ATCvet QAO7AA, QAO7AB, QGO1AA, QGO1AE, QGO1BA, QGO1BE, QG51AA, QG51AG, QJ01, QJ51, QP51AG.

Comparison of consumption of antimicrobial classes in humans and food-producing animals, 2017



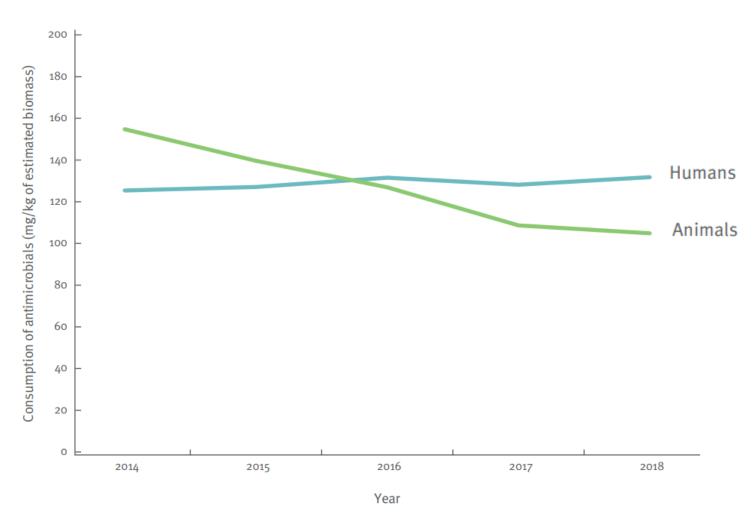
 Consumption of aminopenicillins, 3rd- and 4th-generation cephalosporins and quinolones^a was higher in humans than in food-producing animals.

Consumption of polymyxins^b and tetracyclines, for example, was higher in foodproducing animals than in humans.

Animals Humans

a: fluoroquinolones and other quinolones

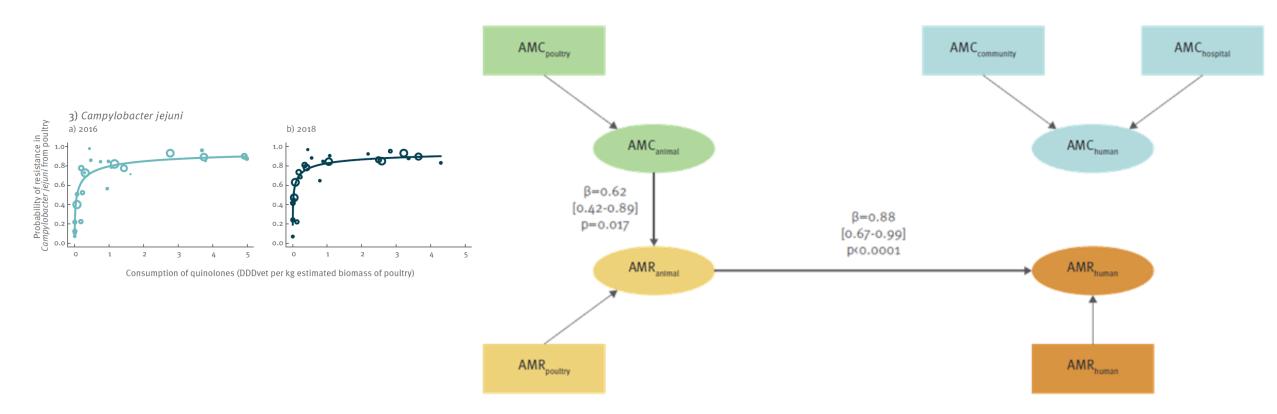
b: colistin: consumption of polymyxins (colistin) nearly halved in food-producing animals


Population-weighted mean antimicrobial consumption in humans and food-producing animals, 2014-2018

- Since 2016, the overall population-weighted mean AMC has been lower in food-producing animals than in humans (27 EU/EEA countries)
- Statistically significant decrease of 32% in the populationweighted mean AMC in foodproducing animals between 2014 and 2018
- The measures taken to reduce the use of antimicrobials in foodproducing animals have been effective

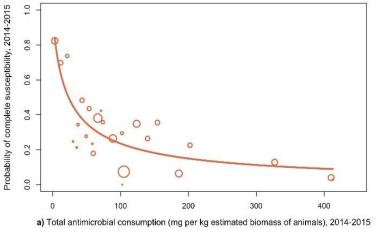
⁽a) For humans: ATC Jo1 Antibacterials for systemic use.

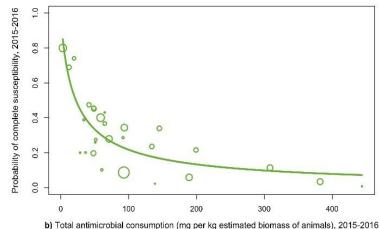
⁽b) For food-producing animals: ATCvet QAo7AA, QAo7AB, QGo1AA, QGo1AE, QGo1BA, QGo1BE, QG51AA, QG51AG, QJ01, QJ51, QP51AG (c) AT, BE, BG, CY, DE, DK, EE, ES, FI, FR, HR, HU, IE, IS, IT, LT, LU, LV, NL, NO, PL, PT, RO, SE, SI, SK, UK.

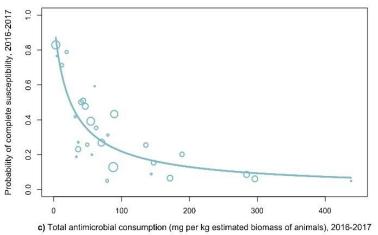

AMC vs. AMR in Campylobacter jejuni

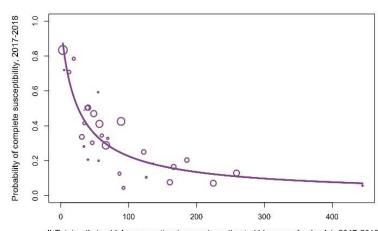
- There are links between AMC in animals and AMR in bacteria from food-producing animals, which in turn is associated with AMR in bacteria from humans.
- For example, associations were found between consumption of quinolones in food-producing animals and resistance to fluoroquinolons in Campylobacter spp. bacteria in food-producing animals and in humans.


Complete susceptibility in *E. coli* vs. AMC in food-producing animals



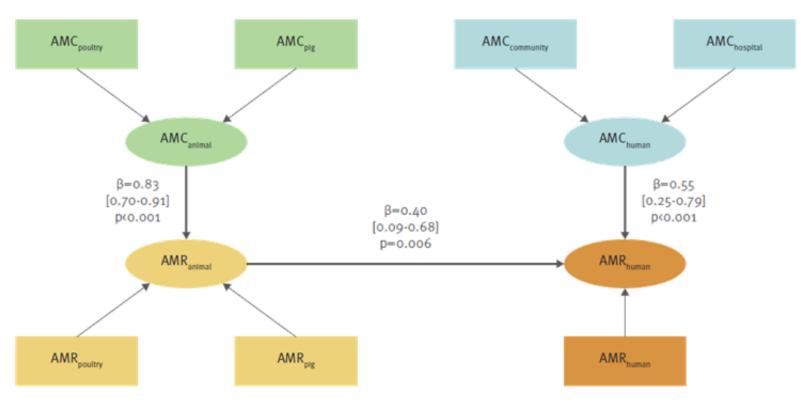





- A statistically significant negative association between the primary key indicators in food-producing animals, consumption of antimicrobials and the occurrence of completely susceptible indicator E. coli.
- A clear and consistently lower probability of detecting completely susceptible indicator *E. coli* when AMC was higher.

d) Total antimicrobial consumption (mg per kg estimated biomass of animals), 2017-2018

Fluoroquinolone consumption vs. fluoroquinolone resistance in E. coli



 A significant positive association was observed between fluoroquinolone consumption in food-producing animals, and fluoroquinolone resistance in *E. coli* isolates from food-producing animals and from humans.

 There also was a significant positive association between fluoroquinolone consumption in humans and fluoroquinolone resistance in *E. coli* isolates from humans.

Goodness-of-fit = 0.737; R2 AMRanimal = 0.69 [95% CI: 0.49-0.83]; R2 AMRhuman = 0.74 [0.60-0.89].

ADOPTED: 22 September 2017 (ECDC Advisory Forum), 14 September 2017 (EFSA BIOHAZ Panel), 6 September 2017 (EMA CVMP) doi: 10.2903/i.efsa.2017.5017

ECDC, EFSA and EMA Joint Scientific Opinion on a list of outcome indicators as regards surveillance of antimicrobial resistance and antimicrobial consumption in humans and food-producing animals

ECDC, EFSA Panel on Biological Hazards (BIOHAZ) and EMA Committee for Medicinal Products for Veterinary Use (CVMP)*

Abstract

ECDC, EFSA and EMA have jointly established a list of harmonised outcome indicators to assist EU Member States in assessing their progress in reducing the use of antimicrobials and antimicrobial resistance (AMR) in both humans and food-producing animals. The proposed indicators have been selected on the basis of data collected by Member States at the time of publication. For humans, the proposed indicators for antimicrobial consumption are: total consumption of antimicrobials (limited to antibacterials for systemic use), ratio of community consumption of certain classes of broad-spectrum to narrow-spectrum antimicrobials and consumption of selected broad-spectrum antimicrobials used in healthcare settings. The proposed indicators for AMR in humans are: meticillin-resistant Staphylococcus aureus and 3rd-generation cephalosporin-resistant Escherichia coli, Klebsiella pneumoniae resistant to aminoqlycosides, fluoroquinolones and 3rd-qeneration cephalosporins, Streptococcus pneumoniae resistant to penicillin and S. pneumoniae resistant to macrolides, and K. pneumoniae resistant to carbapenems. For food-producing animals, indicators for antimicrobial consumption include: overall sales of veterinary antimicrobials, sales of 3rd- and 4th-generation cephalosporins, sales of quinolones and sales of polymyxins. Finally, proposed indicators for AMR in food-producing animals are: full susceptibility to a predefined panel of antimicrobials in E. coli, proportion of samples containing ESBL-/AmpCproducing E. coli, resistance to three or more antimicrobial classes in E. coli and resistance to ciprofloxacin in E. coli. For all sectors, the chosen indicators, which should be reconsidered at least every 5 years, are expected to be valid tools in monitoring antimicrobial consumption and AMR. With the exception of the proposed human AMR indicators, the indicators are in general not suitable to monitor the effects of targeted interventions in a specific sector, such as in a single animal species or animal production sector. Management decisions should never be based on these indicators alone but should take into account the underlying data and their analysis

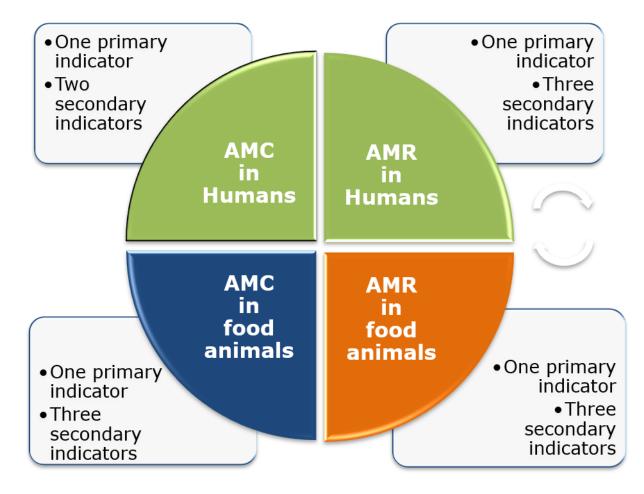
© 2017 European Centre for Disease Prevention and Control, © European Food Safety Authority and © European Medicines Agency. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: antimicrobial consumption, antimicrobial resistance, food-producing animals, humans, indicators

Requestor: European Commission

Question number: EFSA-Q-2016-00638

Correspondence: arhai@ecdc.europa.eu, biohaz@efsa.europa.eu, esvac@ema.europa.eu


www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(10):501

AMR One Health Network meeting, 5 February 2018

^{*} See page 2 for the complete list of authors.

Outcome indicators for surveillance of AMC and AMR in humans and food-producing animals

	Hum	ans	Food-producing animals		
	AMC	AMR	AMC	AMR	
Primary indicators	Total consumption of antibacterials for systemic use (DDD per 1,000 inhabitants and per day)	Proportion of meticillin- resistant Staphylococcus aureus (MRSA) and 3rd- generation cephalosporin- resistant Escherichia coli (3GCR E. coli) given as two individual numbers	Overall sales of veterinary antimicrobials (mg/PCU)	Proportion of indicator <i>E. coli</i> from broilers, fattening turkeys, fattening pigs and calves, weighted by PCU, fully susceptible to a predefined panel of antimicrobials	
Secondary indicators	Ratio of the consumption of broad-spectrum penicillins, cephalosporins, macrolides (except erythromycin) and fluoroquinolones to the consumption of narrow- spectrum penicillins, cephalosporins and erythromycin	Proportion of Klebsiella pneumoniae with combined resistance to aminoglycosides, fluoroquinolones and 3rd- generation cephalosporins	Sales of 3rd- and 4th-generation cephalosporins (mg/PCU)	Proportion of samples positive for presumptive ESBL-/ AmpC-producing indicator <i>E. coli</i> from broilers, fattening turkeys, fattening pigs and calves weighted by PCU	
	Proportion of total hospital AMC that are glycopeptides, 3rd- and 4th-generation cephalosporins, monobactams, carbapenems, fluoroquinolones, polymyxins, piperacillin and enzyme inhibitor, linezolid, tedizolid and daptomycin (DDD per 1,000 inhabitants and per day)	Proportion of penicillin- resistant and macrolide- resistant <i>Streptococcus</i> pneumoniae	Sales of quinolones (mg/ PCU), specifying the proportion of fluoroquinolones	Proportion of indicator <i>E. coli</i> from broilers, fattening turkeys, fattening pigs and calves, weighted by PCU, resistant to at least three antimicrobials from different classes included in a predefined panel of antimicrobials	
		Proportion of carbapenem- resistant Klebsiella pneumoniae	Sales of polymyxins (mg/ PCU)	Proportion of indicator E. coli from broilers, fattening turkeys, fattening pigs and calves, weighted by PCU, resistant to ciprofloxacin	

AMC: antimicrobial consumption; AMR: antimicrobial resistance; DDD: defined daily doses; PCU: population correction unit.

- 4 primary ('key') indicators
- 11 secondary indicators

- The chosen indicators should be reconsidered at least every five years to evaluate whether they still reflect the data available.
- Data on resistance should be monitored on a continuous basis, in order to follow current AMR issues.

Primary key indicators, 2014-2018

		Indicator	2014	2015	2016	2017	2018
	AMC	AMC Humans**	12.1	12.1	11.4	11.9	10.4
16	MMC	AMC Animals***	56.3	50.7	46.1	46.8	50.1
Austri	AMR	% 3GCR EC Humans	9.7 7.8	9.9	10.4	9.9	10.6
	AMK	% MRSA Humans % Complete S EC Animals*	7.8	7.5 43.5	7.1 45.6	5.9 47.7	6.4 47.1
_		AMC Humans**	24.0	24.4	24.2	22.8	22.3
1	AMC	AMC Animals***	158.3	150.1	140.1	131.3	113.1
Belg ium		% 3GCR EC Humans	10.7	10.6	11.5	10.5	9.8
e	AMR	% MRSA Humans	13.5	12.3	12.2	8.5	9.1
ш	_	% Complete S EC Animals*		35.6	34.0	25.5	24.6
m	AMC	AMC Asimalass*	20.0 82.9	20.1	19.2	20.5	21.0 119.6
Igaria		AMC Animals*** % 3GCR EC Humans	40.4	121.9 40.0	155.3 43.3	132.3 41.7	39.0
ii a	AMR	% MRSA Humans	20.8	13.1	14.3	13.7	17.6
		% Complete S EC Animals*	2010	0.0	2.3	9.0	10.4
П	AMC	AMC Humans** AMC Animals***	19.4	19.7	18.7	18.6	18.8
-23	Ame	AMC Animals***	108.6	95.6	87.9	71.5	66.8
Croatia		% 3GCR EC Humans	11.3	13.4	15.4	17.1	15.7
_	AMR	% MRSA Humans	21.3	24.5	25.3	28.5	26.4
-		% Complete S EC Animals* AMC Humans**	22.2	29.4	28.6	31.3 28.9	32.8 NA
***	AMC	AMC Animals***	391.5	434.2	453.4	423.1	466.3
yprus*		% 3GCR EC Humans	28.8	28.5	30.2	30.8	37.1
S	AMR	% MRSA Humans	36.0	43.4	38.8	31.2	40.2
ш		% Complete S EC Animals*		2.8	0.7	4.9	5.7
	AMC	AMC Humans**	17.1	17.4	NA	NA	NA
-6		AMC Animals***	79.5 15.7	68.1 16.0	61.2	63.6	57.0
22	AMR	% 3GCR EC Humans % MRSA Humans	13.0	13.7	13.9	14.6 13.2	15.9 13.6
Ŭ	Ams	% Complete S EC Animals*	13.0	35.8	36.7	35.4	50.4
		AMC Humans**	17.1	17.5	17.0	16.2	15.6
쐝	AMC	AMC Animals***	44.2	42.2	40.8	39.4	38.2
Denmark		% 3GCR EC Humans	7.8	8.5	8.1	7.8	8.3
å	AMR	% MRSA Humans	2.5	1.6	2.0	2.5	1.7
_	_	% Complete S EC Animals*		48.3	47.4	50.1	50.3
.09	AMC	AMC Humans** AMC Animals***	11.9 77.1	12.1 65.2	12.0 64.0	11.6 56.7	11.8 53.3
Estoni		% 3GCR EC Humans	9.8	12.2	10.1	9.1	11.1
S	AMR	% MRSA Humans	3.1	4.0	3.5	2.1	3.3
		% Complete S EC Animals*		42.3	43.0	59.3	61.8
	AMC	AMC Humans**	19.1	18.1	17.4	15.7	15.5
8	Amc	AMC Animals***	22.3	20.4	18.6	19.3	18.7
Fin land		% 3GCR EC Humans	6.3	6.6	7.6	7.7	8.3
	AMR	% MRSA Humans % Complete S EC Animals*	2.6	1.9 73.7	2.2 74.1	2.0 78.8	2.0 78.4
_		AMC Humans**	24.9	25.6	25.6	24.7	25.3
	AMC	AMC Humans** AMC Animals***	107.0	70.2	71.9	68.6	64.2
France		% 3GCR EC Humans	10.9	11.9	12.1	10.8	10.2
å:	AMR	% MRSA Humans	17.4	15.7	13.8	12.9	12.1
ш		% Complete S EC Animals*		26.5	27.9	26.9	28.8
_	AMC	AMC Humans**	13.4	13.1	12.8	12.3	11.9
nam		AMC Animals***	149.3	97.9 10.6	89.2 11.5	89.0 12.7	88.4 12.6
Germany	AMR	% 3GCR EC Humans % MRSA Humans	12.9	11.3	10.2	9.1	7.6
	nnts	% Complete S EC Animals*	12.7	34.9	34.4	43.3	42.4
	AMC	AMC Humans**	31.0	33.2	33.1	34.2	34.0
8	AMC	AMC Animals***	NA	57.2	63.5	93.9	90.9
Greece		% 3GCR EC Humans	21.3	21.1	19.0	19.4	21.3
9	AMR	% MRSA Humans	37.1	39.4	38.8	38.4	36.4
-		% Complete S EC Animals*		NA 1E 0	10.1	5.0	4.4
>	AMC	AMC Humans** AMC Animals***	15.2	15.8 211.4	14.4 187.1	14.6 191.0	14.8 180.6
Hungary		% 3GCR EC Humans	16.5	16.8	16.8	20.1	22.7
Ŧ	AMR	% MRSA Humans	23.1	24.7	25.2	23.6	23.1
		% Complete S EC Animals*	2311	22.5	21.6	20.2	19.8
	AMC	AMC Humans**	17.1	17.6	18.2	18.8	20.4
8	MMC	AMC Animals***	4.9	4.9	4.7	4.6	4.9
keland		% 3GCR EC Humans	3.9	1.7	4.7	7.5	8.6
-26	AMR	% MRSA Humans % Complete S EC Animals*	3.3	0.0 NA	1.3 NA	1.4	71.0
		AMC Humans**	21.0	23.0	22.0	76.5 20.9	71.9 22.7
ъ	AMC	AMC Animals***	47.6	51.0	52.1	46.6	46.0
relan		% 3GCR EC Humans	11.7	12.4	12.2	12.9	13.9
=	AMR	% MRSA Humans	19.4	18.1	14.3	16.3	12.4
		% Complete S EC Animals*		27.7	27.4	25.7	30.3

		Indicator	2014	2015	2016	2017	2018
	AMC	AMC Humans**	24.5	24.5	24.0	20.9	21.4
Italy	AMC	AMC Animals***	332.4	322.0	294.8	273.8	244.0
	AMR	% 3GCR EC Humans	29.7 33.6	30.8	30.5 33.6	30.5 33.9	29.7
	AMK	% MRSA Humans	33.0	12.8		8.7	34.0 12.9
Latvia		% Complete S EC Animals* AMC Humans**	12.6	13.1	11.3 12.9	13.9	13.3
	AMC	AMC Animals***	36.7	37.6	29.9	33.3	36.1
	AMR	% 3GCR EC Humans	10.9	18.9	24.9	22.9	21.3
		% MRSA Humans	8.2	5.6	4.2	5.7	5.7
-		% Complete S EC Animals*		34.3	38.8	41.8	41.5
i thu ania	AMC	AMC Humans** AMC Animals***	15.1 35.5	15.8 35.1	15.6 37.7	15.7 34.8	33.1
		% 3GCR EC Humans	8.9	16.4	15.0	17.5	16.6
	AMR	% MRSA Humans	7.8	8.5	11.3	8.8	8.4
_		% Complete S EC Animals*		21.3	20.1	27.1	28.1
940	AMC	AMC Humans**	23.2	23.5	22.9	22.6	22.2
uxembourg	AMC	AMC Animals***	40.9	34.6	35.5	35.0	33.6
1		% 3GCR EC Humans	13.3	13.0	13.6	10.4	13.7
ă	AMR	% MRSA Humans % Complete S EC Animals*	12.0	8.9 NA	10.2 NA	9.5 NA	7.7 48.9
		AMC Humane**	22.4	21.2	20.9	22.6	20.9
m	AMC	AMC Humans** AMC Animals***	NA	NA	NA	121.0	150.9
Malta		% 3GCR EC Humans	11.6	12.2	14.9	16.6	16.0
200	AMR	% MRSA Humans	43.6	49.4	37.1	42.1	36.4
		% Complete S EC Animals*		NA	NA	NA	NA
S	AMC	AMC Animals**	10.3 68.4	10.4 64.4	10.1	9.8	9.7 57.5
herlands		AMC Animals*** % 3GCR EC Humans	6.1	6.3	52.7 7.0	56.3 6.8	8.0
흩	AMR	% MRSA Humans	1.0	1.3	1.2	1.5	1.2
Neth	runic	% Complete S EC Animals*		38.1	40.1	39.2	41.1
	AMC	AMC Humans** AMC Animals***	16.9	16.8	16.2	15.7	15.3
di di	AMC		3.1	2.9	2.9	3.1	2.9
Norwa	AMR	% 3GCR EC Humans	6.2	6.5	6.1	6.4	7.1
		% MRSA Humans	1.0	1.2	1.2	1.0	0.9
		% Complete S EC Animals* AMC Humans**	21.2	82.4 24.1	80.0 22.0	82.9 25.4	84.6 24.4
ъ	AMC	AMC Animals***	140.8	138.9	129.4	165.2	167.4
Poland		% 3GCR EC Humans	11.2	12.5	14.8	17.1	18.2
8	AMR	% MRSA Humans	20.6	15.8	16.4	15.2	15.9
		% Complete S EC Animals*		26.4	23.5	15.4	16.4
_	AMC	AMC Humans**	18.0	18.8	19.0	17.8	18.6
ug al		AMC Animals*** % 3GCR EC Humans	201.6	170.2 16.8	208.0	134.8	186.6
ě	AMR	% MRSA Humans	47.4	46.8	43.6	39.2	38.1
_		% Complete S EC Animals*			5.9	6.6	7.8
	AMC	AMC Humans** AMC Animals***	26.6	28.0	24.4	24.5	25.0
ania*	AMC	AMC Animals***	109.0	100.5	85.1	90.1	82.7
Nom a		% 3GCR EC Humans	30.1	27.4	23.7	19.9	22.0
2	AMR	% MRSA Humans	56.0	57.2	50.5	44.4	43.0
		% Complete S EC Animals* AMC Humans**	21.2	7.4 24.2	8.7 23.6	12.9 20.0	20.1
.03	AMC	AMC Animals***	65.9	51.0	50.4	61.9	49.3
Slovakia		% 3GCR EC Humans	32.3	31.5	31.2	33.0	31.2
Sign	AMR	% MRSA Humans	28.0	28.1	27.1	29.2	26.6
		% Complete S EC Animals*		23.4	25.9	20.0	20.0
ens.	AMC	AMC Humans** AMC Animals***	13.1	13.3	12.1	12.2	13.2
Slovenia	runc	% 3GCR EC Humans	33.4 13.2	26.4 14.0	30.3	36.5 13.0	43.2
8	AMR	% MRSA Humans	13.2	9.2	11.0	9.0	11.4
S	Ams	% Complete S EC Animals*	1,041	24.7	20.0	18.8	20.6
	AMC	AMC Humans**	17.1	17.5	27.5	26.8	26.0
s		AMC Animals***	418.8	402.0	362.5	230.3	219.2
Spain	AMR	% 3GCR EC Humans	12.6	12.0	15.4	13.1	13.9
31		% MRSA Humans	22.1	25.3	25.8	25.1	24.2
		% Complete S EC Animals*	14.0	4.0	3.4 13.2	6.2 12.8	7.1 12.4
=	AMC	AMC Humans** AMC Animals***	11.5	11.8	12.1	11.8	12.4
Swede		% 3GCR EC Humans	6.1	6.5	8.7	7.7	8.7
SW	AMR	% MRSA Humans	1.0	0.8	2.3	1.2	1.9
		% Complete S EC Animals*		69.8	68.9	71.3	70.8
	AMC	AMC Humans**	20.8	20.1	19.7	19.3	18.8
_	MILL	AMC Animals***	62.5	56.8	39.3	32.5	29.5
ž		% 3GCR EC Humans	10.7	11.8	10.0	11.0	11.8
	AMR	% MRSA Humans % Complete S EC Animals*	11.3	10.8 17.9	6.7 19.7	6.9 23.2	7.3 33.7

Key AMC indicators

 In most countries, the key AMC indicators decreased, both for food-producing animals and in humans.

Key AMR indicators

- The proportion of E. coli from food-producing animals with complete antimicrobial susceptibility increased in the majority of EU/EEA countries.
- The proportion of E. coli from humans with resistance to 3rdgeneration cephalosporins increased in 12 countries and decreased in 11 countries.
- The proportion of *Staphylococcus aureus* resistant to meticillin (MRSA) decreased in most EU/EEA countries.
- Substantial variations of all five primary key AMR indicators were observed among EU/EEA countries, and between years within each country.
- In a few countries, the key AMR indicators were all at either a consistently high or consistently low level over the study period (2014-2018).

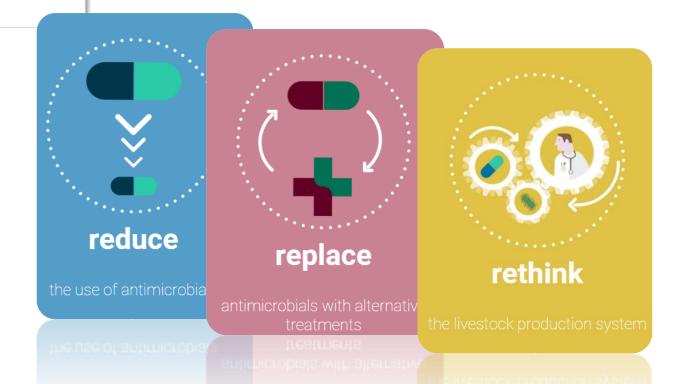
How to achieve prudent use of antimicrobials?

COMMISSION NOTICE

Guidelines for the prudent use of antimicrobials in veterinary medicine

(2015/C 299/04)

EUROPEAN MEDICINES AGENCY


COMMISSION NOTICE

EU Guidelines for the prudent use of antimicrobials in human health (2017/C 212/01)

SCIENTIFIC OPINION

ADOPTED: 1 December 2016 (EFSA BIOHAZ Panel), 8 December 2016 (EMA CVMP) doi: 10.2903/j.efsa.2017.4666

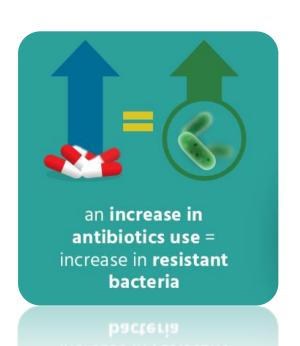
EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA)

Measure consumption

Implementation of management measures

Measure impact of measures - indicators necessary

Conclusions



- Further interventions to reduce AMC will have a beneficial impact on AMR
- Need to promote, in both humans and food-producing animals:
 - ✓ prudent use of antimicrobial agents
 - √ infection prevention and control,
 - ✓ prevention of infection
- High levels of AMC and AMR still being reported
 - > these interventions to be reinforced

Acknowledgements

- European Commission
- ECDC, ESAC-Net, EARS-Net and FWD-Net AMR
- EMA and ESVAC
- EFSA Network on AMR
- CAs, NRLs-AR and the laboratories involved
- EURL-AR

Thank you!

18 November 2022

E-mail: <u>EAAD@ecdc.europa.eu</u>

Website: http://antibiotic.ecdc.europa.eu

Facebook: EAAD.EU

Twitter: @EAAD_EU (#EAAD #KeepAntibioticsWorking)

Global Twitter: #AntibioticResistance

World Antimicrobial Awareness Week

