ROLE OF DATA SCIENCE IN FOOD CHAIN SAFETY DECISION MAKING: CURRENT STATUS AND FUTURE TRENDS

40 years of RASFF: "All you need is RASFF?" – theme: smarter data = better analysis

13.12.2019. Brussels

Increasing volume & complexity of the food chain

2

7 COUNTRIES FORM THE CORE OF THE **AGRI-FOOD TRADE** NETWORK

Each trading with over 77% of all the countries in the world

Source: Ercsey-Ravasz M, Toroczkai Z, Lakner Z, Baranyi J (2012) Complexity of the International Agro-Food Trade Network and Its Impact on Food Safety. PLoS ONE 7(5): e37810. doi:10.1371/journal.pone.0037810

3

THE WORLD WE KNOW IS MORE LOCAL THAN GLOBAL

GLOBAL DEPTH MEASURES VERSUS US SURVEY ESTIMATES

Trade	Exports of Goods & Svcs. (% of GDP)	
Capital	Foreign Direct Investment Flows (% of GFCF)	
	Stock Market Investment (% Intl)	
Information	Telephone Calls (% Int'l, incl. Skype)	
	Tourists (% Int'l)	
People	University Students (% Int'l)	_
	Migrants (% of Pop'n)	
		0%
Actual Metric	Average Survey Response	

Source: Pankaj Ghemawat and Steven A. Altman: DHL GLOBAL CONNECTEDNESS INDEX 2016. The State of Globalization in an Age of Ambiguity

Increasing volume & complexity of the food chain

Growth of the amount of data available for analysis

INFORMATION BOOM

- every day
- Now it is around 5 exabytes **daily**
- We are in the middle of a transition from a society of facts to a society of data
- Numbers are being generated much faster than we have any specific use for

From the dawn of the civilization to 2003 humans produced 5 exabytes of data in total IBM has estimated in 2016 that 2.5 exabytes (2.5 million terabytes) of data are produced

POST-NORMAL SCIENCE

- Policy-related scientific problems:
 - uncertain facts
 - disputes over ethics and values
 - urgent decisions needed
 - that may have far-reaching consequences
- Policy makers are required to make difficult and firm decisions based on data characterized by high levels of uncertainty.

Better evidence-based decision making?

COMPUTATIONAL SCIENCE AS A SOLUTION

- Computational science:

 - Those emerging patterns can be surprising & counter-intuitive
- 'more is different'
- What do we need to achieve this?

Able to detect patterns which can not be detected by a smaller set of data

DATA ANALYSIS FRAMEWORK

DATA MODELLING

Commission & EFSA

DATA ANALYSIS

EFSA ADVISORY FORUM DATA COLLECTION AND MODELLING TASK FORCE

MAIN OBJECTIVE OF THE TASK FORCE

The main objective of the Task Force is to overview the data collection and reporting and to formulate recommendations at a strategic level.

processes and the data model and IT infrastructure used, from a strategic perspective,

DATA COLLECTION

Inventory of MS reporting needs/tasks was mapped (>120)

'chemical hazards'

'microbiological hazards'

'food composition'

DATA COLLECTION

- Important hubs identified:
 - IMSOC, SIGMA, chemical monitoring, foodborne pathogens
- Important modules identified:
 - food composition
 - traceability •
- Many similar/overlapping/parallel report flows
- Many connections could/should be improved

DATA MODELLING

- A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to properties of the real world entities.
- Data models are specified in a data modelling notation, which is often graphical in form.
- Why data modelling is important?
 - Data is an asset of your organization
 - Needs to be understood to be managed
 - Don't need to look at the detail right away (or sometimes ever)
 - An aid to understanding
 - Provides a common vocabulary

DATA MODELLING

Suggestions for the extension of existing formats and formation of new ones

DATA ARCHITECTURE Traditional paradigm: give me all your data

DATA ARCHITECTURE This pattern is repeated in every stage

DATA ARCHITECTURE

- Too many data models (pipelines)
 - Data models become obsolete
 - High cost of redesigning
 - Added complexity
- No added value
 - Reporting data becomes a task with no added value
 - Data submitted is a subset of data already processed
- Inefficient use of resources
 - The data is repackaged, wasting resources
 - Clunky reporting mechanism (Sending files. Trying to understand error messages...) •

FURTHER CHALLENGES

Growth in number of enterprise respondents with over 100 TB of unstructured data between 2016 and 2017.¹

By 2019, 75 percent of analytic solutions will incorporate 10 or more exogenous data sources from second-party partners or third-party providers.²

² Crowdflower, "2016 Data Science Report."

By 2025, real-time IoT data will make up more than 95% of real-time data.³

Source: IBM

DATA ARCHITECTURE Current paradigm

DATA ARCHITECTURE So, what if...

DATA ARCHITECTURE So, what if...

Analytical Sandboxes

Data Exploration	Data Analytics	Data Discovery		
Data Sources				
Data Lake (Unstructured data) Data Warehou (structured)	STUFF Aggregation ler interoperabilit		

/el

"Smart Ecosystem" or **Connected database**

DATA DRIVEN ORGANIZATIONS

DATA DRIVEN ORGANIZATION

- Data is in the core of business activities
- It drives the strategy
- Organizational, procedural, capacity building changes
 - data-informed culture, agile working, room for experiments...
 - more expertise on data is needed \rightarrow education

- Creation and development of (big) databases is not only an IT problem
- of food chain science is needed enabling interpretation and validation.

Source: https://xkcd.com/688/

The ability of analysis and evaluation of input data and results: high-level knowledge

DATA LITERACY

- We need data literate people
- Data literacy: spectrum of related skills
 - MIT: the ability to
 - read
 - work with
 - analyse
 - and argue with data

ARE WE READY?

ARE WE READY?

- We need to invest in data sharing and exploring capacities
- We need careful strategic planning for multiple timelines
- Building the future may destroy some of the current investments/achievements
- IT systems become obsolete after 7-10 years \rightarrow build from scratch is better than patching
- Striving for "full" standardization vs Connected Databases
- Expectation Management & Change Management

ARE WE READY FOR THE FUTURE?

REACTIVE

Ability to share information and react to the current events

RAPID ANALYSIS

WE ARE HERE Ability to quickly assess the situation, and conduct an apidemiological ivestigation

PREDICTIVE

Ability to predict risks and prevent adverse events from occurring, based on past data

REALTIME

Ability to predict risks and prevent adverse events from occurring, based on past and real time data

FOOD SCIENTISTS WILL NOT BE REPLACED BY AI... ...THEY WILL BE REPLACED BY FOOD SCIENTISTS USING AI

CONTACT Ákos Józwiak jozwiaka@nebih.gov.hu

40 years of RASFF: "All you need is RASFF?" – theme: smarter data = better analysis

13.12.2019. Brussels

