Hydrodynamic and hydrological modelling to support the operation and design of sea ports

Data needs and examples

Martijn de Jong (port/nautical requirements, waves, currents)
Sofia Caires (mean and extreme metocean climate and projections)

Harbour, Coastal and Offshore Engineering Department

Scoping workshop on Sea Ports and Climate Change
4/5 March 2013 – Brussels
Deltaires

- Dutch-based
- research institute and specialist consultancy
- water, soil and the subsurface
- advanced expertise to help people live safely and sustainably in
 - delta areas,
 - coastal zones
 - and river basins.

Typical problems

- Design and operation of a port
- Breakwater design
- Ship manoeuvering and mooring
- Wave penetration
- Assessment of water defences
- Environmental impact study
- Coastline evolution
What generally needs to be computed

- Mean and extreme of wind, current (patterns), water level and waves climates at several locations in and around the port

What input data are generally required

- Offshore mean and extreme metocean conditions, discharges, tides, sea level (based on measurements, hindcasts or reanalysis)
- Bathymetry

Assessing the effects of climate change requires new projections of several variables at a project location, representing similar types of statistics (means/extremes), but then updated to represent the altered situation.
Monaco land reclamation

wave conditions flow conditions ship manoeuvring edge structures beach impact

Deltaxres
Monaco land reclamation

Example 1/10

Required input:
- Measurements for calibration
- Offshore wave means and extremes
- Wind mean and extremes
- Boundary currents
- (extreme) Water levels
Design sea defence Maasvlakte 2

- large port extension into the North Sea
- pebble beach combined with (partly) submerged berm/dam of blocks
- 1:10000 year design storm
- aim: verify design, provide recommendations for the design
- attention to feasibility
- scale model tests on different scales
Design sea defence Maasvlakte 2

- large port extension into the North Sea
- pebble beach combined with (partly) submerged berm/dam of blocks
- 1:10000 year design storm
- aim: verify design, provide recommendations for the design
- attention to feasibility
- scale model tests

Required input:
- Offshore wave extremes
- Morphology
Nautical safety and accessibility Port of Rotterdam

- 3D flow modelling Maasvlakte 2
- procedure for nautical evaluation of cross currents and gradients along entrance channel
- during different stages of construction: provide information of the present current information to pilots (FEWS-viewer)
3D flow modelling Maasvlakte 2

procedure for nautical evaluation of cross currents and gradients along entrance channel during different stages of construction: provide information of the present current situation to pilots (FEWS-viewer)

Required input:
- River discharges mean conditions
- Wind mean conditions
- Tides
Construction of Gijon caisson breakwater

- outer breakwater to be constructed
- 30 caissons, 50m length each
- placed on bed of rocks

- problem: local wave climate only allows 40 working days a year (for assumed workability limit, $H_s = 0.8$ m, $T_p = 8$s)
- construction time over 2 years, too long, too costly

- Aim: perform detailed study to widen workability window by determining workability limit in detail
Construction of Gijon caisson breakwater

outer break water to be constructed
30 caissons, 50m length each
placed on bed of rocks
problem: local wave climate
only allows 40 working days a year
(for assumed workability limit,
Hs = 0.8 m, Tp = 8s)
construction time over 2 years,
too long, too costly
Aim: perform detailed study to widen
workability window by determining
workability limit in detail

Required input:
- Offshore mean (operational) swell and
wind-sea (height, period, direction)
conditions
- Mean wind conditions

Means: swell, direction, period!!!
Channel study, Astute Submarines, UK

Example 5/10

Required input:
- **What**: Wind-sea, swell, period and direction, mean conditions
- **Where**: In the region offshore and along the channel towards the port
Deltarès-scope:

- modelling of waves and currents
 - determine design conditions
- modelling of coastline development
 - determine impact on surrounding coast
- setup measurement campaign
 - calibrate models
- develop prediction tool
 - estimate downtime of facilities
Port development Port of Sohar, Oman

Deltarcs-scope:
- modelling of waves:
 - determine design conditions
- modelling of coastline development:
 - determine impact on surrounding coast
- setup measurement campaign:
 - calibrate models
- develop prediction tool:
 - estimate downtime

Required input:
- Offshore mean and extreme wave conditions
- Mean and extreme wind conditions
- Boundary currents
- Morphology

Example 6/10
• Quays and sea defenses in the area
• Height information of buildings etc.
• Aim: assess extent (and depth) of flooding areas and related risks
• Dependent on design water levels
• Increased water levels due to climate change?
Flooding of quays (1:10000 years)

Example 7/10

- Quays and sea defenses in the area
- Height information of buildings etc.
- Aim: assess extent (and depth) of flooding areas and related risks
- Dependent on design water levels
- Increased water levels due to climate change?

Required input:
- Offshore extreme wave and water level conditions
- Extreme wind conditions
- Boundary currents
Smart Fairways, optimising Inland Waterway Transport (IWT)

Electronic Navigation Charts (ENC) with predicted:

- Water depth (WAQUA, Delft3D)
- Current velocities (WAQUA)
- Bridge heights (SOBEK)
- Lock waiting times (lock master)

Example 8/10

ENC with ship positions, channel, etcetera

Map of the Netherlands with all navigable waterways and bridges
Electronic navigation charts with predicted:

- Water depth (WAQUA)
- Current velocities (WAQUA)
- Bridge heights (SOBEK)
- Lock waiting times

Required input:

- River discharge extremes (high and low) (larger extremes in the future due to climate change?)
- River morphology
Wave penetration in harbours

Example 9/10

General examples, different wave models

large scale

small scale
Wave penetration in harbours – complex issues

Example 9/10

Numerical simulations

- Analysis of measurement data

Model validation

1) Extreme conditions for design
2) Mean wave conditions for moored ships

Insights into cause of hindrance
(complex combination of wave+current phenomena)
Complex wave penetration issues

1) extreme conditions for design
2) Mean wave conditions for moored ships

Required input:
- Offshore mean and extreme wave conditions (preferably spectral, wave periods are important)
- Mean and extreme wind conditions

Model validation

Insights into cause of hindrance
(complex combination of wave+current phenomena)
Ship manoeuvring
Required input:

- **Resolution**: mean/operational: 1 to 2% exceedances) conditions

- **What**: swell and wind-sea (height, period, direction), wind, currents (including river discharges)

- **Where**: Whole region
Summary

Needs

- Offshore wave (height, **period**, direction) conditions (mean, extreme)
- Wind speed and direction (mean, extreme)
- Water levels (mean, extreme)
- Discharges (mean, extreme)
- Temperature (mean, extreme)
- Salinity (mean, extreme)
- Morphological changes

Sources

- Global (IPCC) vs regional scenarios
- Global (CMIP5, no waves) vs regional models
- Numerical vs Statistical downscaling

Uncertainties
Stability pipeline protection Ichthys gas field (Au.)

- stone protection on top of gas pipe between offshore gas field and the port of Darwin, Australia
- protect pipe against anchors, remain stable under cyclone conditions (1/200 year)
- tests in wave basin (Atlantic Basin, scale 1:17.5 to 1:22.5)
- tests in geo-centrifuge (scale 1:80, so at 80g) to simulate pulling the anchor through the rock
- aim is to optimised the required amount of stone to be used → big construction savings
Stability pipeline protection Ichthys gas field (Au.)

- stone protection on top of gas pipe between offshore gas field and the port of Darwin, Australia.
- protect pipe against anchors and cyclone conditions (1/200 year).
- tests in wave basin (Atlantic Basin).
- tests in geocentrifuge (scale 1:80, so at 80g) to simulate pulling the anchor through rock.
- aim is to optimise the required amount of stone to be used for anchor drag testing and achieve big construction savings.

Required input:
- Metocean extremes covering the whole region.

(anchor drag testing, model in geocentrifuge, rock berm models in Atlantic Basin)