Investigating the effects of surfaces during dissolution of materials with a fluorite structure – the REDUPP project

M.C. Stennett1, C.L. Corkhill1, D. Bailey1, S. Thornber1, N.C. Hyatt1, P. Maldonado2, P.M. Oppeneer2, E. Myllykylä3, K. Ollila3, M. Vähänen4, V. Salo4 and L. Z. Evins5

1. University of Sheffield (UK)
2. Uppsala University (SE)
3. VTT (FI)
4. Posiva (FI)
5. SKB (SE)

The research leading to these results has received funding from the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement No. 269903“.

Project start: 1 April 2011
Project end: 31 March 2014
Background (1)

• Remaining uncertainties related to understanding of dissolution mechanism

• Studies to approach expected repository conditions
 – laboratory to natural setting

• Processes near the solid-liquid interface

Two main uncertainties addressed:

1) Effect of surface changes during dissolution on long-term dissolution rates

2) Effect of natural groundwater on dissolution rates

Methods to address these issues:

1) Combine experimental work with modelling of solids with fluorite structure. Experimental data from both solution and surface

2) Dissolution experiments using alpha-doped UO2 and natural groundwater of varying ionic strengths
Background (2)

• The laboratory approximation:

1) The ratio of solid to liquid (SA/V)
 * In the repository the space is filled by solids and there is very little space for liquid
2) The rate of “flow” of the liquid
 * Diffusion if the bentonite is present; otherwise controlled by fracture flow
 * In the laboratory: simulate flow by flow-through tests or by replacing the solution in a sequential sampling scheme.
3) The type of solid analogue:
 * Ceramic UO₂, ~5% porosity, crushed to 2-4 mm
 * Spent fuel much more complex solid with variable grain size and surface area
4) The type of fluid:
 * Chemistry of natural groundwater versus synthetic solution
 * Natural gw changes CO₂ content when brought to surface
 * Equilibration with glove box atmosphere
• Do laboratory measurements overestimate?
 From Ollila and Oversby (2005):

 • “.. the dissolution rate appeared to decrease as the samples were exposed to sequential testing periods. This indicates that the results are still influenced by transient effects such as high-energy surface sites, which implies that the dissolution rates measured are upper limits.”

• Why does the dissolution rate decrease with sequential exposure to solution?
 • Noted by geochemists studying mineral weathering (eg White and Brantley, 2003)
 • Freshly prepared mineral fragments, short experimental duration; given time - in nature - the surface will mature – by a decrease of reactive surface area & effects of secondary precipitates
Effect of surface changes during dissolution on long-term dissolution rates

Energetically reactive surfaces decrease during dissolution → rates decrease with time; laboratory measurements overestimate the long-term dissolution rate.

Dissolution of solid surfaces: Corners, edges and crystal faces have different energies. High energy sites & defects on crystal surfaces should be the first to go.

Collaboration with José Godinho (PhD student Stockholm Uni) in the Delta-Min Network (Mechanisms of Mineral Replacement Reactions)

The effect of crystallographic orientation (different crystal faces in contact with solution) on dissolution rate.
REDUPP set-up

Work divided in 8 work packages
WP1 : Prepare and characterise samples : CaF2, CeO2, ThO2 (USFD)
WP2 : Dissolution of CeO2 & CaF2 (USFD)
WP3 : Dissolution of ThO2 (VTT)
WP4 : Dissolution of UO2 in natural groundwaters (VTT)
WP5 : Post-test examination of solid surfaces (VTT, USFD)
WP6 : Modelling of surface development (UU)
WP7 & 8 : Coordination and Management (SKB, Posiva)
Sample preparation

- Samples made at Sheffield: CaF2, CeO2, ThO2
- Goal: samples with similar microstructure to UO2 fuel and SIMFUEL.
- Ce powders from oxalate, thermal decomposition at different T. Commercial CaF2 and ThO2 powder.
- Powders were uniaxially pressed, then sintered at high T
- Methods described in publications:

See also our First Annual Report: Posiva Working Report 2012-28
Methods for characterisation

Density measurements by gas picnometer

- Densities in excess of 93% (ThO2), and 96% (CeO2), sintering pressed pellets at 1750 °C and 1700 °C, respectively.
- Densities of CaF2 ~95% on pellets sintered at 1000-1240 °C

Phase identification with X-ray diffraction (XRD)

Microstructure imaging and characterization by ESEM with EBSD,

Surface topography by profilometer using confocal lens

X-ray photoelectron spectroscopy (XPS) on crushed CeO2 pellet confirmed that cerium was present only as Ce(IV)
CeO$_2$ studies

- Synthesis and characterisation of CeO$_2$

CeO$_2$ pellet sintered at 1700 °C (SEM). Grain size 8 - 20 μm, & lowest porosity (~96% theoretical density)

Representative crystal orientations CeO2. Pole figures show the random orientation of grains in the (111), (110) and (100) crystal planes.
CeO$_2$ Dissolution experiments

Stennett et al (2013): Size fractions: 75–150 um, 0.1 g of powder in 40 ml of 0.01 M HNO$_3$ solution, giving a surface area to volume ratio of 200 m$^{-1}$. Placed in 90 °C oven and removed at 0, 1, 3, 7, 14, 21, 28 and 35 days. Solutions analysed with ICP-MS.

(a) Normalised leaching NL(Ce), crushed CeO$_2$ in 0.01 M HNO$_3$ at 90 °C
(b) confocal profilometer image of CeO$_2$ monolith after 9 days of reaction (same conditions)
CeO$_2$ studies

Further studies:

* Different sized crushed powders -> different densities of high energy sites on the exposed surfaces

* Single pass flow through and the micro-channel flow through experiments are planned

* Flow-through method for in situ AFM will enable further studies on the monolith sample (Collaboration w University of Edinburgh).
ThO$_2$ studies

- Synthesis and characterisation of ThO$_2$

ThO$_2$ pellet sintered at 1750 °C.

~93% theoretical density
Grain size 10 - 20 µm in diameter
ThO$_2$ Dissolution experiments

*2 -4 mm fragments
*Solution: 0.1 M NaCl and 0.01 M NaCl + 2 mM NaHCO$_3$
*25 °C.
*Triplicates + blank

Ultrafiltered samples: Initial increasing trend in both test solutions

The solubility and the dissolution rate increased in the solution containing carbonate due to the formation of carbonate/hydroxide complexes

Lena Z Evins
Euradiss, Montpellier
25-26 October 2012
ThO₂ studies

Further studies:

* Artificial isotope ²²⁹Th in tracer study
 - Dissolution-precipitation phenomena could occur during the dissolution.
 - avoid problems with detection limit of HR-ICP-MS (close to the solubility of ThO₂ in basic conditions)

* Dissolution studies with different particle sizes.
 75 to 150 um particles
 10 to 40 um particles.
Conducted partly under glove box conditions (under Ar)
UO₂ studies

- **Samples used previously**

 Dissolution rates of U (mol m⁻² yr⁻¹) (fraction/yr) in the presence of corroding iron (NF-PRO, IN-CAN projects)

<table>
<thead>
<tr>
<th>UO₂ solid doping level</th>
<th>0.01 M NaCl</th>
<th>0.5 M NaCl</th>
<th>1 M NaCl</th>
<th>modified synthetic groundwater (Allard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 % ²³³U (1)</td>
<td>2.1 x 10⁻⁶ (1x10⁻⁷)</td>
<td>2.7 x 10⁻⁶ (1x10⁻⁷)</td>
<td>6 x 10⁻⁷ (3x10⁻⁸)</td>
<td>2.7 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
<tr>
<td>0 % ²³³U (2)</td>
<td>4.2 x 10⁻⁶ (2x10⁻⁷)</td>
<td>2.5 x 10⁻⁶ (1x10⁻⁷)</td>
<td>1.1 x 10⁻⁶ (5x10⁻⁸)</td>
<td>2.9 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
<tr>
<td>5 % ²³³U (1)</td>
<td>2.1 x 10⁻⁶ (1x10⁻⁷)</td>
<td>2.3 x 10⁻⁶ (1x10⁻⁷)</td>
<td>4 x 10⁻⁷ (2x10⁻⁸)</td>
<td>2.1 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
<tr>
<td>5 % ²³³U (2)</td>
<td>8 x 10⁻⁷ (4x10⁻⁸)</td>
<td>1.2 x 10⁻⁶ (5x10⁻⁸)</td>
<td>6 x 10⁻⁷ (3x10⁻⁸)</td>
<td>2.7 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
<tr>
<td>10 % ²³³U (1)</td>
<td>8 x 10⁻⁷ (4x10⁻⁸)</td>
<td>1.3 x 10⁻⁶ (6x10⁻⁸)</td>
<td>4 x 10⁻⁷ (2x10⁻⁸)</td>
<td>2.7 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
<tr>
<td>10 % ²³³U (2)</td>
<td>8 x 10⁻⁷ (4x10⁻⁸)</td>
<td>1.3 x 10⁻⁶ (6x10⁻⁸)</td>
<td>4 x 10⁻⁷ (2x10⁻⁸)</td>
<td>2.7 x 10⁻⁶ (1x10⁻⁷)</td>
</tr>
</tbody>
</table>

No indication of an effect of alpha radiolysis

The UO₂ solid samples have experienced many years of dissolution time;

-> dissolve rates **slowly decreasing** with each subsequent exposure to synthetic groundwater.
Olkiluoto natural groundwater

-Moderately saline
-100 days stabilization
-No precipitates
-Escape of CO₂
-Fe decreased (0.35 to 0.15 mg/l)

<table>
<thead>
<tr>
<th></th>
<th>nonfiltered</th>
<th>filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Total alkalinity, mmol/l</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Na⁺, mg/l</td>
<td>1520</td>
<td>1520</td>
</tr>
<tr>
<td>Ca²⁺, mg/l</td>
<td>520</td>
<td>530</td>
</tr>
<tr>
<td>Mg²⁺, mg/l</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>K⁺, mg/l</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Si⁴⁺, mg/l</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>S total, mg/l</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Fe total, mg/l</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Br⁻, mg/l</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cl⁻, mg/l</td>
<td>3300</td>
<td>3300</td>
</tr>
<tr>
<td>SO₄²⁻, mg/l</td>
<td>419</td>
<td>430</td>
</tr>
</tbody>
</table>
UO$_2$ dissolution in natural groundwater

In 0.01 M NaCl solution (Ollila 2008) under reducing conditions (Fe). Parallel dissolution tests with 5 % 233U-doped UO2 fragments

Measured $[^{238}\text{U}]$ and $[^{238}\text{U}]$ calculated from the isotopic ratio changes in natural OL-KR6 groundwater (on the left)

SA/V = 5 m$^{-1}$
Additional solid samples (3 g) from Chalmers University of Technology. Higher surface area to volume ratio (SA/V=15 m⁻¹) -> higher release of U from 10 % alpha-doped UO₂ sample is observed, compared with 0 and 5 %-doped UO₂ samples.
Further studies:

* Isotope dilution tests with 1g samples (SA/V = 5 m⁻¹) will be finished, and potential sorbed or precipitated U on vessel surfaces and on iron strips will be analysed.

* Calculation of dissolution rates per surface area unit.

* Continued test series with higher SA/V.

* Isotope dilution tests will be performed in a second natural groundwater: saline Olkiluoto groundwater, OL-KR5 (457.2 - 476.2 m)
Ab initio modelling: Aims

- Setting up of structure for surface reaction calculations

- Testing surface convergence, reconstruction at surfaces

- Model set-up for describing surface formation energies

- Chemical reactions at surfaces: Vacancies formation, Molecular adsorption & Molecular dissociation on surfaces

- Material’s aspects of the various surfaces ThO₂, UO₂, CeO₂, CaF₂, ...

- Effect of dopants at surfaces
Computational details

- CaF$_2$: Exchange correlation potential: GGA (PBE) Generalized Gradient Approximation
- CeO$_2$: Exchange correlation potential: Dudarev LDA+U approach with $U_{\text{eff}}=5.5$ eV, LDA = Local Density Approximation;

GGA & LDA: functionals which describe the electron in the mean field of all other electrons.

Convergence
Relaxation

Instabilities avoided by moving out 50% of O atoms from upper surface to lower surface.

Lena Z Evins
Euradiss, Montpellier
25-26 October 2012
Surface Model

• Fluorite structure: most stable surfaces = lowest Miller index, (111), (110) and (100) surfaces.
• = reference planes from which one can build any other higher Miller indexed surface (Godinho et al, 2012).

• Any surface viewed as a stepped surface made of terraces and steps oriented in the directions of the reference planes.

<table>
<thead>
<tr>
<th>Terrace/Step</th>
<th>Miller Indices</th>
<th>Planes</th>
</tr>
</thead>
<tbody>
<tr>
<td>111/100</td>
<td>(p,p-1,p-1)</td>
<td>(211), (322), (433),...</td>
</tr>
<tr>
<td>111/110</td>
<td>(p,p,p-1)</td>
<td>(221), (332), (443),...</td>
</tr>
<tr>
<td>100/111</td>
<td>(2p-1,1,1)</td>
<td>(311), (511), (711),...</td>
</tr>
<tr>
<td>100/110</td>
<td>(p,1,0)</td>
<td>(210), (310), (410),...</td>
</tr>
<tr>
<td>110/111</td>
<td>(2p-1,2p-1,1)</td>
<td>(331), (551), (771),...</td>
</tr>
<tr>
<td>110/100</td>
<td>(p,p-1,0)</td>
<td>(210), (320), (430),...</td>
</tr>
</tbody>
</table>

From Godinho et al (2012)
(116) surface; mainly composed by the (001) type surface. Reference surfaces: dashed line (001), solid line (110) and dotted line (111)
Surface Model

Surface formation energy depending on the geometry of the planes involved.

CaF$_2$ and CeO$_2$ surface formation energies ($E^{(hkl)}_\sigma$):

\[
E^{(hkl)}_\sigma = \frac{1}{2} \left(E_n^{(hkl)} - nE_B \right)
\]

\[
E^{(hkl)}_\sigma = (p - 1 + f)E^{ref}_\sigma + \frac{\cos \alpha}{|A|^{2} |B|^{2}}
\]

p is number of atomic rows of the terrace

f is a constant that depends exclusively on the structure of the surface

Surface formation energy of any stepped surface calculated from:
- the surface formation energy of the reference plane,
- the size of the reference plane
- step direction

$E_n^{(hkl)}$ is total energy of the n-layer slab, E_B is total energy of the bulk. Factor $1/2$ accounts for the presence of two surfaces.

Lines are given by the second function. Dots are calculated surface formation energies.
CaF$_2$ & CeO$_2$

A proportionality relation between the surface formation energies in CeO$_2$ and CaF$_2$:

Extension of the model to CeO$_2$ by using a proportionality constant (r):

$$E_{\sigma}^{(hkl)}(CeO_2) = rE_{\sigma}^{(hkl)}(CaF_2)$$

Consequently, in this way we can easily describe the surface formation energy of any stepped surface of a fluorite material.

• Example of chemical reactions on the surface: dissociation reaction of a H$_2$ molecule on the (111) surface of CeO$_2$:

H$_2$
dissociation
on CeO$_2$
(111) surface
Ab initio modelling

Future modelling work:

*the dissolution process; need to describe binding energies of atoms “sticking out” from the step edge.

*Ab initio investigations of dissociation energies of other molecules such as H2O.

*Modeling UO2 surface in similar fashion as CaF2 & CeO2
Final points

- REDUPP looks at surface changes during dissolution & extrapolation from short term laboratory experiment to long-term dissolution in a natural setting.
- Effect of disappearing high-energy sites: are laboratory results overestimating the dissolution rate?
- First-principles calculations combined with experimental studies: can a model be set-up which describes the long-term surface evolution of a dissolving fluorite-type solid?
- Polycrystalline materials: the effect of crystallographic orientations, grain boundaries and pores
- Importance of characterizing solid before and after experiment
- Project is on-going and progressing. 2nd annual meeting coming up in Sheffield April 2013.