Assessing the risk of farmland abandonment in the EU

Technical assistance from JRC to DG AGRI to define key factors and drivers, process datasets, and provide results

Administrative arrangement #AGRI-2011-0295
Background on AE indicators

IRENA operation 2002-2005

Indicator reporting on the integration of environmental concerns into Agricultural policy

Objective: to develop and compile the set of 35 agri-environmental indicators for EU-15 (Nuts2/3)

Outputs: indicator factsheets (42 indicators and sub-indicators) and their corresponding data sets, report and evaluation.

[COM(2006)508] Monitoring frame, 28 AEI were listed for the EU-27

Memorandum of Understanding

Signed in April 2008 by DG AGRI, DG ENV, DG ESTAT, JRC and the EEA to develop and maintain a system of AEIs.

Monitoring the integration of environmental concerns into the Common Agricultural Policy

- To provide information on the farmed environment
- To track the impact of agriculture on the environment
- To assess the impact of agricultural and environmental policies on environmental management of farms
- To inform agricultural and environmental policy decisions
- To illustrate agri-environmental relationships to the broader public

AEI 17
AEI 14: Risk of Farmland abandonment
Who is doing what

DG AGRI

Leader
- Responsible for the AEI14
- Steering the study
- Overall coordination

JRC
- Scientific and technical support
- Coordination of the expert panel,…
- Conceptual and methodological improvement and data availability
- Progress reports
- Drafting and updating the factsheet
- Compiling the indicator
- Preparatory work (report FLA (2008))

Expert Panel
Support on the development of the indicator and its validation

Factsheet and Map of risk by end 2012
JRC Preparatory work

- **Complex situation:**
 - FLA is local-specific, can vary significantly at sub-region level.
 - No clear-cut division among factors which could affect FLA, depend on their interaction.
 - FLA tends to be minor in some MS but can occur everywhere.

- **Option proposed:**
 Drivers to be classified into a limited number of blocks corresponding to the main dimension of the FLA. Related indicators (definition, threshold, weight and interaction) will be set-up to give the best possible proxy of the risk.
The complete picture

Discussed, Revised and updated by experts

JRC Preparatory work
The expert panel

- Objectives:
 a. Conceptualise definition of farmland abandonment
 b. Identify most relevant factors for the risk of farmland abandonment
 c. Proposals for developing the indicator taking into account data availability

- Based on literature review and on experts meetings, a list identifying experts for the panel was set and completed by DG AGRI.

- 12 experts confirmed their interest in being part of the panel (from Universities, Ministries, Institutes, Associations and European Organisations) – 3 meetings took place at JRC
Expert panel exercise

Refinement of the list of drivers

• Based on factsheets and first screening, list of drivers was refined.
• Rationale, calculation options, thresholds and identification of data.

List of selected criteria:
• Farm income under regional average
• Low investment in the farm
• Age of farm holder (> 65 years)
• Low farmer qualification (education/training)
• Remoteness and low population density
• Small farm size
• Farm enrolment in specific schemes
• Weak land market
• Previous trend of FLA (methodology from JRC report)
Challenges

Indicator must be calculated on the basis of available data at EU level, based on harmonised methodology.

+ Farmland abandonment process occurring at local level (infra NUTS3).

+ Risk assessment and not only measurement (past FLA).

= Studying the risk of occurrence of a local phenomenon at EU scale, challenging and heavy process!

Literature review, JRC report
Most recurrent drivers
Expert panel exercise
Definition, drivers, methodology and calculation
Factsheet
Assessing the risk of farmland abandonment in the EU

Definition: Farmland abandonment is defined as a cessation of management which leads to biodiversity loss and undesirable changes in ecosystem services (=simpler and more complete, exclusion of marginalisation).

Purpose of the indicator: to help assessing the risk of farmland abandonment at EU-27 level (=probability of occurrence) through the identification of the most relevant factors (drivers) and the integration of the meaningful drivers into a **Composite Index**.

The indicator will exclusively address the risk and not the consequences of FLA or the extend to which FLA actually happens.
<table>
<thead>
<tr>
<th>Drivers</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak Land Market: Increase in land sales and rental prices is generally linked to a high incidence of land transactions which typically signals a high demand for agricultural land and hence a lower risk of land abandonment.</td>
<td>FADN-DG AGRI.L3</td>
</tr>
<tr>
<td>Low Farm Income: Farmland is typically abandoned as an economic resource when it ceases to generate an income. Although this is not a sole cause, and although it can be triggered by a number of factors, there is a powerful link.</td>
<td>FADN-DG AGRI.L3</td>
</tr>
<tr>
<td>Low Investment in the Farm: Investments reflect farm dynamism, its adaptation capacity and expectations about the future. New investments are a signal of a medium/long term strategy and can be proxy for willingness to continue farm activity.</td>
<td>FADN-DG AGRI.L3</td>
</tr>
<tr>
<td>Age of Farm Holder: Farmland abandonment is more likely to occur when the farmer is old and close to retirement.</td>
<td>Eurostat public database</td>
</tr>
<tr>
<td>Low Farmer Qualification: Education/training and use of advisory services can be assumed as a proxy for the professionalism of the farm, and willingness to invest in terms of human capital and knowledge. An Inverse correlation exists between the level of education/training and risk of land abandonment.</td>
<td>Eurostat public database</td>
</tr>
<tr>
<td>Previous trend of FLA: It is not possible to study the trend because the results for FSS 2010 will only be available in 2013.</td>
<td></td>
</tr>
<tr>
<td>Remoteness / Low Population Density: Farmland with remote and/or difficult access is more prone to abandonment.</td>
<td>SIRE DB, GISCO DB</td>
</tr>
<tr>
<td>Low farm Size: Larger farms can benefit from lower production costs, are more competitive in term of agricultural practices (machinery, better inputs efficiency) and usually more competitive and viable in economical terms.</td>
<td>FSS – Eurostat</td>
</tr>
<tr>
<td>Farm Enrolment in Specific Schemes : Use of the Agri–Environment Measure (AEM) scheme. When a large share of AEM uptake, farmers commit to continue farming for a certain period of time, BUT a low level of AEM cannot be a proxy for a risk of abandonment.</td>
<td>Eurostat public database</td>
</tr>
</tbody>
</table>
Data sources:

Farm Accountancy Data Network (FADN) – DG AGRI.L3

Drivers: Land Market, Farm Income, Investment in the Farm
- at holding level
- level of geographic reference: NUTS3
- level of processing and reporting selected for the analysis: NUTS2 (NUTS1 for UK and DE)

Problems:
- threshold on the minimum size farm may lead to a certain under-representation of the smallest farms
- FADN is only statistically representative at NUTS 0, 1 and 2 levels

Farm Structure Survey (FSS) – EUROSTAT

Drivers: Low farm size
- level of geographic reference: NUTS3 – LAU2
- processing and results : NUTS3 – LAU2

Problems:
- FSS census data 2010 will only available in 2013.
- No access to micro or local (LAU1-2) FSS data.
- Last deliverable from ESTAT is missing (Percentage of farms with a UAA under 50% of the NUTS 2 average UAA per holding, by NUTS 3 and by farm-type).
Data sources:

Farm Structure Survey (FSS) – Eurostat public database

Drivers: Age of Farm Holder, Farmer Qualification, Farm Enrolment in Specific Schemes
• level of geographic reference: NUTS2 – NUTS3
• processing and results: NUTS2

Drivers: Remoteness / Population Density
• level of geographic reference: LAU2
• processing and results: LAU2
Driver 1: Weak land market

Data	Rent Paid, including rent for building, quotas,... FADN var. SE375
Rented UAA (ha), FADN var. SE030	Total UAA (ha), FADN var. SE025
Threshold	Results presented using 5 quintiles, having 20% of the distribution in
Method	each class
. Weighted average value of the rent per ha (euro ha-1) paid by	holding
. Share of rented land in the total UAA	
Evaluation	Relevant, conceptually sound, complete
Driver 1: Weak land market
Driver 2: Low farm income

| Data | . Farm Net Value Added per Annual Working Unit, FADN Var. SE425
	. Gross Domestic Product (GDP) at market prices - Euro per inhabitant from Eurostat website
Threshold	Results presented using 5 quintiles, having 20% of the distribution in each class
Method	. Weighted average of agricultural income / national GDP
Evaluation	Relevant, conceptually sound, complete
Driver 2: Low farm income
Driver 3: Low investment level in the farm

<table>
<thead>
<tr>
<th>Data</th>
<th>. Total investments before deduction of subsidies, FADN var. GI103IG: covers agric. land, building, rights, forest, machinery, circulating capital. Total UAA (ha), FADN var. SE025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Results presented using 5 quintiles, having 20% of the distribution in each class</td>
</tr>
<tr>
<td>Method</td>
<td>. Weighted average of investment per holding (normalised by physical size)</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Relevant, low reliability in some MS, some variability</td>
</tr>
</tbody>
</table>
Driver 3: Low investment level in the farm
Driver 4: Age of farm holder

<table>
<thead>
<tr>
<th>Data</th>
<th>. Farmer's (being a natural person) by age from Eurostat public database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Results presented using 5 quintiles, having 20% of the distribution in each class</td>
</tr>
<tr>
<td>Method</td>
<td>. Share of farm holders aged more than 65 years</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Relevant, low reliability in some MS, some variability</td>
</tr>
</tbody>
</table>
Driver 4: Age of farm holder
Driver 5: Low farmer qualification

<table>
<thead>
<tr>
<th>Data</th>
<th>Agricultural training of farmer from Eurostat public database (FSS) (Practical experience only / Basic training / Full agricultural training)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Results presented in 5 classes</td>
</tr>
<tr>
<td>Method</td>
<td>Share (percentage) of farmers with practical experience only</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Low relevance, low reliability in some MS, some variability</td>
</tr>
</tbody>
</table>
Driver 5: Low farmer qualification
Driver 7: Remoteness / low population density

<table>
<thead>
<tr>
<th>Data</th>
<th>. Travel time</th>
<th>. Population density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Travel time to reach an urban center (> 50,000 inhabts): > 60 min (tested also for more than 2 hours)</td>
<td>Population density: < 50 inhabts / Km².</td>
</tr>
<tr>
<td></td>
<td>Travel time and population density layers combined: > 60 min AND < 50 inhabts / Km²</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>. Travel time: GIS network analysis</td>
<td>. Population density: at commune level</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Relevant, conceptually sound, complete, detailed scale</td>
<td></td>
</tr>
</tbody>
</table>
Driver 7: Remoteness / low population density

Travel time and population density layers combined

- **not at risk**: Travel time > 60 min; Pop Density < 50 inh/km²
- **Travel time > 60 min; 50 < Pop Density < 150 inh/km²**
- **30 < Travel time < 60 min; Pop Density < 50 inh/km²**
- **30 < Travel time < 60 min; 50 < Pop Density < 150 inh/km²**
- **Missing data for Travel time**
Driver 7: Remoteness / low population density

Ratio: UAA at risk / UAA total (%) at NUTS2 level
Travel time and population density layers combined with UAA at risk

UAA at risk = Agricultural areas with “Travel time > 60 min AND Pop Density < 50 inh./km2”

CORINE LAND COVER used to estimate UAA at LAU2 level.
Driver 8: Low farm size

<table>
<thead>
<tr>
<th>Data</th>
<th>. FSS UAA by FT: % holding with UAA per holding below ½ regional average (by FT) at lowest possible geographic level (NUTS3, LAU1, LAU2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Results presented in 5 classes</td>
</tr>
<tr>
<td>Method</td>
<td>. Regional average (by FT) calculated at NUTS3 level</td>
</tr>
<tr>
<td>Evaluation</td>
<td>. Relevance, low reliability in some MS, conceptual issues, some variability amongst MS</td>
</tr>
</tbody>
</table>
Driver 8: Low farm size

Share of “grazing livestock” holdings (percentage) with UAA below half the NUTS3 average of “grazing livestock” farms
Driver 8: Low farm size

Share of “permanent crops” holdings (percentage) with UAA below half the NUTS3 average of “permanent crops” farms
Driver 9: Farm enrolment in Specific Schemes

<table>
<thead>
<tr>
<th>Data</th>
<th>. AEM data on “organic farming” from FSS Eurostat public database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>Results presented in 5 classes</td>
</tr>
<tr>
<td>Method</td>
<td>. Share of UAA (percentage) in organic farming (certified)</td>
</tr>
<tr>
<td>Evaluation</td>
<td>. Reliable, conceptual deficiency</td>
</tr>
</tbody>
</table>
Driver 9: Farm enrolment in Specific Schemes
The Composite Index
Combination of meaningful drivers into an index following a methodology proposed by the OECD (2008).

Theoretical aspects

Data selection. Drivers should be selected on the basis of their analytical soundness, measurability, country coverage, relevance to the phenomenon being measured and relationship to each other.

Normalisation. Drivers should be normalised to render them comparable. Attention needs to be paid to extreme values as they may influence subsequent steps in the process of building a composite index.

Weighting and aggregation. Indicators should be aggregated and weighted according to the underlying theoretical framework.

Robustness and sensitivity. Analysis should be undertaken to assess the robustness of the composite indicator in terms of, e.g. the choice of weights.

Links to other variables. Attempts should be made to correlate the composite index with other published indicators.
Results:
The combination of data selection and normalisation procedures result in 4 scenarios:

<table>
<thead>
<tr>
<th>Drivers meaningful and complete:</th>
<th>Normalised at EU27 level</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Weak land market</td>
<td>Normalised in each MS</td>
<td>S2</td>
</tr>
<tr>
<td>• Farm income</td>
<td>Normalised in each MS</td>
<td>S2</td>
</tr>
<tr>
<td>• Population density and remoteness</td>
<td>Normalised in each MS</td>
<td>S2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drivers meaningful and complete added with drivers:</th>
<th>Normalised at EU27 level</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Low farm investment</td>
<td>Normalised in each MS</td>
<td>S4</td>
</tr>
<tr>
<td>• Age of farm holder</td>
<td>Normalised in each MS</td>
<td>S4</td>
</tr>
</tbody>
</table>

- **Normalisation method**: Min-Max [0 – 1]
- **Weighting**: equal weight assigned to each driver
- **Aggregation**: linear combination
Results: Scenario 1

Composite indicator of the risk of farmland abandonment based on drivers D1, D2, D7, normalised at EU27 level. Quintile 0-80% (yellow), 80% - 90% (light brown) and 90% - 100% (dark brown)
Results: Scenario 3

Composite indicator of the risk of farmland abandonment based on drivers D1, D2, D7, normalised at EU27 level. Quintile 0-80% (yellow), 80% - 90% (light brown) and 90% - 100% (dark brown)
Results: Scenario 4 - examples
Results: Scenario 4 - examples

Composite Risk Index of Farm Abandonment

NET22 level: 2006-2008 data

<table>
<thead>
<tr>
<th>Normalisation at Country level (drivers: D1, D3, D4, D5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 - 0.6</td>
</tr>
<tr>
<td>0.6 - 0.7</td>
</tr>
<tr>
<td>0.7 - 0.8</td>
</tr>
<tr>
<td>> 0.8</td>
</tr>
</tbody>
</table>

Description:
- ** hjemnet**: Danish National Agricultural Statistics Agency.
- **SUDD**: Social Development of Agriculture.

Source:
- FADN database (EUROSTAT, Farm Structure Survey, 2006-2008) and the national data provided by the Member States (2007-2008)
- Source: Eurostat (2012) and national data provided by the Member States (2007-2008)
- Source: Eurostat (2012) and national data provided by the Member States (2007-2008)

Copyright:
- 2012 Copyright, JRC, European Commission

Monitoring Agricultural Resources (MARS) Unit

- **Map:** A visual representation showing the distribution and intensity of farm abandonment risks across different regions.

Monitoring Agricultural Resources (MARS) Unit

- **Map:** A detailed map showing specific regions with high and low risk indices.

Monitoring Agricultural Resources (MARS) Unit

- **Map:** A focused view illustrating the most affected areas with the highest risk of farm abandonment.
Conclusions

Regions with higher risk (European level – scenario 3):
- PT, SP (Extremadura & Castilla la Mancha), IT (Tuscany, Molise, Sardinia), EL, LV, EE, FI (northern), SE (northern), IE (Donegal, Connacht)

Farm-types in regions with higher risk:
- Specialist grazing livestock, specialist permanent crops

Environmental impact:
- Negative for extensively managed land (biodiversity, semi-natural habitats...)
- However, can be beneficial under specific conditions (fragmented landscape)
- Abandoned land for agriculture but options for reversion to natural woodland, hunting, recreation ...
Conclusions

Methodology

• Manifold causes and interactions for FLA, varying amongst MS
• Ranking of regions at risk rather than absolute value
• National level more reliable than EU27

• Data needed at better spatial scale
• Some issues related to FADN data on investment, land rent, ‘household’ or external income
• Better FSS data needed (LAU2 or anonymised)
• Spatial downscaling possible – improve results (e.g Tuscany)
• Issue with codes of administrative units (changing in time)
• FLA observations needed to validate the model
Data availability

At detailed scale (LAU2)
A good picture of reality

Local level NUTS3
Cubism/patterns of reality

Regional / National level (NUTS2, 1, 0)
Abstract painting

But we did it!!