DRAFT MINUTES

MEETING OF THE CONSULTATION FORUM UNDER
ARTICLE 18 OF THE ECODESIGN OF ENERGY-RELATED PRODUCTS
(DIRECTIVE 2009/125/EC)
GROW LOT 5 – MACHINE TOOLS AND WELDING EQUIPMENT

ROOM CCAB-1A
CENTRE A. BORSCHETTE, RUE FROISSART 36, 1040 BRUSSELS
25 OCTOBER 2017, 10.00 – 17.30

Participants: See “Attendance List” in Annex
EC Participants: DG GROW C1 and DG JRC B5 (Sevilla)

1. Welcome and introduction

The Commission services welcomed the participants and indicated that the purpose of the meeting was to discuss the proposed draft Ecodesign Regulation on machine tools (MT) and welding equipment (WE). The agenda was endorsed without amendments.

2. Presentation of the working documents - Welding equipment

The Commission services presented the different sections of the proposal on welding equipment, after which the working documents were discussed by Member States and stakeholders.

2.1. Scope and definitions

BE and DE asked for a clearer definition of the inclusion or exclusion of: (a) laser MTs, and (b) plasma cutting MTs. EWA (European Welding Association), VDW (German Machine Tools Federation) and CECIMO (European Association of the Machine Tool Industries) were of the opinion that a laser cutting machines are clearly MTs. EWA explained that plasma cutting machines are 70% hand-held, and could be considered as “welding equipment”. Therefore, plasma cutting machines could belong to either WE or MT. Overall, the focus has to be on the type of power source, and whether the product may be hand-held. If electric transformation and hand-held, then this points to a product being considered as “welding equipment”. VDW additionally clarified that where a robot is used, this is a separate entity, i.e., it should only be considered as a “robot” per se, and then separately an appliance may be attached to it (e.g. welding, as used in the automotive industry). We are discussing the appliance solely, here.
NL asked for the origin of the definition of welding equipment, as it seems to be long and cumbersome. Is it related to standards? EWA indicated that it was a combination of definitions currently published in standards.

DE asked to clarify if battery operated welding was excluded from the scope.

2.2. Energy Efficiency Requirements

NL mentioned that much as they supported the development of the European industry for energy efficiency in general, and in particular for welding equipment, they would in general not be sure if it was cost-effective to regulate when the projected savings for welding equipment products were below 1TWh per year. If the proposed requirements contributed to the creation of a more level playing field for the WE manufacturing industry, be it of European origin or manufactured in Third Countries, NL would support the requirements, provided they were sufficiently ambitious. NL would propose a more ambitious, simplified 1st Tier, with a more generous timescale for its adoption. UK, DE, DK, IT and BE supported this opinion.

DK and DE appreciated the clear and simplified approach of the requirements, (i.e., taking the previous approach of three Tiers and proposing them as the new Tier 1 levels). DK and DE also appreciated the advanced stage of related standardisation work.

EWA indicated that according to their estimations, >30% of the current sales would be jeopardised by the enforcement of the Tier 1 requirements, and manufacturers would have to adapt promptly, mainly by adopting inverter technology for energy supply, as this is the only current technology that is able to meet the requirements of the proposed Tiers. EWA indicated that anything more ambitious than the Tiers as presented would represent more of a wish than a realistically achievable target, and could not be achieved without a technological breakthrough, especially in electronics. It should also be noted that WE manufacturers comprise a small segment of the end-customers of the electronics concerned, which are manufactured for a much broader range of uses than for WE. As such, WE manufacturers do not have high leverage over the specific development of the electronics components for WE innovations.

The Commission services took note of the concerns and indicated that energy savings were still the priority, but after 32 ecodesign and 16 energy labelling regulations, large savings per product are becoming less available.

ECOS advocated for a wrap-up of the preparatory work on this product group after more than 4 years of investigations, and for an earlier timescale of adoption for the Tier 2 requirements.

IT prefers another approach, and proposes moving the Tier 1 requirements to 2028, making it one tier with one level of requirements.

2.3. Welding Equipment: Material Efficiency Requirements

BE proposed a simplification of the CRM requirement, and to only address the 3 most frequently found substances. BE also questioned the added value of requesting the information in grammes. The Commission clarified that this was relevant for recyclers to judge if recycling was feasible.

DE indicated that market surveillance is very difficult for checking the content of CRM. DE is sceptical that the CRM content is of sufficient value to justify the effort. It is also a political demand, not an environmental one. A more pragmatic approach to CRM reclamation must be found.
IT had a positive opinion of the proposal, but found that it would be timely to hold a horizontal information meeting on Circular Economy (material efficiency) requirements, to better define what is feasible to regulate under Ecodesign, and how. IT is of the opinion that very little may be added to energy efficiency within Ecodesign, and the rest of the present requirements should be voluntary, covered by best practice guidance. PT supported the organisation of such a horizontal Ecodesign/ material efficiency discussion, and noted the different approaches for material efficiency requirements followed so far, regarding each different product group. DE also favoured such a discussion, in view of having a clearer perception of what is reasonable to regulate horizontally, and what should be performed on a product-by-product basis, and alerted that it was important to balance the benefits of such measures with regard to the associated costs, and perhaps jobs. UK and BE supported this claim, and found material efficiency requirements useful, but had doubts on their operational workability. NL, supporting such a horizontal approach, requested that the discussion be limited to real examples and cases, and not held on a theoretical level. Material efficiency requirements must be built gradually, based on practical cases, and not be drawn up across the board. However, NL underlined that we do not need to wait on a product-specific level for the final outcome of the horizontal standardisation exercise.

EWA comments that the adaptation time provided for the material efficiency provisions is too short. It took the WE industry 6 years to be fully compliant with RoHS. EWA additionally pointed out that most welding equipment has an average lifetime of c. 10 years, and is built using common industry tools. EWA also questioned the operational feasibility of the requirements for market surveillance authorities. In particular, EWA challenged the use of a display as the optimal means of communicating the use of gas or welding wire, also considering that there are 5-10 gas combinations possible, varying across countries, and that gas cylinders often have flow meters. EWA also raised the question of Intellectual Property Rights (IPR) regarding the provision of dismantling information regarding a WE product.

ORGALIME found the material efficiency requirements more useful for B2C than B2B requirements.

FR and VDMA supported the MS request of a material efficiency horizontal discussion.

BE expressed doubts about the relevance of the requirements regarding data deletion and software updates, but supports the application of CRM requirements. Also, the “material efficiency” requirements on components might be better drafted as “Information Requirements”. BE supports the inclusion of monitoring welding gas and wire consumption, during a certain welding cycle.

EWA made the point that regarding discussions of consumables in material efficiency, welding wire, once used, forms an integral part of the finished weld. If too little welding wire or filler is used, then it affects the weld quality. With regard to shielding gas, its consumption has to be well managed, but if too little is used it will also affect the quality of the weld performed. EWA also notes that regarding optimising/ reducing the consumption of welding gas, there are two important variables: firstly, there are many mixtures of welding gases, which are prescribed according to the metals being welded; secondly, mixtures of gases vary also according to established working practices in each Member State in the EU. Comparisons of optimal use are therefore difficult to make. A similar issue exists regarding the many types and thicknesses of welding wire available, which are defined by the welding engineer in charge of each job and application.

IT suggests any tabulated information regarding consumption of “consumables” should be given in a standard, rather than in the Ecodesign regulation. If this tabulated
information could be made in the standard, then this could be linked to the WE display. For shielding gas use, training of welding equipment operators should be the priority. **BE** asks whether there are, for example, 20 common types of welding that could be addressed and for which requirements could be given, rather than trying to address all of the possible combinations. **EWA** responds that there is no one standard that is presently capable of addressing this issue.

2.4. Welding equipment: standardisation

The **Commission** services presented the current development of the welding equipment standardisation. A revised version of a standardisation request has been prepared, which incorporates the latest comments from Member States and standardisation experts. This version will be submitted for vote to national standardisation organisations during November-December 2017.

3. Presentation of the working documents – Machine tools

The **Commission** services presented the proposal on machine tools, and the working documents were discussed by Member States and stakeholders.

3.1. Scope and definitions

BE indicated that the versification of large stationary machines is very challenging. Regarding definitions, indicated that 'low end' and 'high end' configurations are not defined. The definition of drives is also missing.

DE appreciated the work presented. While the WE proposals are to a wide extent acceptable, **DE** had concerns about the MT. The requirements are only useful if they address the diversity, and the tabled proposals are not applicable to all variants of MTs. The EEI calculation method presented in the working documents is too theoretical to be applied with confidence in real life. It may be only suited to drilling operations.

CECIMO stated that the scope of the MT requirements is too diverse, and cannot be handled with the approach proposed.

3.2. Energy efficiency

ORGALIME and **CECIMO** challenged the added value of the proposal in the absence of specific energy requirements: only information requirements are proposed.

UK indicated that the 400V requirement is not informational, but a minimum requirement.

BE indicated that given the diversity of MT, it makes sense not to propose minimum efficiency requirements, except perhaps for standby, if not covered in the standby regulation. Information requirements are the only reasonable option here. **BE** asked also for clarification of why 400V is requested.

SCM GROUP indicated that while the 400V is desirable, it is not available in all locations of the facilities, especially if far from large urban or industrial areas. It is also excessive for the smaller machines. Regenerative braking is also not beneficial in some cases.
IT questioned if the information requirements are really demanded by clients, as they are normally part of B2B contracts. The requirements on the standby modes are however relevant.

NL and ECOS supported the proposals as a step towards compulsory measurements and declaration of power modes, which can be strengthened at later stages. NL did not share the B2B vs B2C argumentation, as many smaller companies are not experts and suffer from the same needs as end consumers do with regard to access to energy efficiency information at the moment of purchase.

BE and SCM GROUP asked for clarification on the mandatory use of the EEI formula for energy efficiency. It was explained that the declaration is voluntary, but use of the formula compulsory if a declaration is made. This interpretation was supported by DK. IT indicated that one would then be preventing the declaration using other methodologies.

To conclude this part of the discussion, the Commission services asked the MS for their opinion on supporting an ecodesign proposal that does not contain quantitative efficiency requirements. PT, SE, DK, DE, BE declared no clear position; they would have to discuss internally. UK and IT highlighted the potential burdens on industry and MS actors for possibly relatively small benefits, especially for market surveillance, if the content of the declarations have to be checked, i.e., not solely checking if there is a declaration. CZ indicated that the proposal delivered more questions than answers, and would be cautious in analysing the impacts on competitiveness.

3.3. Machine Tools - material efficiency requirements

ORGALIME challenged the demand of the measurements, arguing that B2B transactions already have mechanisms to ensure durability, reparability and recyclability. The need of CRM measures was questioned, and reference to its high cost for smaller companies was raised, as these SMEs need to track down the supply chain.

VDMA indicated that the requirements on CRM were not feasible.

CECIMO indicated that in their view, all MT components were accessible and repairable.

3.4. Machine tools - state of art of standardisation

The convenor of ISO TC 39 WG12 (from VDW) presented the development of the standard on energy measurement of machine tools (ISO 14955 series).

4. Conclusions

The Commission thanked the participants for their contributions and explained that the next steps would include the drafting of a regulation, the usual steps of impact assessment, inter-service consultation and WTO notification and that it would be working to hold a meeting of the Regulatory Committee just before or after summer 2018, with a view to having the regulation included in the package for adoption in winter 2018.
ANNEX – Attendance List

European Commission Services - DG GROW C1 and DG JRC B5 (Sevilla)

<table>
<thead>
<tr>
<th>Country</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>The United Kingdom</td>
<td></td>
</tr>
<tr>
<td>ECOS</td>
<td></td>
</tr>
<tr>
<td>EWA</td>
<td></td>
</tr>
<tr>
<td>CECIMO</td>
<td></td>
</tr>
<tr>
<td>AMICS/SYMACAP</td>
<td></td>
</tr>
<tr>
<td>VDW</td>
<td></td>
</tr>
<tr>
<td>ORGALIME</td>
<td></td>
</tr>
<tr>
<td>SCM GROUP/ EUMABOIS</td>
<td></td>
</tr>
<tr>
<td>VDMA</td>
<td></td>
</tr>
</tbody>
</table>