The gender challenge in research funding -
assessing the European national scenes

BULGARIA

Dr. Nikolina Sretenova - November 2008

This Report is based on collected information and data from the following searches:

2. Exhaustive search of the website of the National Science Fund (NSF) of Bulgaria: http://www.nsfb.net/

3. Consultation with the major legislative documents for Bulgarian R&D as: Law on Scientific Research Promotion, Rules of Scientific Research Fund, etc.

5. Request for data supply forwarded to the National Statistical Institute (NSI) on 11 August 2008 - the last available aggregated data from the NSI of Bulgaria is for 2006.

7. Personal consultation with the Chair of the Expert Panel ‘Natural Sciences’ at the National Science Fund – Prof. Dr. Borislav V. Toshev held at his University office (12 August 2008).

8. Personal consultation with the Manager of the National Science Fund – Prof. Anastas Gerdjikov held at his office at the Ministry of Education and Science (14 August 2008)

9. Other relevant documents and publications including:

Policy context

In December 1995, Bulgaria submitted an application for EU membership, and two years later preliminary negotiations were launched. The Commission presented its first regular report on Bulgaria's progress towards accession in November 1998. The second report, released in 1999, recommended that formal negotiations be opened. Accession negotiations between Bulgaria and the EU started on 15 February 2000 and were finalized on 15 June 2004.

The EU membership perspective of Bulgaria imposed a new agenda to be set on the national level. According to it Bulgaria had to harmonize its legislation with that of the EU during the so-called 'accession period' (1998-2004), i.e. to transpose the Union acquis in its national legislation. In relation with recommendations made in Chapter 13 of the acquis 'Social policy and employment' (Commission of the European Communities 2001; 2002; 2003; 2004) dealing with the framework legislation on equal treatment for men and women Bulgaria adopted a 'Law on Protection against Discrimination' in 2003 (State Gazette 2003). In early 2004, an "Equal Opportunities for Women and Men" sector was established with the Ministry of Labour and Social Policy, with a view to coordinating and implementing the state policy in this area. A National Council for Equal Opportunities was established at the Bulgarian Council of Ministers then. It is a consultative body which is supposed to support the development of coordination of the gender equality policy in all spheres of the economical, political and public life of the country. Some Bulgarian NGO's have been invited to take part in the work of this body. The anti-discrimination policy however focuses attention on equal opportunities of women and men in the labour and social areas and still has not been translated into policy of gender mainstreaming in HE and R&D sectors.

Unlike many other EU countries in Bulgaria the Ministry of Education and Science (MES) has not developed a national policy for gender equality in higher education and research because it has to address other priorities of its agenda setting. The consequences are that the MES lacks organizational and administrative structure engaged with the coordination of activities in the field of gender equality in higher education and research as well as a specified budget for support of such activities. In 2002 a 'National Steering Committee on Women and Science' was established at the Ministry of Education and Science. It consist of 11 members – the Bulgarian Helsinki delegate, the Bulgarian ENWISE Expert, women scientists from the Bulgarian R&D and HE sectors, one representative of the National Institute of Statistics and one representative from the Ministry. However this body has neither any office(space room) nor any budget. Therefore it could not carry out any activities. In the Bulgarian HE sector (consisting of 51 Universities) as well as in the Bulgarian GOV R&D sector, and in particular at the Bulgarian Academy of Sciences (consisting of 68 research institutes), there are no structures/units (office/officer) in charge of responsibility for implementation of equal opportunity policy in academia and research.

The main stereotype is that according to the statistics data the issue of gender equality in HE and R&D is settled in Bulgaria (Sretenova, N. 2006). In my view the issue is related rather with the question ‘Why are women researchers and academics underrepresented at the higher posts of academic hierarchy and at the decision-making bodies?’ than with statistics data.

During different workshops and conferences held in Bulgaria in the last five years many local gender experts voiced the urgent need for the transfer of current policy and politics of ‘non-discrimination by sex’ into a policy and politics of ‘gender equality in academia and research’ and shared experiences and disappointment that their advocacy in this respect at the different levels of state authorities remained unheard.

1 Several "Regular Reports on Bulgaria’s Progress towards Accession" delivered by the Commission of the European Communities at the end of 2001, 2002, 2003 and 2004 assessed the progress that has been done in preparation for membership and recommended some improvements in the field. They addressed the question of Bulgaria’s ability to assume the obligations of membership; i.e. the legal and institutional framework, known as the acquis, by means of which the Union implements its objectives. These official documents have been structured in accordance with the list of 29 acquis chapters. Chapter 13 ‘Social policy and employment’ was one of these negotiating chapters.

2 According to the National Strategy for Scientific Research for the period 2005-2010 (still in project) the issue of women in science is settled within the Bulgarian R&D sector and the current underrepresentation of women scientists at decision making positions is rather related with the general issue of emancipation and not with the R&D sector itself.
I believe that the recent Law on Protection against Discrimination (30 September 2003) should be complemented with a specific law/regulation on equal opportunity in academia and research in order to create the respective legislative base for a possible implementation of the policy of gender mainstreaming in HE and R&D sectors in Bulgaria. The offices/units for equal opportunity should be established at each University and scientific organizations as well as at the Ministry of Education and Science.

Bulgaria is among a group of five EU member states (Bulgaria, Cyprus, Hungary, Poland and Romania) who are not yet committed to gender mainstreaming. It deserves also noting that five of the ‘new’ EU member states - Bulgaria, Romania, Estonia, Latvia and Lithuania have the highest relative share of women researchers of their R&D sectors - over 40% (EU Commission/She Figures 2006; EU Commission/Enwise Report 2004; EU Commission/Statistics in focus 2003). As the Enwise report highlights this “optimistic statistics” about women researchers in these countries looks very different when crossed with another statistics, the R&D expenditure per capita researcher. It appears that the five countries in question, which have the highest proportions of employed women researchers in their R&D sectors at the same time have the lowest R&D expenditure per capita researcher. Furthermore, if we take into account the so-called horizontal segregation, i.e. the concentration of male and female researchers across the scientific fields and R&D sectors then it becomes evident that women are squeezed out of competitive, high-expenditure R&D sectors, but absorbed into struggling low-expenditure sectors as a kind of ‘back-up’ human resource (EU Commission/Enwise Report 2004). In short, the current situation as it is seems to be profitable for the R&D sector itself and not for women researchers employed in this sector.

The policy context implies some of the findings of this Report. According to the observation of the ‘Benchmarking policy measures for gender equality in science’ seven EU member states (Bulgaria, France, Ireland, Luxemburg, Malta, Romania and Spain) do not present any data on funding applicants and beneficiaries segregated by sex.

The heritage: Institutional funding of R&D on non-competitive base

During the communist regime in Bulgaria (1944-1989) the HE and R&D sector were shaped in accordance with the Soviet model. It meant firstly the introduction of the divide between both sectors, and secondly the implementation of strict government planning and control on both of them. The basic and advanced research was carried out at three scientific Academies – the Bulgarian Academy of Sciences (BAS) which comprised 122 research institutes in hard and soft sciences with about 15,000 research staff and which functioned as a National Research Centre for elite science, the Academy of Agriculture, which comprised more than 70 research institutes and units and the Academy of Medicine. The applied research and technological development shaped the so-called branch R&D in state research institutes under the auspices of different ministries and industrial enterprises. The mission of the HE sector was mainly to teach, and to lesser degree to perform research, while the mission of BAS was to carry out advanced basic research in all fields of science. In addition, BAS was responsible (and still is) for training students at the level of their doctoral studies. This activity was (and still is) implemented independently or jointly with the Higher Educational Institutions. The very system of R&D funding in the communist times (i.e. supporting working places rather than the research system itself) was not based on the principle of competition. On a personal level, this peculiarity of the funding system had several effects: all scientists were appointed on tenure positions and had a secured monthly income (salary); scientists enjoyed the luxury of devoting all of their time to research activities and not competing for project funding, which always and everywhere is an energy- and time-consuming enterprise. This particular situation entailed more effective work in the theoretical fields and less in the experimental fields of the R&D during that period. This luxury however had not always a positive impact on the effectiveness of the R&D sector as a whole: because there was no operating grant system and therefore no competition for project funding, hard work in the field of sciences was to a large extent a matter of personal choice, commitment and interest in the research

3 Benchmarking policy measures for gender equality in science, EC, 2008, p.42

5 Benchmarking policy measures for gender equality in science, EC, 2008, p.10
field (as a rule, once appointed to a position in the R&D sector, a scientist could not be dismissed for reasons of poor performance). (Enwise report, p. 48)

The Landscape of the Bulgarian R&D and Its Funding: The current-state-of-the-arts

In August 2008 I approached the National Statistical Institute (NSI) of Bulgaria with request to receive the recent aggregated data for R&D personnel (broken by sector of employment, occupation, field of science, formal qualification, gender) and for R&D expenditures (broken by sector, field of science and source of financing). The requested data were provided without any problem (within a week) and as a paid service.

I present below several Tables for R&D spending in Bulgaria for 2004, 2005 and 2006, which are indicative for the current imbalance of public financing of R&D in the country; also 6 pages of the original delivery of the NSI (in Excel format) are annexed to this report and if needed could be provided. The aggregated data of the NSI for 2007 are still in working process.

Table 1 R&D Expenditures in Bulgaria in absolute values (in BGN thousands) and as a % of GDP

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D spending (BGN thousand)</td>
<td>89000</td>
<td>128000</td>
<td>134000</td>
<td>139000</td>
<td>139000</td>
<td>158000</td>
<td>173009</td>
<td>193946</td>
<td>208142</td>
<td>237036</td>
</tr>
<tr>
<td>R&D spending (% of GDP)</td>
<td>0.51</td>
<td>0.57</td>
<td>0.57</td>
<td>0.52</td>
<td>0.47</td>
<td>0.49</td>
<td>0.50</td>
<td>0.51</td>
<td>0.50</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Source: NSI, 2008

Table 2 Structure of R&D Expenditures (BGN thousands) by Institutional sectors for 2004, 2005 and 2006

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>Business Enterprise (BES)</th>
<th>Government (GOV)</th>
<th>Higher Education (HES)</th>
<th>Private Non-profit (PNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>193946</td>
<td>45707 (23.57%)</td>
<td>129894 (66.97%)</td>
<td>17812 (9.18%)</td>
<td>533 (0.27%)</td>
</tr>
<tr>
<td>2005</td>
<td>208142</td>
<td>44804 (21.53%)</td>
<td>139041 (66.80%)</td>
<td>21825 (10.48%)</td>
<td>2472 (1.19%)</td>
</tr>
<tr>
<td>2006</td>
<td>237036</td>
<td>60401 (25.48%)</td>
<td>151912 (64.09%)</td>
<td>22675 (9.57%)</td>
<td>2048 (0.86%)</td>
</tr>
</tbody>
</table>

Source: NSI, 2008

6 The National Statistical Institute of Bulgaria employs Frascati methodology and ‘Canberra Manual’ which means that its data are internationally comparable.

7 1 EUR = 1.95583 BGN: The amount of R&D spending in BGN in this Table are given in round figures for the years by 2003 and in precise figures onwards.
Table 3 Structure of R&D Expenditures (BGN thousands) by Field of Science for 2004, 2005 and 2006

<table>
<thead>
<tr>
<th>Field of Science</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>193946</td>
<td>208142</td>
<td>237036</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>58464</td>
<td>69431</td>
<td>70965</td>
</tr>
<tr>
<td>Engineering and Technology</td>
<td>57672</td>
<td>57715</td>
<td>86642</td>
</tr>
<tr>
<td>Medical Sciences</td>
<td>11245</td>
<td>8956</td>
<td>12071</td>
</tr>
<tr>
<td>Agricultural Sciences</td>
<td>40067</td>
<td>38304</td>
<td>42720</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>14288</td>
<td>19880</td>
<td>9434</td>
</tr>
<tr>
<td>Humanities</td>
<td>12210</td>
<td>13856</td>
<td>15204</td>
</tr>
</tbody>
</table>

Source: NSI, 2008

Table 4. Structure of R&D Expenditures (BGN thousands) by Source of financing for 2004, 2005 and 2006

<table>
<thead>
<tr>
<th>Source of financing</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>193946</td>
<td>208142</td>
<td>237036</td>
</tr>
<tr>
<td>BES</td>
<td>54759</td>
<td>57955</td>
<td>72544</td>
</tr>
<tr>
<td>GOV</td>
<td>127576</td>
<td>133093</td>
<td>146625</td>
</tr>
<tr>
<td>HES</td>
<td>591</td>
<td>735</td>
<td>1596</td>
</tr>
<tr>
<td>PNP</td>
<td>419</td>
<td>566</td>
<td>881</td>
</tr>
<tr>
<td>Foreign</td>
<td>10601</td>
<td>15793</td>
<td>15390</td>
</tr>
</tbody>
</table>

Source: NSI, 2008

The level of R&D funding in Bulgaria is generally low. Table 1 shows that during the last 10 years the R&D spending oscillates around 0.5% of GDP, which is far below the so-called ‘Barcelona target’. Table 2 shows a stable disproportion among the R&D spending in different sectors.

The share of the GOV R&D of the overall R&D spending for 2004, 2005 and 2006 is substantial – more than 60%. This is in line with the fact that the major part of the Bulgarian research potential is still concentrated in the GOV R&D. In 2006 the GOV R&D sector employed 3126 female researchers (in FTE) and 3022 male researchers (in FTE), i.e. 6148 in total (FTE) which comprises 59.5% of the overall research potential in the country. The share of the HE sector of the overall R&D spending is disproportionately small in comparison with the available human resources in this sector. The reason is that the Bulgarian Universities only recently started to develop their research capacities. The current-states-of-the-arts might be viewed as a consequence of the inherited ‘R&D pattern’ from the previous communist regime – on the one hand, and of the delayed reforms of the Bulgarian research system during the transitional period – on the other hand.

The key player in the GOV R&D sector is the Bulgarian Academy of Sciences (BAS). Nowadays the Academy is comprised of 52 research institutes, 12 research laboratories and centres and 4 scientific centres. The structure of BAS includes also a National Institute of Meteorology and Hydrology, a National Archaeological Museum, a National Ethnographic Museum, a National Museum of Natural History, a National Astronomical Observatory and National Laboratory for Computer Virology.
In 2007 were employed 3719 researchers in BAS, which comprise 36% of the total number of researchers in the Bulgarian R&D and 60% of the total number of researchers in the GOV R&D sector. The total number of personnel (researchers, technicians, other) currently employed in BAS is 7600. BAS’s annual budget is formed from the state subsidy, which amount varies from 0.14% to 0.16% of the GDP and from its own revenues. According to the Annual Report of BAS for 2007 the allocated state subsidy in 2007 was 78 295 230 BGN (about 80 mn BGN). Additional 10 000 000 BGN were allocated from the state budget for equipment, repairs, etc. BAS own revenues for 2007 was about 30 mn BGN, including 7.6 mn BGN coming from international research contracts and 6 mn BGN coming from national contracts. The allocated state subsidy is spent for payment of salaries and social security contributions for BAS’s staff (70% of the subsidy), for payment of PhD students’ grants trained in BAS (351 regular doctoral students in 2007), for payment of maintains costs (electricity, water, heating, phone, etc.).

In the early 90-s BAS introduced project based organization, planning, accounting and financing of the scientific research. However in practical terms the so-called ‘research money’ are lacking and BAS researchers are looking for co-financing of their researches. As it has been reported - ‘Annually the scientists at BAS work on 3400 scientific projects of which 2/3 are co-financed by different Bulgarian and foreign organizations. In 2007 additional external project funding was attracted amounting to 39% of the state subsidy’.

The specificity of Bulgarian research system suggests distinguishing between two different modes of project financing in Bulgaria:
1. Institutional non-competitive project financing, and
2. Competitive project financing

The funding source of both modes of project financing is through subsidies from the annual state budget of Republic Bulgaria. There is also non-budget or indirect project financing coming from the industry, private sector and/or international/European programmes.

The first mode of project financing operates at the Bulgarian GOV R&D sector. The majority of the labour contracts in this sector are unlimited independently of the performance of a researcher. In the case, the respective ‘science’ budget line of the state budget (assigned to this sector) is channelled to support rather working places than research activities and to maintain the institutional infrastructures. The gender budgeting under this mode of project financing is strongly dependent on the so-called ‘vertical segregation’ of women in science. Some statistical data for the ‘vertical segregation’ of women researchers in the Bulgarian GOV R&D is available at the NSI; however it is not internationally comparable. According to this data in 2007 the share of women researchers at the top level of Seniority – ‘Senior researcher first grade’ (equal to ‘Full Professor’ in HES) was 28.2% of the total and at the level ‘Senior researcher second grade’ (equal to ‘Associate Professor’ in HES) - 47.4%, respectively. However there is no data whether all women holders of the ranks/titles: ‘Senior researcher first grade’ and ‘Senior researcher second grade’ are involved in research activities (that is why these figures are not internationally comparable and might be misleading as statistics).

The Annual Report of the Bulgarian Academy of Sciences for 2007 does not provide any segregated data for its staff broken by sex. The issue ‘She Figures 2006’ provides information about the proportion of female academic staff by grade and total for 2004 for HES (Table 3.2, p.57). According to it the Bulgarian female academics comprises 18% at ‘Grade A’ (Full Professors) and 34.9% at ‘Grade B’ (Associate Professors). These figures are comparable with EU-25 average and internationally

9 Recently (21 August 2008) the Bulgarian media announced some outcomes of the report of the National Audit Office related with BAS activities in the fields of Physical and Chemical sciences for the period 1st January 2005 – 30th December 2006. According to this report 90% of the state subsidy directed to BAS’s budget has been spent for salaries of the staff and infrastructure maintains. In the period 2000-2007, about 581 BAS’s researchers have left the respective BAS research institutes in Physical and Chemical sciences because of low salaries. Information about the remuneration or the researchers in different EU states could be obtained from the recent survey ‘Study on the Remunerations of Researchers in the Public and Private Commercial Sectors’ EC, 2007 http://ec.europa.eu/eracareers/index_en.cfm?11=23&12=0&ls=1&newsletter=11_03 The share of young scientists is less than 10% of the total staff in these two scientific fields. http://mediapool.bg/show/?storyid=142699&srcpos=5, http://news.ibox.bg/news/id_462790942
comparable in general. Unfortunately ‘She Figures 2006’ does not provide similar data about the Seniority issue for the GOV R&D sector, i.e. for the relative distribution of women and men at the different levels of Seniority within the employment hierarchy in this sector. This lack is of crucial importance in general and in the Bulgarian research context – in particular.

In what follows I will discuss the mode of the ‘Competitive project financing’ in Bulgaria. In 1990 (Immediately after the political change in the country -1989) was established the National Scientific Research Fund of Bulgaria. It was the first step towards competitive project-based financing of R&D in Bulgaria. However at the very beginning of Fund’s operation its own budget (i.e. allocated direct subsidy from the state budget of Republic Bulgaria) was modest and the amount of the awarded grants was indeed negligible in comparison with the ‘Institutional non-competitive project financing’ of the GOV R&D. In 2004 the ratio between the non-competitive institutional project financing and the competitive project financing was 90:10. The turning point of the operation of the Fund (as national institution) was 2004 and after then the matters gradually improved. The positive change was implied by two occurrences: firstly the EU membership perspective of Bulgaria and secondly the relatively successful participation of Bulgaria in the FP5 of EC and in the FP6 of EC. During the accession process of Bulgaria to EU and in some sense due to accession’s negotiation (2000-2004) the Recommendations made within the Chapter 17 of the acquis “Science and research” (Commission of the European Communities 2001; 2002; 2003; 2004) gave impact on the enactment in the late 2003 of a new ‘Law for Scientific Research Promotion’ (State Gazette 2003). This law envisages the creation of a new structure - a ‘National Council for Scientific Research’ which will assist the Minister of Education and Science in implementing the state policy aimed at scientific research promotion and will contribute to the development of the ‘National Strategy for Scientific Research’. The law also provides a new statute of the ‘National Fund for Scientific Research’ as a secondary budget-spending unit with the Minister of Education and Science.

The Fund was renamed as National Science Fund (NSF) and until recently the NSF was the sole national institution for competitive project financing in all fields of science through opening competitions organized on a project- and –program-based principle. The other mission of the NSF is to implement the state science policy through competitive financing of research projects in strategically important fields of science determined by the National Strategy for Scientific Research. From 2005 to 2007 the NSF’s own budget gradually increased and in 2007 the ratio between non-competitive institutional project financing and the competitive project financing reached 70:30.

The other major positive change occurred in 2008. The state’s subsidy allocated to the NSF substantially increased – in 2008 the NSF’s budget is about five times more in comparison with 2005. This sharp increase in the current budget of the NSF is an expression of the ambitious aim of the Bulgarian government, in particular of the Ministry of Education and Science the ratio between non-competitive institutional project financing and the competitive project financing to reach a balance of 50:50 in the coming few years.

The Table below provides insight in the dynamics of NSF’s budget for 2005 – 2007.

<table>
<thead>
<tr>
<th>Budget in BGN mn</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Science Fund</td>
<td>12.5</td>
<td>13.5</td>
<td>15.9</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Source: Copied from the NSF’s Report for 2005-2007

Some important changes of NSF implemented in 2008

NSF was until recently the only national institution for competitive research projects financing in Bulgaria and still is the major one. The activities of the NSF are in accordance with the provisions of the major legislative documents – ‘Law on Scientific Research Promotion’10 and the ‘Rules of Scientific Research Fund’.11 As a matter of fact more than half of the Law’s ‘Articles’ (Article 13 – Article 33) define the organization, management and the performance of the NSF as well as the competition procedures, including the general criteria

10 Published in the State Gazette, No.92/17.10.2003
11 Published in the State Gazette, No.73/20.08.2004
for evaluating the projects submitted under competition (Article 25 of the Law). The enacted ‘Rules’ of the NSF further specify this matter. The ‘Law for Scientific Research Promotion’ is penetrated with a particular care towards the young generation of scientists. Indeed, the paragraph 6 of the Article 6 of the ‘general provisions’ of the Law states that ‘The State shall create the conditions for attracting young specialists to scientific projects and the dissemination of knowledge’. This provision is further specified in Chapter 3 of the Law titled ‘Promotion of Scientific Research’. In particular, Article 23, p.3 of the Law states that the National Fund for Scientific Research will finance projects, elaborations and demonstration projects of young scientists.12 According to this provision the projects submitted to the National Fund for Scientific Research are evaluated against six criteria among which the criterion for age balance of the applying research team (Article 25, p. 5 of the Law).

The particular care for young generation of scientists embedded in this Law is grounded from the point of view of current severe problem with ageing of the Bulgarian academic and research staff and all the following consequences of the case. However one could not say that the ‘Law for Scientific Research Promotion’ is gender sensitive. Within this Law there is no a single line dealing with gender mainstreaming or equal opportunity issue in scientific research promotion. (Sretenova, N., 2006)

The decision-making body of the NSF is its Executive Council, which consists of 9 members and takes decisions for the annual operative programme of the NSF, e.g. for the numbers and names of the competitions, term for opening of each competition, maximum total amount for funding competition, approve methods for evaluation and selection of the submitted proposals, approve members of the Expert Panels (EP), approve the list of ranked proposals and define the amount of funding, etc.

Seven Permanent Expert Panels - called ‘Scientific expert commissions’ in local terming - are affiliated to the NSF’s Executive Council with duties to organize the evaluation round of each Call and to evaluate and control the performance quality of the concluded contracts with grant beneficiaries at interim and final stages of the contracts. The EP discusses each submitted proposal within the frame of its competence and assigns the proposal for evaluation to a reporter, who is a member of the EP. The reporter allocates the evaluation of the proposal to at least two independent individual reviewers. The NSF keeps a database of more than 2500 Bulgarian reviewers in all fields and sub-fields of science. The completed evaluation forms (by reviewers) are then discussed in the EP and the proposals are ranked in accordance with the received scores (in points). If the difference of the scores given by the two appointed evaluators/independent reviewers is more than 12 points the proposal is assigned to a third evaluator/independent reviewer. The Executive Council decides on the final List of successful applicants and on the size of the awarded grants. Shortly after then the lists of supported projects for each Call/Competition by title of the project, institution, name of the coordinator of the project and the obtained total score are uploaded on the website of the NSF and are publicly available. However, the size of the awarded grants, the duration of the project and the names of research team members and/or partners are not publicly available. As a rule the NSF support research projects with duration of up to three years.

Recruitment, transparency, anonymity, conflict of interest and gender issues

The members of the Expert Panels (EPs) are recruited among the nominees of the research institutes of the Bulgarian Academy of Sciences, of the National Centre for Agrarian Sciences, of the Universities and the Equivalent Higher Education Institutions, approved from the Executive Council and are appointed by a Decree of the Minister of Education and Science. As a rule they are habilitated researchers and academics with scientific degrees and titles coming from one or similar specialities in one or different fields of science. The names of the NSF’s Executive Council members and the names of the members of the current seven EPs are publicly available at the website of the Ministry of

12 According to the adopted definition ‘Young scientist’ is a scientist who has acquired or is in process of acquiring the educational scientific degree of ‘Doctor’ and who is not older than 35 years of age.
Education and Science. During the recruitment process of the EPs has been looked for a balance by scientific fields and not for a balance by gender. Because of this the current EPs are highly imbalanced by gender - in some of them male scientists dominated, while in others – female scientists prevailed. For example: 1) EP of Mathematics and Informatics - 1 female scientist and 6 male scientists; 2) EP of Natural Sciences – 1 female scientist and 6 male scientists; 3) EP of Biology – 6 female scientists and 1 male scientist; 4) EP of Medicine – 4 female scientists and 3 male scientists; 5) EP of Agrarian Sciences - 4 female scientists and 3 male scientists; 6) EP of Technical Sciences – 0 female scientists and 7 male scientists; and 7) EP of Social Sciences and Humanities - 5 female scholars and 2 male scholars. At the level of the EPs the conflict of interest is avoided by the provision that the members of the EPs (as well as the members of Executive Council) cannot apply (independently or as a part of a research team) for financing of research projects by the NSF during the term of their office.

The members of the EPs as well as the members of the Executive Council receive payment for their service equal to the minimum monthly salary for the country for those months during which they have participated in working meetings – about 7 to 8 months/meetings per year. The independent evaluators/reviewers assigned to each submitted proposal, which has passed the eligibility check are anonymous. They receive a modest payment per evaluated project. They are not asked to declare no ‘conflict of interest’ related with their service as evaluators. The issue of the ‘potential’ conflict of interest is of great importance and concern for the evaluation procedure on national level by the following reason. Bulgarian academics and researchers work in relatively small and sometimes closed scientific communities where generally speaking and in principle exist a ‘potential’ conflict of interest – on the one hand all of them ‘know each other’, on the other hand – all of them are in competition for project financing from the NSF, being the sole funding institution in the country. If the size of the local scientific community was greater and/or if a diversity of funding institutions for competitive project financing existed on a national level then perhaps the issue of ‘potential’ conflict of interest might not appear. This problem could be overcome by inviting foreign/international experts for assessment of the proposals submitted under NSF’s Calls. (Sretenova, N., 2007)

The other concern is that the applicants to the NSF do not receive a kind of ‘Evaluation Summary Report’ pointing the strengths and weaknesses of their proposal and the information about the scores given under each of the evaluation criteria. This lack of feedback to the applicants generates feeling (perhaps wrong) about some opacity of the evaluation procedure. (Sretenova, N. 2007)

In appointing the evaluators/reviewers the EPs are not looking for balance by gender.

International Evaluation of the NSF

In July 2006 was carried out an international evaluation of the activities of the NSF. It was done by a group of four senior academic researchers and policy makers from EU countries at the invitation of the Bulgarian Ministry of Education and Science. The Report of this International Review Panel is publicly available at the website of the NSF. As far as to the adopted ‘Evaluation Procedure’ the international experts recommended the internationalisation of the evaluation(review procedure), re-opening of the NSF’s list of evaluators, considerable reduction of sessions of the EPs, attention to the issue of ‘conflict of interest’, etc. I cite bellow the recommendations made for the improvement of the ‘Evaluation Procedure’ of the NSF (Section 3.7 of the Report).

‘3.7 Evaluation Procedure

Here we have a number of recommendations to make in what is a very important area. We wish to give the head of the expert panel and the reporters greater responsibility for the process of review. The head of the expert panel allocates a new application to one member of the panel, the reporter. The reporter should be responsible for the selection of reviewers and intermediate evaluations. The number of meetings of expert panels should be reduced to the funding and ranking decisions and this is likely to mean that only one meeting for every call is required; several calls can be treated together.
Our interviews have shown that the expert panels do not appreciate the closed lists of Bulgarian reviewers. One reason is that these scientists are all very busy, often abroad, and sometimes there are conflicts of interest. The list of evaluators should be re-opened. Moreover, we think that a move to the use of an international evaluator within each pair of project referees is desirable with the evaluation moving to half-international (written) evaluation of all proposals. Proposals of large scale networks of researchers, future centres of excellence, should be evaluated exclusively by international reviewers. The use of a solely international panel will incidentally have the effect of promoting Bulgarian science throughout Europe and the rest of the world. It is customary, elsewhere in the international community, to use a larger number of reviewers (up to five), when the size of the project exceeds a certain limit. The internationalisation of the review procedure is our second major recommendation.

The reporter must choose the reviewers and establish whether there is any conflict of interest by finding out if there has been common work or membership of the same institution at the same time. We approve the use of two reviewers and note the good practice that is already implemented that when a difference of opinion exists a further review is sought. The third opinion must come from an international reviewer.

The intermediate evaluation at the end of the first year should constitute only a financial audit of the project and can be carried out by an administrator. No scientific results can be expected after only one year. At the end of the second year however, an evaluation of both the financial aspects of the project and the scientific aspects of the project is indispensable. This scientific evaluation should be carried out by the reporter. The responsibility of the scientific evaluation lies with the reporter; he or she can carry it out or involve the same reviewers as for the initial evaluation.

The fund should move to electronic submission and the use of English as the language in which all proposals should be written (with the exception of Bulgarian law, Bulgarian philology). In the long term, all reviewer reports should also be required in English.

The considerable reduction of sessions of the expert panels will have the positive effect that Bulgarian scientists who are not located in Sofia should find it easier to become a member of such a panel, and the under representation of regional universities will be addressed. The fees for the members of an expert panel should not depend on the number of meetings (as it is currently the case), but every member should get a certain amount for his or her two-years-period of service.

3.8 Selection / Recruitment of Evaluators

The NSFB should work with its experienced researchers to establish best practice in the selection of evaluators. We understand that the NSFB has already begun to consider how its experts can use international databases of potential reviewers to select evaluators. (End of citation)

Changes of the evaluation procedure of the NSF in 2006/2007

The recommendations of the International Review Panel have been taken into account and some changes of the evaluation procedure for 2006/2007 Competition of the NSF were made. The major change is that the members of the EPs are not more in charge of organization of the evaluation rounds. Their duties were reduced to evaluation and control of the performance quality of the concluded contracts with grant beneficiaries at interim and at final stages of the contracts. They employ a three point assessment scale: A) Excellent; B) Good and C) Fair (unsatisfactory). If the interim report of the grantee is assessed as fair (C) the next tranche of payment is blocked. The evaluation round of the submitted proposals is done by small temporary evaluation panels appointed for each evaluation round.

Changes of the evaluation procedure of the NSF in 2008

Since the beginning of 2008 the NSF has a new Manager - Prof. Dr. Anastas Gerdjikov, increased budget (five times more in comparison with 2005) and improved evaluation procedures.

I obtained some information about the changes of the evaluation procedure related with the 2008 Competition of the NSF (16 announced Competitions/Calls) during my meeting with the Manager of the NSF held on 14 August 2008 at his office at the Ministry of Education and Science.

The new evaluation procedure is as follows. All proposals are submitted in Bulgarian and in English language. Each proposal is allocated to three independent international evaluators. They are recruited through writing letters to different National Science Foundations /Funds in the EU member-states, which have similar profile with the Bulgarian NSF, including the European Science Foundation (since 2002 the NSF is a member of the ESF). The international evaluators may work remote or on the spot. They sign a contract letter with the Manager of the NSF. They are paid for their service though at
different rate in comparison with the Commission’s payment for a similar work. At the same time the Bulgarian version of the proposal is allocated to a small temporary expert evaluation panel consisting of 5 Bulgarian scientists. The Bulgarian evaluators are selected from the updated NSF’s database of experts. This database is established upon the recent NSF’s request letter to the Directors of all scientific institutions in Bulgaria and to the Rectors of all Universities asking them to nominate the experienced scientists in each field and sub-fields of science for potential evaluators of the NSF. Currently the database has 500 recorded CVs of experienced Bulgarian academics and researchers but it is opened for further enlargement. The Bulgarian evaluators are also paid for their service – they sign a contract letter, declare no ‘conflict of interest’, confidentiality, etc. The duty of this 5-members evaluation panel is to draft a ‘Consensus Report’ for each proposal allocated to the panel. If a substantial difference between the scores of the individual independent international evaluators/reviewers and the scores of the Bulgarian ‘Consensus Report’ for the assessed proposal appear then the Executive Council of the NSF decides on each particular case.

The gender is not taken into account at the recruitment/selection of evaluators both national and international.

The members of the permanent seven EPs are not more involved in the organization of the evaluation’s rounds of the submitted proposals to the NSF.

Complaint and grievance procedures: According to the improved evaluation procedures of the NSF (adopted in 2008) the grant applicants can submit a complaint to the administration of the NSF within 14 days after the official publishing of the selection results.

I used the opportunity to share with the Manager of the NSF some of my observations and concerns, e.g.

- About the current lack of publicly available statistics segregated by sex for the applicants under the closed Calls of the NSF. He said that it is not a problem to publish such statistics in the future because all data are with them;

- I touched also the issue related with the missing ‘feedback’, i.e. a kind of ‘Evaluation Summary Report’ is not used to be sent to the applicants. He said that this gap might be filled in the future, but the current practice (by 2008) is that upon request the applicant is afforded to have a look at the written reviews of the proposal (of course without disclosing the names of the reviewers);

- I throw his attention to the fact that from 1998 onwards the Commission had invited more than 150 Bulgarian academics and researchers to serve as External Expert Evaluators under different evaluation rounds (sub-programs, Calls) of FP5, FP6 and the current FP7. These scientists comprise considerable national ‘evaluation potential’ because they had a chance through ‘learning by doing’ to obtain particular knowledge about the good evaluation practice of the EU FPs. This expert knowledge should be exploited somehow on the national level, e.g. through inclusion the CVs of these scientists in the NSF database of evaluators.

By 2007 the NSF administered seven financial instruments/competitions for supporting different research projects or programmes in all R&D sectors.

- Thematic project call - regular annual thematic competitions (TC) in a priority fields (top-down approach)
- Young scientists competition (three different competitions)
- General project call (bottom up approach)
- Encouragement of research at Universities
- Bilateral international cooperation
- Cooperation between science and enterprises
- Support to Bulgarian scientific periodicals/journals

13 ‘Program financing’ means the financing of programmes, which are implemented in the form of scientific research or infrastructure projects
of the NSF were: research institutes of the Bulgarian Academy of Sciences; research institutes of the National Centre for Agrarian Sciences, Bulgarian Universities; University hospitals; other research units, SMEs and NGOs. (See NSF Report 2006)

Data on success rates by gender during NSF 2007 Competition

The NSF being the sole national institution for competitive project financing in all fields of science is not engaged either with gender equality planning or with gender equality monitoring in all aspects of its activities. However this statement is partly true by the following reason. In the previous sections of this Report I traced by a kind of ‘top down’ approach the different levels of the issue – starting with the ‘top level’ – legislative documents for NSF’s operation, then the level of performance – decision-making about the competitions, then the level of evaluation procedures. The priority – financial support to the target group of ‘young Bulgarian scientists’ - has been firstly defined at the level of the legislative documents and after then implemented at all other subordinated levels. The young women academics and researchers, being part of the target group of ‘young scientists’ as a matter of fact could profit from the current science policy.

The application forms of the proposals ask information for the Title, Rank and Degree of the Project Leader but not for the sex of the applicant. For the Bulgarian speaking person it is not a problem to identify the sex of the Project Leader, because the female and male names in Bulgarian language differ by ending. However for a non-Bulgarian speaking person it might be a problem to identify the sex of the applicant.

The website of the NSF used to publish the list of winners under each competition, which is not enough for assessing the success rate by gender.

I approached Ms. Lora Pavlova – a Senior Expert at the Department Scientific Programs of the Ministry of Education and Science with request for providing segregated by sex data for applicants and for winners in NSF Competition 2007. I obtained these data without any problem.

Table: NSF Competition 2007: Number of Submitted and Supported Projects by Calls and Gender (sex of the project coordinator)

<table>
<thead>
<tr>
<th>Competition 2007</th>
<th>Submitted projects</th>
<th>Applicants- male coordinator</th>
<th>Applicants- female coordinator</th>
<th>Supported projects</th>
<th>Male coordinators</th>
<th>Female coordinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific and information complexes</td>
<td>23</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Research infrastructure</td>
<td>44</td>
<td>34</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>TC ‘Nanosciences’</td>
<td>43</td>
<td>33</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>TC ‘Cultural heritage’</td>
<td>19</td>
<td>14</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TC ‘ICT’</td>
<td>37</td>
<td>25</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>TC ‘Energy efficiency and safety’</td>
<td>43</td>
<td>27</td>
<td>16</td>
<td>13</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>TC ‘Health and Medicine’</td>
<td>48</td>
<td>27</td>
<td>21</td>
<td>23</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>‘Nanotechnologies and new materials’</td>
<td>91</td>
<td>59</td>
<td>32</td>
<td>20</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>‘Cultural and Historic heritage’</td>
<td>21</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
From this Table is evident that during the two rounds of 2007 Competition of the NSF female researchers submitted about two times less applications in comparison with male researchers – 35.8% (out of the total applications) vs. 64.2% (out of the total applications) respectively. The share of the projects with Female coordinators of the awarded grants was 40.5% (out of the total) and that of the projects with Male coordinators of awarded grants -59.5 %. Therefore the **Female success rate** (i.e. the number of awarded grants with female coordinator of projects as % of the number of submitted applications with female coordinator) was indeed good – 44.9% compared with the **Male success rate** – 36.7%.

Unfortunately the information about the concrete amount of financing of the awarded grants is not available and I cannot assess whether the good success rate of the projects with Female coordinators of the awarded grants (in aggregated figures) had or had not accumulated the respective ‘good portion’ of the overall allocated budget for the 2007 Competition of the NSF.

NSF 2008 Competition

The enhanced budget of the NSF for 2008 (60 BGN mn) and the adopted new regulations was the reason for a sharp increase in the number of submitted proposals – 1050 submitted proposals in total for the announced 16 Calls of NSF in 2008. The expectation is that the state subsidy of the NSF for 2009 will reach the amount of 100 BGN mn.

The new regulation is as follows: the participation of young scientists and/or PhD students in the research team is among the requirement for the eligibility of the submitted proposal; the participation of young researchers in the proposal is also present among the evaluation criteria (a sub-criterion of the second block of criteria titled ‘Capacity’) of the submitted proposals; last but not least the grant holders (i.e. the consortium) might receive payment/salary up to 50% of the awarded grant if at least 1/3 of the members of the research team are PhD students and/or young scientists; - up to 40% of the awarded grant if at least 1/5 of the members of the research team are PhD students and/or young scientists; - up to 30% if less than 1/5 of the members of the research team are PhD students and/or young scientists and so on.

Development of doctoral thesis in PRO	20	14	6	14	10	4
Upgrading research potential in the field of biotechnology	16	9	7	9	4	5
Bilateral cooperation	69	40	29	44	25	19
Young researchers competition	18	9	9	17	8	9
Total	**492**	**316**	**176**	**195**	**116**	**79**

Source: Information provided by the NSF upon request
Table: 2008 Competition of the NSF: Distribution of the submitted research projects by Competitions/Calls (Total number of submitted projects – 1050)

<table>
<thead>
<tr>
<th>Competition</th>
<th>Number of submitted projects</th>
<th>Preliminary budget in BGN lv</th>
<th>Min/Max size of the grant in BGN lv</th>
<th>Duration in months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thematic Competition: Encouragement of research in priority fields</td>
<td>337</td>
<td>13 100 000</td>
<td>60 000/600 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Encouragement of research activities in the state Universities and equivalent Higher Institutions in priority fields</td>
<td>189</td>
<td>3 080 000</td>
<td>60 000/600 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Development of research infrastructure</td>
<td>47</td>
<td>7 850 000</td>
<td>100 000/1 000 000</td>
<td>24 months</td>
</tr>
<tr>
<td>Ideas</td>
<td>119</td>
<td>4 000 000</td>
<td>40 000/400 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Young scientists</td>
<td>85</td>
<td>400 000</td>
<td>20 000/50 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Integrated scientific centers in Universities</td>
<td>37</td>
<td>2 000 000</td>
<td>200 000/500 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Centers of Excellence</td>
<td>37</td>
<td>7 200 000</td>
<td>1 000 000/3 000 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Support for development of human potential in the Universities</td>
<td>9</td>
<td>300 000</td>
<td>30 000/60 000</td>
<td>36 months</td>
</tr>
<tr>
<td>Grants for Postdoc stay in foreign scientific organization and obligatory work in Bulgarian scientific organization</td>
<td>10</td>
<td>400 000</td>
<td>30 000/60 000</td>
<td>24 months (8 months in host organization abroad + 16 months in home organization)</td>
</tr>
<tr>
<td>Sabbatical for Experienced Bulgarian scientists</td>
<td>13</td>
<td>200 000</td>
<td>35 000/70 000</td>
<td>8 months</td>
</tr>
<tr>
<td>Return Grants for experienced Bulgarian scientists working abroad</td>
<td>3</td>
<td>800 000</td>
<td>80 000/400 000</td>
<td>24 to 36 months</td>
</tr>
<tr>
<td>Grants for PhD thesis in enterprise</td>
<td>4</td>
<td>200 000</td>
<td>50 000/100 000</td>
<td>Up to 36 months</td>
</tr>
<tr>
<td>Support to Bulgarian scientific periodicals/journals</td>
<td>80</td>
<td>120 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral international cooperation</td>
<td>72</td>
<td>500 000</td>
<td>Max. 35 000</td>
<td>24 months</td>
</tr>
<tr>
<td>Preparation of projects for application to the FP7 of EC</td>
<td>2</td>
<td>100 000</td>
<td>Max. 6 000</td>
<td>6 months</td>
</tr>
<tr>
<td>National co-financing of research projects under the FP7 of EC</td>
<td>6</td>
<td>4 000 000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Compiled table: the distribution of the submitted project for NSF 2008 Competition by Calls/Competitions is taken from the website of the Ministry of Education and Science and the preliminary competitions’ budgets - from the respective ‘Calls for proposals’ announced at the website of the NSF in 2008.
II. The National Innovation Fund (NIF)

The NIF was established at the Ministry of Economics and Energy for the implementation of the Innovation Strategy of Republic Bulgaria in the late 2004\(^{14}\). The Innovation Strategy goes ‘in tandem’ with the National Strategy for Scientific Research (still in project) and in practice complement it. It has been developed for the industrial R&D and SMEs and aims to strengthen the relationship between the following three agents: public and private research, technology and innovation and to build up a system for entrepreneurship training. The Innovation Strategy was implemented through financial and non-financial instruments and a number of measures. The financial instruments for impact are specified into three measures:

- M1: Creation of National Innovation Fund;
- M2: Encouragement of employment of young highly qualified professionals in SMEs;
- M3: Establishment of Centers for Transfer of Technology\(^{15}\) on the base of cluster approach.

The NIF currently is administrated by the Bulgarian Small and Medium-sized Enterprises Promotion Agency (BSMEPA). In 2006 the budget of the NIF was 8 BGN mn. For comparison at that time the overall budget of the National Science Fund (NSF) was 13.5 BGN million. The NIF supports two types of projects:\(^{16}\)

- Applied research projects (the maximum amount of the subsidy is BGN 500 000 and the time period for implementation is up to three years, whereby the NIF covers 25% to 50% of the R&D costs).
- Feasibility studies (the subsidy can cover 50% of the costs incurred and its maximum amount is up to BGN 50 000 per projects to be implemented within a year).

My analysis of the “Law for Scientific Research Promotion (2003)”, the “National Strategy for Scientific Research for the Period 2005-2010 (2004)” (in project)\(^{17}\) and the “Innovation Strategy of Republic Bulgaria and the Measures of Its Implementation (2004)” which were adopted during the accession period shows that these three official documents are age sensitive but not gender sensitive.\(^{18}\)

III. Operational Programme “Human Resources Development” (OP HRD) under the Structural Funds of the European Union allocated to Bulgaria in relation to education and science

The Operational Programme “Human Resources Development” is a strategic framework for absorption of funds, co-financed jointly by the European Social Fund of the European Union and the national budget during the programming period 2007 – 2013. It is a constituent part of the National Strategic Reference Framework.

In 2007 at the Ministry of Labour and Social Policy was created a new Directorate “Structural Funds and International Educational Programmes” in charge with responsibility for coordination and administration of the activities on the absorption of the resources under the Structural Funds of the European Union in relation to education and science. This Directorate carries out the following activities: undertaking the procedures for collecting and evaluating project proposals; organising the project selection to be financed under OP HRD; concluding contracts with beneficiaries; undertaking of on-the-spot checks for determination the proper execution of envisaged activities; preparing regular reports on the OP HRD implementation, etc. The Managing Authority (Ministry of Labour and Social Policy) of the OP HRD delegates to the Ministry of Education and Science certain tasks for managing certain priority axes or main areas of intervention. The Ministry of Education and Science through the Directorate “Structural Funds and International Educational Programmes” is responsible for the

\(^{14}\) Innovation Strategy of Republic Bulgaria and the Measures of Its Implementation, Ministry of Industry, Sofia, August 2004

\(^{15}\) These Centers are public and private R&D organizations with commercial orientation which sell their scientific products and innovative technologies to SMEs or develop research activities by order from SMEs. The Centers for Transfer of Technology are supposed to act as bridging organizations and mediators between the public and private R&D institutes and SMEs. The measures related with the ‘non-financial instruments’ of the Innovation Strategy also demonstrate particular care for the young highly qualified professionals.

\(^{17}\) The project “National Strategy for Scientific Research for the Period 2005-2010 (2004)” was not adopted and currently a new National Strategy for Scientific Research is under elaboration which is supposed to be finalized by the end of 2008.
implementation of Priority axis 3 “Improving the quality of education and training in correspondence with the labour market needs for building a knowledge-based economy” and Priority axis 4 “Improving the access to education and training”.

In 2007 the Ministry of Education and Science collected project proposals for four Programmes from the Structural Funds, one of which is relevant to this Report, namely the Programme: “Support to the development of PhD students, post-doctoral students, post-graduate students and young scientists” with a total budget of 3 911 660 BGN. Eligible applicants for those funds were higher education schools, universities, Bulgarian Academy of Science and other scientific organisations, including in partnership with employers. The duration of a project might be up to 3 years and the amount of the financial support: minimum 80 000 BGN and maximum 200 000 BGN. Up to 5% of the awarded grant are recognized as eligible expenses for equipment or for repair works.

This was a Call for institutional grants on competitive project-based financing. During this first competition for institutional grants - more than 200 proposals were submitted from different consortiums from Universities and research organizations and 20 grants were awarded. The list of the winners is publicly available by the title of the project and the name of the institution (a leader of the project). The project coordinators by name and sex are not published.

At the end of 2008 is envisaged a new/second in order Call for proposals under this Programme.

Conclusion: The competitive project-based financing in Bulgaria is based on a kind of ‘young scientists mainstreaming’ policy which have been implemented at all levels including the criteria of evaluation of the submitted projects under the announced Calls for proposals. The current aim is to reach a balance by age and not a balance by gender. However the young women scientists are part of the privileged target group of young scientists and they could profit from the current states-of-the-arts.

Good practice: Substantial increase of the annual NSF’s budget for 2008 (five times more in comparison with 2005) and decision for international evaluation of all submitted proposals for the 2008 Competition round (16 opened Calls) of the NSF. The officially announced target by the Bulgarian government is the ratio between non-competitive institutional project financing and the competitive project financing to reach a balance of 50:50 in the coming few years.

Gaps: The publicly available statistics about the awarded grants in 2008 Competition of the NSF should appear in 2009 as: a) segregated by sex and b) in more details (which is not the current case) in order to assess whether this positive developments in 2008 had or had not affected the women academics and researchers in particular the young women academics and researchers.

Prospect: A study of the gender budgeting of the results of the 2008 Competition of the NSF should be carried out in 2009, because as we all know from many documented international surveys when a substantial amount of money are directed into a domain women used to be squeezed out from it.

Acknowledgments:

I would like to thank the following policy- and decision-makers and experts for their kind support for the elaboration of this report via either consultation or data supply or both: Prof. Anastas Gerdjikov – the new Manager of the National Science Fund from the beginning of 2008 onwards, Prof. Dr. Borislav V. Toshev - Chair of the Expert Panel ‘Natural Sciences’ at the National Science Fund, Ms. Lora Pavlova – a Senior Expert at the Department Scientific Programs of the Ministry of Education and Science and Ms. Vanya Jeleva – Expert at the National Statistical Institute.

References

Law for Scientific Research Promotion, State Gazette No 92/2003

Rules of Scientific Research Fund, Sate Gazette, No.73/20.08.2004

http://ec.europa.eu/eracareers/index_en.cfm?l1=23&l2=0&l3=1&newsletter=11_03

The Annual Report of the National Science Fund for 2006 (the last one available)

Report of the NSF (in PPs) for the period 2005-2007

