Research & Innovation - Participant Portal


TOPIC : Advanced and realistic models and assays for nanomaterial hazard assessment

Topic identifier: NMBP-29-2017
Publication date: 14 October 2015

Types of action: RIA Research and Innovation action
Opening date:
11 May 2016
2nd stage Deadline:
27 October 2016 17:00:00
04 May 2017 17:00:00

Time Zone : (Brussels time)
  Horizon 2020 H2020 website
Pillar: Industrial Leadership
Work Programme Year: H2020-2016-2017
Topic Updates
  • 11 January 2017 10:28

    Switzerland as associated country

    From 1 January 2017 Switzerland is associated to the whole Horizon 2020 programme instead of the previous partial association.

    This applies to all the grant agreements signed on 1 January 2017 and afterwards.

    For more information please see the relevant Note on the Participant Portal.

Topic Description
Specific Challenge:

Risk assessment is often largely based on the toxicological profile of the material in question. The reason is that the costs related to hazard assessment are usually not in balance with the costs for exposure monitoring, let alone risk containment or risk mitigation. However with the very big number of new material likely to enter production and use, the usually short period between development and marketing and the increase in societal risk aversion, the classical toxicological testing paradigm so far focusing on in vivo testing is gradually but steadily shifting towards in-vitro and in-silico testing approaches. This is particularly true in the field of nanosafety where, in front of potentially thousands of different nanomaterials, economic constraints make it essential to develop and establish robust, fast and yet reliable and realistic methods that should be applied in figuring out "nanomaterials of concern".

Significant progresses have been made in assessing nanomaterial hazard. Yet, knowledge gaps remain on long-term effects (low doses, chronic exposure), both for human health and the environment. Questions also arise on the adequacy of the models used in existing in-vitro and in-silico testing and on the relevance of the exposure conditions (e.g. linked to the current understanding of the nanomaterial-biomolecule-cell interface) to correctly assess and predict real-life hazards. It is also necessary to prepare the ground for the next challenge, defining hazard profiles based on in-silico testing alone.


With a view to intelligent testing strategies (ITS) for nanomaterials, it is of high priority to develop and adopt realistic and advanced in vitro tests which have the potential to substantially improve the relevance of in-vitro approaches. Current in-vitro experiments mostly rely on established immortalized single cell lines, which often do not reflect the in-vivo situation. Therefore, new or advanced models, such as co-culture models, 3D cultures or primary cell models should be developed for relevant endpoints lacking, or having inadequate, in-vitro models. Transport through biological barriers could also be addressed, for instance with the objective of assessing the true internal dose of the materials to which living organisms are being exposed, as well as disease models or models with impaired barriers.

Low-level chronic exposure is a likely scenario as many ENMs will probably exist at very low concentrations in the environment and potentially be persistent. Thus, assays and models with low chronic exposure, elucidating toxicokinetics, different mechanisms of action and adverse outcome pathways, as well as specific disease models, should be developed and assessed against appropriate animal studies and could include for instance effects on kinetics, growth, reproduction, metabolism, and behaviour. Research could also focus on long-term, ecologically relevant, effects in realistic environmental concentrations of ENMs.

The transformations in biological or environmental matrices have been demonstrated as having potentially significant effect on the ENM tests results. Therefore, dosing with realistic exposure levels and conditions should be an integral part of the developments, taking into consideration the dynamic and complex nature of environmentally induced transformations with realistic external and internal forms and levels of exposure.

For validation purposes and to ensure that the experimental results can form a solid and meaningful basis for grouping, read-across, and modelling purposes, the testing should be performed on sets of well-defined and characterised libraries of nanomaterials and, when possible, on nanomaterials for which high-quality in-vivo data are already existing (to minimize animal testing).

Activities are expected to focus on Technology Readiness Levels 4 to 6.

This topic is particularly suitable for international cooperation.

The Commission considers that proposals requesting a contribution from the EU between EUR 10 and 13 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

No more than one action will be funded.

Expected Impact:
  • The research approach should be innovative and represent a significant advance beyond the current state-of-the-art. Research should focus on provision of solutions to the long-term challenge of nanosafety and nanoregulation;
  • New models and assays for use in in-vitro and in-silico testing improving prediction of chronic effects in a broad array of representative organisms and changes in ecosystem function;
  • Improved predictive power of in-vitro and in-silico approaches for in vivo systems to support acceptance in a regulatory framework;
  • Developed test guidelines for further standardisation, and ring testing (including guidance on design of the ring testing).
Cross-cutting Priorities:

International cooperation

Topic conditions and documents

Please read carefully all provisions below before the preparation of your application.

    described in part A of the General Annexes of the General Work Programme.

    Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects (follow the links to Australia, Brazil, Canada, China, Hong Kong &Macau, India, Japan, Republic of Korea, Mexico, Russia, Taiwan).
    described in part B and C of the General Annexes of the General Work Programme.

    Proposal page limits and layout: Please refer to Part B of the standard proposal template.


    3.1  Evaluation criteria and procedure, scoring and threshold:
    The criteria, scoring and threshold are described in General Annex H of the work programme.
    The following exceptions apply:

    For single-stage and second-stage evaluations, the threshold for the criteria Excellence and Impact will be 4. The overall threshold, applying to the sum of the three individual scores, will be 12.

    The procedure for setting a priority order for proposals with the same score is given in General Annex H of the work programme. The following exceptions apply:

    Under 3 (a)
    Proposals are first ranked in separate lists according to the topics against which they were submitted (‘topic ranked lists’). When comparing ex aequo proposals from different topics, proposals having a higher position in their respective 'topic ranked list' will be considered to have a higher priority in the overall ranked list.

    Under 3 (b)
    For all topics and types of action, the prioritisation will be done first on the basis of the score for Impact, and then on that for Excellence.

    3.2 Submission and evaluation process: Guide to the submission and evaluation process


    Information on the outcome of two-stage evaluation:
          For stage 1: maximum 3 months from the deadline for submission.
          For stage 2: maximum 5 months from the deadline for submission.
    Signature of grant agreements: maximum 8 months from the deadline for submission.

    for the type of action under this topic

    Research and Innovation Action:

    Specific provisions and funding rates
    Standard proposal template
    Standard evaluation form
    H2020 General MGA -Multi-Beneficiary
    Annotated Grant Agreement

    Horizon 2020 budget flexibility

    Classified information

    Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.

    Financial support to Third Parties – where a topic description foresees financial support to Third Parties, these provisions apply.


    Open access must be granted to all scientific publications resulting from Horizon 2020 actions.

    Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.

    Open access to research data
    The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.

    Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.

    Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.

    - Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs.

    - Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.

    The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.



    Legal basis: Horizon 2020 - Regulation of Establishment

    Legal basis: Horizon 2020 Rules for Participation

    Legal basis: Horizon 2020 Specific Programme

    H2020 Work Programme 2016-17: Introduction

    H2020 Work Programme 2016-17: Introduction to Leadership in enabling and industrial technologies (LEITs)

    H2020 Work Programme 2016-17: Nanotechnologies, advanced materials, advanced manufacturing and processing, biotechnology

    H2020 Work Programme 2016-17: Cross-cutting activities (Focus Areas)

    H2020 Work Programme 2016-17: Dissemination, Exploitation and Evaluation

    H2020 Work Programme 2016-17: General Annexes


Submission Service

No submission system is open for this topic.

Get support


National Contact Points (NCP) - contact your NCP for further assistance.

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

Partner Search Services help you find a partner organisation for your proposal.



Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

H2020 Online Manual your online guide on the procedures from proposal submission to managing your grant.

Participant Portal FAQ – Submission of proposals.

IT Helpdesk- contact the Participant Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues




Ethics – for compliance with ethical issues, see the Participant Portal and Science and Society Portal

CEN and CENELEC, the European Standards Organisations, advise you how to tackle standardisation in your project proposal. Contact CEN-CENELEC Research Helpdesk at

The European Charter for Researchers and the Code of Conduct for their recruitment