Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   All

Last Update: 13-05-2013  
Related category(ies):
Industrial research  |  Success stories

 

Countries involved in the project described in the article:
France  |  Greece  |  Latvia  |  Poland  |  Spain  |  United Kingdom
Add to PDF "basket"

New smart robots to improve inspection of nuclear plants

Nuclear power accounts for one sixth of the European Union (EU)'s energy consumption, and there are power plants in 14 of the 27 member states. Safety is a priority and there are regular maintenance checks on every aspect of the plants. But what happens if cracks appear in the machinery that are so small and deep that they escape the human eye? And how can one check every corner of a nuclear reactor when some areas are, by necessity, shrouded in radiation?


© vencav - Fotolia.com

These issues have been addressed by a pan-European research project, NozzleInspect, backed by €1.1 million in EU funds. The team behind the project has built a remote controlled prototype robot that uses state of the art ultrasonic probes to detect tiny, millimetric defects in the nozzle, a crucial, sensitive component used to control the flow of water that cools the nuclear reactor.

The new technology cuts down human intervention and potential exposure to radiation. "The NozzleInspect robot can identify any cracks, porous walls or other defaults inside the material to a greater degree (30% more precise than any other technology), while keeping humans away from radiation," says project leader Dimos Liaptsis.

Nozzle sections, which are made from steel, can be particularly susceptible to cracks from thermal fatigue and stress corrosion. Most inspections are carried out with conventional ultrasonic testing that requires frequent changes of the probes in a high radiation environment, and facilities can be shut down for days while human operators physically carry out recalibration tasks. Faster, cheaper and more accurate inspection systems are thus considered essential to ensure the continued safe operation of the nuclear facilities.

The NozzleInspect project has developed a flexible probe attached to a low-cost robot to inspect nozzle weld areas. The project gathers nuclear research and safety partners in Britain, France, Spain, Poland, Lithuania and Greece, each bringing complimentary skills to the table, from ultrasonic modelling and simulations to mechanical systems design and motion control programming. The partners involved in the project (most of which are SMEs) will benefit if the system is commercialised. They have also benefitted from the inter-European collaboration - coming from different countries and different areas of expertise - creating strong ties and promoting the exchange of expertise that benefits their overall research capabilities.

Using remote-controlled robots means the calibration and set up of the scanner can be completed outside the vicinity of the nuclear reactor. "Operators take just a couple of minutes to install the robot on the nozzle, and they can then do the calibrations remotely," says Liaptsis. Thanks to a 3D beam steering capability, the developed prototype is able to inspect the entire volume of the weld in a single operation. Liaptsis says the prototype has also improved the accuracy of the monitoring – it is 30% more precise than current probes - helping provide better data about the nozzle's life span and deterioration rate.

Project details

  • Project acronym: NOZZLEINSPECT
  • Participants:United Kingdom (Coordinator), Greece, France, Latvia, Poland, Spain
  • Project FP7 N° 232523
  • Total costs: € 1 448 003
  • EU contribution: € 1 104 400
  • Duration: July 2009 to September 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center