Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
  Avian & pandemic flu
  Cancer
  Earthquakes
  Floods
  HIV & AIDS
  Malaria
  Stem cells
  Volcanoes
  Water
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Special Collections

Last Update: 11-12-2012  
Related category(ies):
Health & life sciences  |  Success stories  |  Special Collections

 

Countries involved in the project described in the article:
Spain  |  United States
Add to PDF "basket"

INIMIN – Boosting natural defence against the flu

EU-funded research has revealed for the first time in detail how people's immune systems react to vaccination. The discovery paves the way for more powerful vaccines to help vulnerable groups, in particular, fight annual bouts of influenza. The results could one day save thousands of lives and millions of euros in health-care costs.


© Fotolia, 2012

Vaccination is a proven way of persuading the immune system to protect the body against crafty viral infections such as influenza. But until very recently, surprisingly little was known about how the body's innate defences actually work their magic.

With the support of a multi-disciplinary research team made up of scientists from Harvard Medical School and Dana Farber Cancer Institute – both in the USA – Spanish researcher Santiago Fernández González has revealed in great detail how a person's immune system reacts to vaccination.

Flu vaccinations basically contain a weakened or 'deactivated' form of the virus which tricks the body into believing it is under attack. The immune system's reaction leads to the creation of antibodies which are then already programmed to defend a person in the event of a full-blown infection.

The virus contained in the vaccine is first identified and surrounded by some specific cells – 'medullary dendritic' – found in the lymph node, notes Dr González. He has just returned to Europe following a Marie Curie fellowship organised through the Centro Nacional de Biotecnología, Spain. These cells effectively escort the virus to the lymphocytes – the cells that eventually produce antibodies that will fight the virus.

Dr González used new imaging techniques pioneered by Harvard Medical School to see what happens inside the lymph node by following the cells' movement and interaction in live tissues. Findings related to this were published in the Nature Immunology journal in 2010.

The Marie Curie fellow is now investigating if the same mechanisms exist when analysing 'live' viral infections (in vivo studies). "This work could help to minimise the damage caused by influenza infection in people who were not previously vaccinated," Dr González explains. The quest for long-lasting immunity
With support from the EU-funded project Defence mechanisms of innate immunity against influenza virus (INIMIN), Dr González and associates have discovered the role of specific proteins and receptors (that act like a check-in desk) in the development of 'memory B cells' in the lymph node which recognise the virus. Proteins are important molecules that our bodies and the cells in our bodies need to function properly.

"The first line of defence against infection is the innate system which is non-specific and tends to offer only short-term immunity," says Dr González. So he studied ways of boosting this immunity with the help of a small number of proteins largely produced in the liver that 'complement' the body's innate defence.

"Until recently, relatively little was known about the interaction of this 'complementary system' and infectious agents like influenza which, as it mutates, poses a major threat to health every year," says the young scientist who is currently group leader responsible for the infection and immunity lab at the Institute of Research for Biomedicine, Switzerland.

Armed with this knowledge, his plan is to lengthen the memory response so that our immune system could recognise the new variants of the virus. This could save thousands of lives and many millions of euros in health costs every year, he suggests.

Funding for INIMIN has helped Dr González and his colleagues to discover how the body's protective response against influenza virus is initiated. Knowing how flu vaccines actually work is critical to developing more efficient therapies to strengthen the protective response against the virus.

"This is especially relevant for vulnerable groups, such as the elderly, infants and people with compromised immune systems, where the efficiency of the vaccine is limited," he stresses.

Project details

  • Participants:Spain (coordinator), USA
  • FP7 Project N° 220044
  • Total costs: € 225 715
  • EU contribution: € 225 715
  • Duration: September 2009 to August 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center