Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
  Industrial
  Nanoelectronics
  Nanomaterials
  Nanomedicine
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belgium
  Benin
  Brazil
  Bulgaria
  Canada
  Chile
  China
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Success Stories

Last Update: 25-09-2012  
Related category(ies):
Information society  |  Industrial research  |  Research policy  |  Nanotechnology

 

Countries involved in the project described in the article:
France  |  Germany  |  Greece  |  Netherlands  |  Poland  |  United Kingdom
Add to PDF "basket"

CORONA – Customer-oriented product engineering of micro and nano devices

Product engineering … a complex marriage

Modern cars and aircraft have scores of tiny electro-mechanical systems and technologies keeping them safely on the road or in the air. Thank goodness. But these micro- and nanotechnologies (MNT) are insanely difficult to design and build, especially for SMEs which struggle with such complex product engineering. A European research team has the solution.

©Fotolia
© Fotolia, 2012

Manufacturing micro- electromechanical systems, or MEMS as they are known, is a vast and complex process involving sometimes hundreds of different steps, each controlled by a dozen or more parameters, including varying pressures, temperatures and material compounds, etc. Customer needs play a key role in terms of what MEMS are developed, and to what specifications.

The auto industry, for example, uses a range of MEMS like micro-scale accelerometers to trigger airbags or sensors to keep vehicles in line, each combining electrical and mechanical functions with tiny embedded computers etched out of silicon wafers. This 'marriage' of the electro-mechanical and microchip technology is not always a happy one.

Engineering is traditionally wedded to the world of visible, moving parts. But with progress in micro-computing and electronics we are asking MEMS-related product engineering (PE) and electronic design automation (EDA) to get much cosier with developments in micro- and nanotechnology.

This relationship forms something of a chicken and egg problem, suggests Kai Hahn, an expert in the field at Siegen University. Because unlike PE for integrated circuits, the inherent structure, or so-called "third dimension" needed to design MEMS calls for potentially wholesale changes to technology parameters. To resolve this, a deep understanding of the entire PE process for MNT and MEMS is critical. But no one has achieved this … until now.

Great start … better finish
The EU-funded Corona project is the first to develop an integrated design flow, taking into account the process-design stages – from product idea to manufacturing – and with special emphasis on the end-to-end needs of customers and small MEMS manufacturers in the value chain.

"When Corona started in 2008, there was no dedicated PE methodology for MNT. The tool supply for this high-tech segment was also very poor, so we definitely saw an opportunity," notes Dr Hahn, a key researcher in the consortium. With partners representing key stages along the MNT PE chain, Corona had a head start on competing research groups. It also benefited from an earlier European project, called Promenade, which built software to support the design of MEMS manufacturing sequences.

The team took Promenade's work further by linking its new methodology and tools to current commercial standards, making Corona's MNT PE more user-friendly. "This was important because the customer is the only one who really knows the exact product specifications and can decide on go/no go gates within the PE process," says Dr Hahn.

Mission complete
Corona has achieved all its main objectives: methodology for all design-processing stages of MNT PE; software, middleware and applications supporting the methodology; and real-life MEMS demonstrations.

"The demos carried out by our partners XFAB (Erfurt), ITE (Warsaw), ELMOS (Dortmund), Theon (Athens) and Cambridge University validated Corona's approach and were very helpful to improve our methods and tools," confirms the researcher.

Commercialisation of several tools emanating from Corona is underway. Notably, project partner Coventor (Paris) has commercialised its clever design simulator ('SEMulator3D'). Another partner, Process Relations (Dortmund), has developed 'XperiDesk' for managing myriad design collaboration tasks, from idea to rapid prototyping.

Meanwhile, several prototypes, such as the 'Hedoris' platform developed by academic partner ITE and 'ProcessRecommender' suite by University of Siegen, are undergoing further research. Corona's 'Electronic Product Engineering Flow Manager' is also being put to good use internally by its creator, the firm ELMOS.

IVAM, the project's coordinator, is putting its connections as the industrial association for MNT to good use by communicating Corona's results to its member community. The wider public can also read about the project's achievements and methods in a new book due to be published by Springer in 2012.

Project details

  • Participants: Germany, Poland, UK, France, Greece, Netherlands
  • FP7 Proj. N° 213969, FP7-NMP programme
  • Total costs: € 4,355,139
  • EU contribution: € 2,999,663
  • Duration: July 2008 - June 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center