Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 16-01-2013  
Related category(ies):
Industrial research  |  Success stories  |  Nanotechnology

 

Countries involved in the project described in the article:
Finland  |  Hungary
Add to PDF "basket"

COMPNANOALD – Self-cleaning walls... a graffiti artist's nightmare!

Sun-fired pollution-eating nano-fibres, novel night-vision devices, super waterproofing materials... these are just some of the applications that award-winning Hungarian scientist Dr Imre Miklós Szilágyi came up with in his EU-supported nano-science project exploring new materials and techniques at the molecular level.


© Dr Imre Miklós Szilágyi

European researchers are leading the quest to master the nano-sciences – the world of the infinitesimally small, where 1 nanometre is one-billionth of a metre or where tiny molecules are some 50 000 times smaller than human hair. The hunt is on to find novel composite materials which can be combined and manipulated to form complex but extremely useful properties applicable to a range of industries, technologies and other scientific endeavours.

Imagine, for example, walls that clean themselves simply by spraying on a special nano-fibre which reacts to sunlight and literally eats away at organic pollution, dirt and even some types of graffiti. The savings on cleaning for municipalities worldwide could be huge.

"With the visible light-active photo-catalysts I've been working on, you could have clean walls without having to scrub them manually," says Dr Szilágyi of the Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics. "What's more, the nano-fibres are prepared in an environmentally friendly way using green chemistry!"

Dr Szilágyi's CompNanoALD project was able to delve deeper than ever before into these complex nano-structures using a technique called Atomic Layer Deposition (ALD). ALD is a unique tool, he says, because it can "deposit one atomic layer of a material at a time in a step-wise manner".

The trick is to control the way chemicals deposit on a surface, which is harder when the object is not flat or consistent in texture, notes Dr Szilágyi. He applied ALD to create incredibly precise and flexible thin films (layers of material) with uniform surfaces even on three-dimensional objects, such as inorganic nano-fibres, carbon nano-tubes, or indeed naturally occurring objects like leaves.

Detecting hazardous gases, harvesting energy... and more
Today, better thin-film deposition is critical to developments in the semiconductor industry – which makes microchips for electronic devices – and, increasingly, green technologies such as solar cells for energy storage.

By combining different properties, or adding brand new functionality, Dr Szilágyi has found innovative ways of creating and using nano-patterns to develop consistent, controllable structures. These include materials with fine-tuned properties to detect hazardous gases, harvest solar energy and copy surfaces found in biology or nature (i.e. lotus leaves).

"The copied 'nano-leaf' could be programmed to react differently to sunlight or water, leading to new super waterproof materials for buildings, clothing, and so on," explains the researcher. Readjusting the surface of the lotus leaf, he adds, meant the surface properties of various biological tissues or bacteria could be programmed, opening up new horizons in biology.

Other promising avenues for the Hungarian scientist's work include the ability to grow functional coatings on cellulose fibres to help incorporate them in biodegradable plastic materials, which can be used in car body parts, for instance. Dr Szilágyi tuned the surface of flexible plastic membranes as well, which can now detect light or electrons. The resulting so-called 'flexible multi-channel plates', he reveals, are very promising for novel night-vision devices, among other applications.

"We've already seen outstanding results using these new atomic deposition techniques, yet the potential of ALD in nanotechnology has not yet been exploited to its full extent," predicts Dr Szilágyi. "But the Marie Curie fellowship I completed this year has definitely helped me push the frontiers of ALD significantly further."

A chemist and engineer, Imre Miklós Szilágyi has received several awards including the Hungarian Academy of Science's Young Scientist Award (2010) János Bolyai fellowship (2011-14), and a Marie Curie Fellowship for career development. The latter allowed him to study and work at Helsinki University, Finland, where he was hosted by the ALD expert, Prof. Markku Leskelä. Dr Szilágyi has contributed to books, conferences and numerous scientific journals and is in the process of creating a dedicated ALD research group after the fellowship.

Project details

  • Participants: Finland (Coordinator), Hungary
  • Project N° 235655
  • Total costs: € 184 759
  • EU contribution: € 184 759
  • Duration: February 2010 to February 2012

Convert article(s) to PDF

No article selected


loading


Search articles
To restrict search results to articles in the Information Centre, i.e. this site, use the search box at the top of the page to the right of the menu and then select "Information Centre" in the "Filter by" menu on the results page.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center