Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
  Astronomy
  Biology
  Chemistry
  Mathematics
  Physics
  Other
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Pure sciences

Last Update: 18-12-2012  
Related category(ies):
Health & life sciences  |  Success stories  |  Pure sciences

 

Countries involved in the project described in the article:
Belgium  |  Italy  |  Poland  |  Sweden  |  United Kingdom
Add to PDF "basket"

BIOPTRAIN – European researchers make sense of genetic data

Nanotechnology, the manipulation of matter on a molecular scale, brings together different sciences. It is not just about the physics of atomic arrangements, but also about the chemistry of each element involved. The mix becomes yet more complex when living organisms interact with the tiny structures. But by embracing this complexity - bringing together chemists, physicists, biologists and engineers - a research project has provided new insights into nanotechnology.


© Fotolia, 2012

The project, BIOPTRAIN, looked at ways to process the vast amounts of genetic data that molecular biologists today have access to. "We now have billions of pieces of data about the genome, but the problem is that we don't know how to use them for clinical science," says University of Nottingham professor Jon Garibaldi, BIOPTRAIN's project coordinator. "We need to analyse the data to understand how it all fits together. So we need to train computer scientists to help the doctors."

The four-year project was a Marie Curie Action (MCA), which is a European Union (EU) programme of support for researchers to work abroad. Launched in September 2005 with a €2.1 million EU grant, BIOPTRAIN involved partnerships with Poznan University of Technology in Poland, the Catholic University of Leuven (KUL) in Belgium, University College of Borås in Sweden, and Italy's University of Florence.

The project looked at the fast emerging field of bioinformatics, which is the application of information technology in molecular biology. BIOPTRAIN's aim was to train the next generation of European scientists in the latest advances in bioinformatics, including the ever-more sophisticated computational algorithms used to process genetic data.

Garibaldi says BIOPTRAIN looked ahead to the day in the not-too-distant future when anyone can have their entire genetic code mapped and enjoy personalized medicine. "We need to link biomedical and bioinformatics data," he says, adding that by better understanding how the DNA fits together, researchers will be able to improve disease diagnosis and treatment for a whole range of maladies. "Some day, perhaps, you'll be able to take a blood test and find out whether you're likely to develop Alzheimer's, cancer or other diseases. We probably won't cure these diseases in our lifetimes, but this project could help our efforts to find targeted drugs, improve treatment, and extend lives."

Eighteen research students from across Europe received PhD training in the project. "We're trying to build up a new set of academics, and they will in turn train a new generation afterwards," says Garibaldi.

The project delivered a number of breakthroughs. For example, in Garibaldi's Nottingham University, home to some of the world's top breast cancer specialists, researchers analysed a 20-year database of over 1,000 people and were able to identify seven different sub-types of breast cancer.

But the most important result, Garibaldi says, was that it helped build a multidisciplinary knowledge base in the emerging bioinformatics field, and one that has already led to new careers in academia and industry, with one researcher working in Imperial College, London, another taking a research position in Luxembourg, while another moved to the US. "We brought together researchers from different backgrounds and perspectives and started to form a European approach to the problem, gaining new insights and spreading good practises," he says. "This is the new breed of scientist comfortable in different domains and with a new way of looking at problems that straddle different domains."

Project details

  • Participants:United Kingdom (Coordinator), Italy, Belgium, Sweden, Poland
  • FP6 Project N° 7597
  • EU contribution: € 2 121 500
  • Duration: September 2005 to August 2009

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center