Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
  Allergy & asthma
  Biotechnology
  Communicable diseases
  Drugs & drug processes
  Genetic engineering
  Genomics
  Health & ageing
  Health & poverty
  Health & special needs
  Health systems & management
  Major diseases
  Medical research
  Molecular biology
  Neuroscience
  Public health
  Rare & orphan diseases
  Other
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Macedonia - former Yugoslav Republic
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Health & life sciences

Last Update: 06-07-2012  
Related category(ies):
Health & life sciences  |  Success stories  |  Research policy

 

Countries involved in the project described in the article:
Germany  |  Sweden  |  United Kingdom
Add to PDF "basket"

AEROPATH – Developing a response to superbugs

Despite advances in modern medicine and science, the population of Europe is becoming increasingly susceptible to the potential dangers of bacterial infection. Once easily dealt with by antibiotics, severe bacterial infections are again increasing sharply in Europe due to their growing resistance to available antibiotics. These range from respiratory infections to gastrointestinal infections, dermatitis and a variety of systemic infections.

©Fotolia © Fotolia, 2012

Researchers from the universities of Dundee and St Andrews in Scotland, the Karolinska Institutet in Sweden and two German-based SMEs (LIONEX and mfd Diagnostics GmbH) have, together with collaborators in Oxford, joined forces under the AEROPATH project to develop potential solutions to the superbug problem.

This ambitious research project funded under the European Union (EU)'s 7th Research Framework Programme (FP7) aims to promote the development of relevant antimicrobial drugs and new approaches for combating the superbugs and overcoming their resistance to treatment.

Around one tenth of infections acquired during a hospital stay are caused by Pseudomonas aeruginosa (P. aeruginosa). This free-living bacterium is most commonly found in soil and water and is an opportunistic pathogen that infects humans with compromised natural defences, particularly those in hospital.

These bacteria are tolerant to a wide variety of physical conditions, including temperature, and are resistant to high concentrations of salts and dyes, weak antiseptics and many commonly used antibiotics. They are also capable of acquiring resistance to many others, making treatment difficult.

The aim of AEROPATH has been to gain a better understanding of the biology of the 'Gram-negative' type of bacteria at a molecular level by using the P. aeruginosa bacterium as a model and looking for ways to weaken or interfere with the bacterium's ability to cause infection. The AEROPATH team are confident of their potential to underpin early-stage drug discovery for development of antibiotic drugs.

In one particularly successful area the groups in Dundee and Oxford made a significant breakthrough in understanding how resistance to antibiotics might be overcome by producing the first ever 3D molecular image of one key drug target, Penicillin Binding Protein 3 (PBP3) and showing how drugs bind to it. Having this accurate 3D model of PBP3 and knowing where molecules called inhibitors bind, gives a clear picture of the interactions that inhibit this drug target.

The research was made possible by using a machine called a synchrotron in which electrons are accelerated at close to the speed of light and manipulated by special magnets to give off very intense X-rays. These X-rays were then used to probe tiny PBP3 crystals through diffraction methods, enabling the researchers to determine the 3D structure of the protein.

Knowing the 3D structure of an antibiotic bound to its target protein reveals the molecular mechanism and shows how the drug works and how it could be modified to overcome resistance. The structures identified so far suggest that there could be scope to develop new drugs that work in combination with existing PBP3 inhibitors to make them more effective and able to overcome resistance. Now that the exact chemical structure of the protein has been identified, researchers can begin developing new inhibitors and therapies.

Achievements in the first three years of the AEROPATH project include computer-based 'druggability' assessment of over 5 000 targets resulting in the release of the AEROPATH 'target database', and the validation of 28 targets alongside the cloning of more than 100 genes of selected targets. The output greatly enriches the database on P. aeruginosa drug targets for follow up studies.

The AEROPATH coordinator Professor William Hunter, from the College of Life Sciences at Dundee commented: "Because these organisms are so tough, we need new ideas for drugs and the way to do that is to find new targets or apply modern technologies to exploit old targets. We can then search out new compounds that will hit either group of drug targets."

Project details

  • Participants: United Kingdom (Coordinator), Sweden, Germany
  • FP7 Proj. N° 223461
  • Total costs: € 6 049 979
  • EU contribution: € 4 591 463
  • Duration: November 2008 - October 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center