Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 31-07-2014  
Related category(ies):
Success stories  |  Science in society  |  Pure sciences

 

Countries involved in the project described in the article:
Luxembourg
Add to PDF "basket"

Arithmetical surprises from the quantum universe.

The classical notion of trajectory in physics has its foundation in common sense: the position and the velocity of an object can be predicted by computations and measured at a given time. As opposed to the classical universe, the behaviour of elementary particles is elusive. Only the probabilities of physical events can be predicted. These probabilities are sums of all possible trajectories of the quantum system from the initial to the final state.

picture of blue board covered with figures and charts © boscorelli - Fotolia.com

The Quantum Field Theory (QFT) aims to predict the probabilities of the interactions of elementary particles. Its predictions have been put through the test many times, and have come through unscathed. Almost 50 years ago, QFT predicted the existence of the Higgs particle to explain why fundamental particles have mass. The CERN particle accelerator in Switzerland/France made headlines last year when it finally confirmed the existence of this particle.

Despite its very precise theoretical predictions that have been confirmed time and again in experiments, the mathematical aspects of QFT have been surprising researchers. The FP7 project "From QFT to motives and 3-manifolds", in which the University of Luxembourg is involved, targets one of these intriguing mathematical problems arising from QFT.

Some numbers are more equal than others, according to the quantum universe

The numbers arising from the computations of probabilities in general are not particularly notable. They can be fractions of natural numbers or transcendental numbers, and their decimal representations can have any number of digits including infinity

.

While considering the quantum events, however, the known computations in quantum field theory result in a very particular class of numbers, which are known as multiple ?-values. These numbers are of great interest in number theory. Even though they are transcendental in general, they are described by finite data, in other words, they are not as generic as transcendental numbers are expected to be.

A priori, there is no reason for obtaining these numbers. Their presence hints at new arithmetic structures of the quantum system that we were not aware of. Up until recent progress had been made with the project, it was not known whether these particular numbers, multiple ?-values, must always be present or whether it is just a coincidence for the computations that we are capable of realising today.

Geometry behind the numbers

The “From QFT to motives and 3-manifolds” project investigates the geometry behind the elementary particle physics to uncover the mystery behind the persistence of multiple ?-values. The idea behind the solution to the puzzle is not more sophisticated than the elementary computations of the area of geometric shapes. Together with Professor Matilde Marcolli from Caltech, the project consortium has started an ambitious programme aimed at reformulating the problem in a suitable geometric setting. This approach proved successful in explaining the puzzle of numbers in the quantum universe.

The arithmetic properties investigated in the project suggest that the quantum universe has some additional symmetries that we cannot completely formulate yet. The advances in this research area, and this project in particular, represent interesting progress towards a better understanding of the quantum universe.

Project details

  • Project acronym: QFT-2-MOT & 3-FOLDS
  • Participants: Luxembourg (Coordinator)
  • FP7 Proj. N° 322154
  • Total costs: € 100 000
  • EU contribution: € 100 000
  • Duration: October 2012 - September 2016

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center