Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Ethiopia
  Finland
  France
  Gambia
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Indonesia
  Ireland
  Israel
  Italy
  Jamaica
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malaysia
  Malta
  Mexico
  Montenegro
  Morocco
  Mozambique
  Namibia
  Netherlands
  New Zealand
  Nigeria
  Norway
  Panama
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Sri Lanka
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Thailand
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States
  Vietnam


   Infocentre

Last Update: 28-07-2014  
Related category(ies):
Health & life sciences  |  Success stories  |  International cooperation  |  Nanotechnology

 

Countries involved in the project described in the article:
Austria  |  Denmark  |  France  |  Germany  |  Hungary  |  Israel  |  Italy  |  Netherlands  |  Switzerland  |  United Kingdom
Add to PDF "basket"

Using nanotechnology to prevent heart attacks and strokes

By using nanotechnology to diagnose and deliver drugs early and effectively to patients at risk of cardiovascular disease, the EU-funded NanoAthero project promises to save lives.

picture of a person with a heart attack © psdesign1 - Fotolia.com

While heart attacks and strokes cause 40% of all deaths in the EU, some 80% of premature heart disease and stroke cases are preventable, according to the World Health Organisation. The five year EU-funded NanoAthero project, which began in February 2013, aims to address these issues head on.

It is still early days – and some promising strategies remain confidential – but project coordinator Didier Letourneur is confident that the consortium is on track to deliver on its ambitious programme, and thus bring real health benefits to EU citizens. Tackling cardiovascular diseases is a public health priority, and earlier diagnoses and ways to improve therapies are urgently required.

Tackling Europe’s top killer

Arteriosclerosis – a serious condition in which artery walls thicken as a result of calcium and fatty material build-up (plaque formation) – is a cardiovascular disease. A key trigger for heart attack is plaque rupture. The debris of the plaque can obstruct the flow of blood through the circulatory system, leading to a heart attack if it is in a coronary artery or a stroke if it is in a cerebral artery.

Fundamentally, the NanoAthero project is about taking the potential of nanotechnology and applying it to this particular field of medicine. The project is focused on developing effective, safe and innovative nanosystems – devices in the range of 1 to a few hundred nanometres (1 nanometre is a billionth of a metre) – that can identify patients at risk and then deliver drugs to where they are most needed.

“Nanosystems can be measured on the same scale as biological molecules,” explains Dr Letourneur. “They can be used to encapsulate imaging agents (to help identify patients at risk) or drugs (to treat affected areas). Nanosystem encapsulation also enables the controlled release of drugs. These important features make them particularly suited to for carrying imaging contrast agents to highlight vulnerable plaques with a high risk of rupture, or delivering therapeutic agents to stabilise these plaques.”

Although nanoparticle-based therapy is becoming more and more common in the treatment of cancer, no specific nanoparticle-based system has yet been approved for the diagnosis or therapy of cardiovascular diseases. This is partly because integrating a transport mechanism, a coating and an active molecule into the one nanosystem has so far proved challenging, and has not yet been clinically validated in the field of atherosclerosis.

The NanoAthero project aims to correct this. The consortium gathers together chemists, engineers, pharmacists, biologists and toxicologists from a range of research institutions, small- to medium-sized enterprises and pharmaceutical corporations from across Europe.

These experts share a strong belief that nanoparticle technologies can be developed and clinically proven to be effective in tackling cardiovascular diseases. Five nanosystems will be developed and trialled to deal with two clinical situations: blood clots (thrombus) and the build-up of plaque in arteries.

“Over the next five years, the NanoAthero project will integrate several key elements,” adds Dr Letourneur. “These include the preparation of dossiers on regulatory issues, risk and ethical assessments, the preclinical evaluation of diagnostic and therapeutic systems and clinical investigations of patients at high cardiovascular risk.”

Project details

  • Project acronym: NANOATHERO
  • Participants: France (Coordinator), Germany, Denmark, Nederlands, Hungary, Austria, Israel, Italy, Switzerland, UK
  • FP7 Proj. N° 305033
  • Total costs: € 12 838 188
  • EU contribution: € 9 833 348
  • Duration: February 2013 - January 2018

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center