Navigation path

Countries


   Infocentre

Published: 22 July 2014  
Related category(ies):
Health & life sciences  |  Success stories  |  Nanotechnology

 

Countries involved in the project described in the article:
Austria  |  Bulgaria  |  France  |  Germany  |  Italy  |  Sweden
Add to PDF "basket"

Peering into nano-objects-in 3D

These days, we rely increasingly on the most microscopic of mechanisms, machines and modules. Yet until recently it hasn't been possible to take a close look non-destructively without using large-scale research equipment. A new affordable scanner designed by EU researchers gives a 3D view inside nano-objects, and so will advance materials research.

image of nano objects in 3D © KB3 - Fotolia.com

Materials scientists and micro-technologists often need to view very tiny samples or components. Such checks are important to applications such as electronic miniaturisation. Yet at those scales, conventional tools such as light or electron microscopes just examine the surface. Until now, it has only been possible on large instruments at synchrotron light sources to check the structure of a tiny sample fully and in 3D without destroying it.

The EU-funded NanoXCT project devised a breakthrough solution. It overcomes the limitations of conventional imaging techniques, using X-ray computer tomography (XCT). Nano-XCT is like the similarly named medical technique for viewing inside the body, except it works at nano-scales. A nanometre (nm) is one billionth of a metre. Far smaller than the wavelengths of visible light, this is the realm of atoms and molecules.

The project aimed to develop a compact and affordable scanner, providing three-dimensional interior views of samples with sizes smaller than 1 mm. Such a scanner could for example clearly resolve structures on a silicon chip.

The NanoXCT system uses X-rays to penetrate a specimen – for example a microchip. The X-rays enter the object or material from one side and exit the other. A digital detector records an 'attenuation' image. The sample is turned in stages and re-imaged throughout a full 360° turn. A computer then combines all 2D attenuation images into a single 3D X-ray image.

The scanner is also capable of analysing chemical composition. It does this via spectral analysis of the specimen, meaning it determines the elemental decomposition of the materials present. The project is also developing the software necessary to run the scanner, combine the images, and perform the spectral and spatial data analysis.

Opening doors in materials research

The prime benefit of the system is that it aids materials research. "A lot of university laboratories would love to have a conveniently sized nanoscale XCT scanner," says project coordinator Dr Christoph Heinzl, of the University of Applied Sciences Upper Austria.

Once the project's device reaches its target market, it should influence the creation of new materials. The NanoXCT device will also eventually aid other research fields, including nano-electronics, and possibly biological and biomedical applications.

However, making such a system is not simple, and the project had to overcome considerable technical difficulty. "In order to develop such a device," says Heinzl, "you have to develop each component well beyond the state of the art." The X-ray source needs to be ultra-bright, and focused at a tiny spot. This helps achieve the magnification required for the project's goals. "However," Heinzl continues, "in terms of technological issues, ultra-bright and nano-focus are contradictory, so it's really an issue to get this into place."

The detector must also have a wide field of view. Perhaps most tricky, the motion of the manipulation system must be extremely precise, otherwise the tiniest unplanned movement would cause blurring in the data genetrated.

The next step for the project will be to further develop component technologies and clear the remaining technical hurdles. The team is on-schedule to begin test scans towards the project's end in 2015.

Then the project will commercialise the complete device to a worldwide market worth around € 420 billion, which also shows steady double-digit annual growth. "It is fair to say that the market is going to be very interested in the NanoXCT device," says Heinzl.

Project details

  • Project acronym: NANOXCT
  • Participants: Austria (Coordinator), Italy, Bulgaria, Greece, France, Sweden, Germany
  • FP7 Proj. N° 280987
  • Total costs: € 4 195 917
  • EU contribution: € 3 100 000
  • Duration: May 2012 - April 2015

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center
 
Countries