Navigation path

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Botswana
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lichtenstein
  Lithuania
  Luxembourg
  Madagascar
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tanzania
  Tunisia
  Turkey
  Uganda
  Ukraine
  United Kingdom
  United States

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport


   Countries

Last Update: 12-06-2014  
Related category(ies):
Agriculture & food  |  Success stories  |  International cooperation  |  Environment

 

Countries involved in the project described in the article:
Denmark  |  Finland  |  France  |  Iceland  |  Ireland  |  Norway  |  Spain  |  United Kingdom
Add to PDF "basket"

Discovering why wild salmon is in decline

Declining numbers of Atlantic wild salmon stocks have mystified scientists for the past 20 years. A recent European Union (EU)-funded research project has produced some surprising results. SALSEA-MERGE, the European strand of the SALSEA project, has made a vital contribution towards discovering why numbers of wild salmon are in decline and dying at sea.

Photo of salmon in his natural environment © Witold Krasowski - Fotolia.com

The SALSEA project was initiated by the North Atlantic Salmon Conservation Organisation (NASC and consists of three strands, SALSEA-Greenland, SALSEA North-America and SALSEA-MERGE.)

The SALSEA-MERGE team looked at the migration and distribution of fish at sea in relation to the river where they were born. By examining variations in their DNA and using the same technology used by detectives to solve crimes, scientists were able to identify individual groups of wild salmon.

“The research team found that a specific set of genes differed among fish from different regions and, for the very first time, it was possible to identify stock groups associated with different parts of Europe. By reading their DNA, scientists were able to tell which particular region an individual fish caught at sea came from,” explains Professor Ken Whelan, Research Director, Atlantic Salmon Trust, United Kingdom and SALSEA-MERGE project representative.

Highly accurate and cost-effective sensors (so-called electronic tags) built into the fish allowed scientists to trace both their horizontal and vertical movements in the ocean as well as their travel time. At the same time, the project team collected data on the environmental and oceano-graphic conditions which salmon faced. Novel high seas trawling technology (fishing nets towed behind the boats) was used to locate small and young salmon.

Although traditional tagging records existed, all the research work done previously had been with salmon returning from sea, with salmon in fresh water, or with juvenile salmon (smolts) going out to sea.

“This was the first time the salmon had been tracked on the high seas,” says Professor Whelan. Results from the marine surveys (years 2003 to 2010), which proved statistically significant, have revealed important differences in where salmon from different regions migrate. The SALSEA-MERGE team began to build up a picture of the various regional stocks of fish. It was exactly like putting together all the pieces of a jigsaw puzzle and a pattern began to emerge of differences in the use of the sea by different groups in good years when the fish survived really well (e.g. 2002) compared to the years when their survival rates at sea were very poor (e.g. 2008).

SALSEA-MERGE scientists looked at all the information they gathered in relation to the sea, not only the temperature, but also the speed of the currents and how the wind affected the surface currents of the ocean where the baby salmon would be located. The project team began to map out the ocean into sections so they could better understand the corridors and routes that the individual stocks of fish use at sea, where they go through and how they travel up and back down again.

“Global warming was the finding that went beyond what the scientists expected to discover. The likely effect of warmer seas and how this changes the type of organisms that live in the ocean meant that as seas are getting warmer the cold water plankton species on which the young salmon or post-smolts feed, have moved north with an estimated rate of 30km a year”, explains Professor Whelan.

In addition, as seas get warmer the relative abundance of plankton species changes and the species replacing the plankton suitable for the young salmon become more abundant and, in many areas, are quite different from the organisms the fish used to feed on.

According to Professor Whelan, salmon numbers may continue to decline in terms of overall survival as they may be adapting to these new conditions. The most important question at this stage is: will the salmon be able to adapt to these new conditions over time? This might require them to evolve new patterns of migration and behaviour, something that could take generations.

“Wild salmon has been around for 50 million years and my bet is they will be able to adapt, although it will take some time,” concludes Professor Whelan.

Project details

  • Project acronym: SALSEA-MERGE
  • Participants: Norway (Coordinator),Finland, UK, France, Denmark, Iceland, Spain, Ireland
  • FP7 Proj. N° 212529
  • Total costs: € 5 619 788
  • EU contribution: € 3 499 762
  • Duration: April 2008 - October 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center