Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
  Building & construction
  Coal & steel
  Industrial processes & robotics
  Materials & products
  Nanotechnology
  Standards, measures & testing
  Other
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belgium
  Benin
  Brazil
  Bulgaria
  Canada
  Chile
  China
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Success Stories

Last Update: 20-05-2014  
Related category(ies):
Information society  |  Industrial research  |  Environment  |  Nanotechnology

 

Countries involved in the project described in the article:
Belgium  |  Czech Republic  |  Germany  |  Italy  |  Portugal  |  Spain  |  Switzerland
Add to PDF "basket"

Power suits: wearable fabric that can generate electricity from the sun

A major consumer of time and money in the manufacturing of aircraft, motor vehicles, electronic equipment and other products is adapting assembly lines to produce different sizes, shapes and styles of such complex items. Work must stop along the line while machines are reconfigured to change how raw materials are cut, holes are drilled, and rivets are punched into place.

Image of molecular structure © Ekaterina Shilova - Fotolia.com

These fabrics could be used in a wide range of settings, from sports and leisure, to car interiors and everyday clothing. Jeans could charge a mobile phone, curtains could power lamps and upholstery could charge car batteries. Solar tents and umbrellas have been envisioned – and even a solar-powered device attached to a tennis racket to measure the speed of a player’s serve.

“Flexible, light and durable solar cells embedded in fabrics are expected to be available in the very near future. This means that solar-powered personal devices could soon be on the market,” says Dephotex project manager Fanny Breuil of the Cetemmsa Technological Centre in Spain. “The next generation of flexible photovoltaic devices is on the way,” she adds.

Solar energy is a completely renewable energy source with huge potential to replace fossil fuels. Some researchers forecast it could account for more than 60 per cent of the global energy market within 10 years.

The research work done by Dephotex team is bringing this rapidly developing technology down to the personal level. Other small-scale devices that could be powered by solar energy include electronic patches that release medicine for skin ailments, “accelerometers” that measure an athlete’s speed, heart rate monitors and low-power lights.

The Dephotex team identified the suitability of various materials for use as photovoltaic cells, as well as different techniques for implanting the cells into fabric, depending on the purpose. For large awnings (roofs) on stadiums, for instance, it was determined that photovoltaic patches must be developed rather than large sheets of the material. Factors such as durability, electrical properties and cost were also studied.

The research yielded substantive results, though follow-up work is needed to improve efficiency and ensure the greatest degree of flexibility. A number of research centres and large companies have expressed an interest in collaborating with the Dephotex team and pursuing potential commercial products.

Project details

  • Project acronym: DEPHOTEX
  • Participants: Germany (Coordinator), Portugal, Denmark, Nederlands, France, Hungary, Italy, Finland, Poland
  • FP7 Proj. N° 214459
  • Total costs: € 4 209 690
  • EU contribution: € 3 131 482
  • Duration: October 2008 - November 2011

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center