Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   Infocentre

Last Update: 08-05-2014  
Related category(ies):
Energy  |  Industrial research  |  Success stories

 

Countries involved in the project described in the article:
Belgium  |  Denmark  |  France  |  Germany  |  Italy  |  Slovenia  |  Switzerland
Add to PDF "basket"

Developing high-efficiency lasers to manufacture solar panels

As the world continues its efforts to combat climate change and to move away from its dependence on fossil fuels, solar energy looks set to become an important technology for the future.

Image of blue skyscraper © kiko - Fotolia.com

The manufacturing of solar energy panels is therefore likely to grow into a significant industry, offering large rewards for whoever can establish an advantage. The aim of the European Union (EU)-funded ALPINE project was to develop new laser techniques which would enhance the manufacturing of solar energy panels, making them more efficient and less expensive than anything currently available.

The project could have multiple benefits – not only boosting Europe’s leadership position in lasers and in the photovoltaic (PV) industry, but also delivering environmental benefits through the development of improved methods for harnessing solar energy.

“Europe is a global powerhouse when it comes to developing and producing lasers and it is important to build on that,” says Professor Stefano Selleri of Università degli Studi di Parma in Italy, ALPINE’s project coordinator. “What is more,” adds Professor Selleri, “the commercial potential of this technology is enormous. Just consider the fact that the laser and fibre laser market has remained completely unaffected by a global economic crisis which left very few other sectors undamaged.”

Solar panels are able to function because they have intricate patterns of tiny channels engraved into their surface, forming electrical circuits. Until now, these ‘microchannels’ have been engraved mechanically, using a sharp stylus. The primary focus of the ALPINE project was to pioneer the use of new fibre laser technology to do this engraving – or ‘scribing’ as it is known. The use of lasers makes the process much quicker, enabling scribing speeds of metres per second – way beyond the capability of mechanical scribing. It also makes it cheaper, and produces much cleaner, sharper microchannels, leading to better performance.

In order to achieve this, the ALPINE scientists investigated the potential of a new type of laser. Compared with existing lasers, photonic crystal fibre (PCF) lasers offer better and more accurate beam quality, are highly efficient, use less power, and generate less heat.

This novel laser system was especially important given the requirement for the scribing process to work with the new, high-tech materials now being developed for solar panels. In place of conventional solar panels measuring up to 5 millimetres in thickness, the modern PV industry is looking to use new types of lightweight and flexible materials to construct solar panels measured in micrometres (thousandths of a millimetre). With such materials, the scribing process must be controlled with a high degree of accuracy since it is vital that it penetrates only one layer of the thin solar cell film at a time. PCF lasers provide this accuracy.

Moreover, since PCF lasers operate with ultra-short pulse rates, they remain cooler than traditional lasers and avoid causing any heat damage to the film.

The new materials provide several advantages, whether the panels are deployed terrestrially or in space. Their significantly reduced weight is one clear benefit. In addition, the materials used are highly stable under the proton and electron irradiation to which they are subjected in space. In terrestrial use, the flexibility means that solar panels can be wrapped onto any suitable structure, flat or curved.

The results of the ALPINE team’s work, demonstrating the capability of PCF lasers to transform existing scribing technology and opening the way to rapid growth in the high-volume production of flexible, thin-film solar cells, are hard to overestimate. In the words of Professor Selleri: “Mechanical scribing will disappear very quickly from the PV industry, to be replaced by laser scribing. This will not only increase the processing speed, but it will also reduce the cost of ownership of the new technology because of its low maintenance and its cost-efficiency. This will open it up to new companies and SMEs.”

Project details

  • Project acronym: ALPINE
  • Participants: Italy (Coordinator), Belgium, Germany, Switzerland, France, Slovenia, Denmark
  • FP7 Proj. N° 229231
  • Total costs: € 9 000 648
  • EU contribution: € 5 899 987
  • Duration: September 2009 - August 2012

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center