Navigation path

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  Gambia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  Gambia
  Georgia


   Infocentre

Published: 7 March 2017  
Related theme(s) and subtheme(s)
EnergyRational energy use
Research policySeventh Framework Programme
Success storiesTransport
TransportWaterborne
Video reports
Countries involved in the project described in the article
Belgium  |  Croatia  |  Cyprus  |  Denmark  |  Finland  |  Germany  |  Greece  |  Italy  |  Netherlands  |  Norway  |  Portugal  |  Spain  |  United Kingdom
Add to PDF "basket"

Sustainability and a sea of change for the ship industry

Today, the shipping industry finds itself in a sea of change. New international standards require vessels to reduce air pollution, meaning fewer emissions. It's a challenge for builders as altering a ship's power can sacrifice safety. How can the industry ensure that marine vessels remain safe while cutting emissions? A shipyard in Croatia is helping scientists to improve maritime transport.

Photo of the shipyards
Video in MP4 format:  ar  de  el  en  es  fa  fr  hu  it  pt  ru  tr  uk  (39.8 MB)

Founded 160 years ago, Uljanik is one of the world’s oldest shipbuilding companies. Company naval architect Igor Lalović explains the challenges and risks of reducing emissions in large vessels:

Igor Lalović: “The most easy way to do it is to reduce the ship’s power. But then we come to the problem of the maneuverability, because the less power a ship has it’s less maneuverable.”

Denis Loctier, euronews: “And what can happen to an underpowered ship in a storm?”

Igor Lalović: “For example if you are caught in bad weather near the shore, you can’t fight the current that’s heading your way and the wind – you can get grounded, or even in high waves the ship can get turned and capsize, so there’s a big risk of losing human lives.”

Nearing completion at the yard is a cargo vessel designed to carry 7000 cars across the ocean. It’s part of a European research project in which scientists are looking for ways to make ships more energy-efficient – without cutting their propulsion power to unsafe levels.

Igor Lalović: “We can increase the efficiency by reducing the ship’s weight – for example, by installing innovative materials or special propulsion devices that are put in front of the propeller that optimise the inflow of water to the propeller, and this way we can reduce the CO2 emissions.”

Model behaviour

In Spain, scientists and engineers are conducting controlled tests in a hydrodynamic center – a large water basin with a computerised wave generator that can simulate ocean and sea motion.

Adolfo Maron, naval architect and ocean engineer/manager of experiments, CEHIPAR:
“We can determine whether the passengers will have sea sickness, whether the structure is sufficiently rigid to withstand the waves, and whether the boat will consume more fuel, so we can try to minimise the pollution.”

Scale models with sensors measure the forces that affect ships in adverse weather and help determine ship stability in waves of varying sizes and periods.

Adolfo Maron: “Before conducting the tests, we use a special software to define the movement we want to assign to the paddles to reproduce the sea. In fact, the computer controls 60 independent flaps that can generate waves of any kind.”

An accurate transfer of model data to full-scale ships is not a trivial task – but by no means impossible, says professor Papanikolaou who coordinates the research project.

Apostolos Papanikolaou, SHOPERA project coordinator; director of ship design laboratory, National Technical University of Athens:
“Of course some uncertainties will remain, but these can be resolved with research experience, so that eventually the prediction of what we’re doing for the full-scale ship is reliable enough for practical applications.”

With new knowledge in the marine transport industry the key will be to find the right balance between efficiency and economy and safety and sustainability.



  • Project acronym: SHOPERA
  • Participants: Greece (Coordinator), Germany, Finland, Norway, UK, Portugal, Italy, Croatia, Belgium, Spain, Denmark, Netherlands, Cyprus
  • Project Reference N° 605221
  • Total cost: €6 578 019
  • EU contribution: €4 383 964
  • Duration: October 2013 - October 2016

See also

The video on this page was prepared in collaboration with Euronews for the Futuris programme, also available as a podcast.

Project web site

Project details

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

The video on this page was prepared in collaboration with Euronews for the Futuris programme, also available as a podcast.

Project web site

Project details

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center
 
Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  Gambia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Botswana
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  Gambia
  Georgia