Navigation path

Themes
Agriculture & food
Energy
Environment
ERA-NET
Health & life sciences
Human resources & mobility
Industrial research
Information society
Innovation
International cooperation
Nanotechnology
Pure sciences
Research infrastructures
Research policy
Science & business
Science in society
Security
SMEs
Social sciences and humanities
Space
Special Collections
Transport

Countries
Countries
  Argentina
  Australia
  Austria
  Belarus
  Belgium
  Benin
  Brazil
  Bulgaria
  Cameroon
  Canada
  Chile
  China
  Colombia
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Egypt
  Estonia
  Finland
  France
  Georgia
  Germany
  Ghana
  Greece
  Hungary
  Iceland
  India
  Ireland
  Israel
  Italy
  Japan
  Kazakhstan
  Kenya
  Korea
  Latvia
  Lithuania
  Luxembourg
  Malta
  Mexico
  Montenegro
  Morocco
  Namibia
  Netherlands
  Nigeria
  Norway
  Peru
  Poland
  Portugal
  Romania
  Russia
  Senegal
  Serbia
  Slovakia
  Slovenia
  South Africa
  Spain
  Swaziland
  Sweden
  Switzerland
  Taiwan
  Tunisia
  Turkey
  Ukraine
  United Kingdom
  United States


   All

Last Update: 24-02-2014  
Related category(ies):
Industrial research  |  Success stories

 

Countries involved in the project described in the article:
Belgium  |  Canada  |  Denmark  |  Germany  |  Switzerland
Add to PDF "basket"

Do the locomotion

Could machines learn to walk? Legs have their advantages, especially on uneven terrain, but scientists have struggled for years to find a way to create in robots something we take for granted.

Photo of a small robot
Video in QuickTime format:  ar  de  en  es  fa  fr  el  it  pt  ru  tr  uk  (18.4 MB)

To help robots get on their feet, researchers at the Darmstadt University of Technology have been learning exactly how people and animals move.

Andre Seyfarth, the principal investigator at the LOCOMORPH project, said: “We’re capturing the kinematics of the movements, detecting how the joints and segments are moving, but we’re also able to record forces, meaning how much force you exert on the ground when you move.

The idea is to create robots that can mimic humans as closely as possible. To do that we need to understand basic human locomotion, and based on this data gathered here we can design new robots.”

This European Union research project gathered experts in neuroscience, biology and robotics from five countries.

Studying human volunteers and animals, biotechnologists built a computer database that serves as a reference for robotic engineers.

Martin Groß, a Zoologist from Darmstadt University of Technology explained how it works: “We use the motion-capture system, and it works with reflective markers on the skin of the animal or the human. The cameras flash infrared light with a frequency of 250 Hz. This gets reflected by the markers and recorded. The software then makes a 3D model.”

Researchers want to better understand the transition between walking upright and running on all fours. This should help to make robots that can move one way or the other depending on the environment.

“The locomotion of humans and animals has evolved over millions of years, and it’s not so easy to replicate, as we can see in robotics so far. But the more we study humans and animals, the closer we can get to replicating their movements,” said Martin Groß.

Robotic engineers test their new models using a specially developed robotic construction kit. It’s a light bendable skeleton that can be easily rearranged in various ways. Each of its springy legs is controlled by a microchip that can be programmed for different walks.

Robotics and AI researcher, Jørgen Christian Larsen, from the University of Southern Denmark explained why they are so keen to have a robot that walks: “If we want to have robots as helpers in our homes and elsewhere, they need to be able to walk and manoeuvre in our environment. Today we have robots on wheels, and they’re quite good, if the terrain is laid out for them – but when they get to a staircase, they’re kind of lost. So in order to get them to really help in real environment, they need to be able to walk in our environment.”

There are other uses too according to Andre Seyfarth: “With the robot platform that we develop here, we first want to understand the basic functions of human and animal movement, but later on, this technology may be used to guide the design process towards more functional prosthesis or orthosis, for instance.”

That may be a journey of 1,000 miles, but it begins with a single step.

Project details

  • Project acronym:LOCOMORPH
  • Participants:Switzerland (Coordinator), Denmark, Germany, Belgium, Canada
  • FP7 Project N° 231688
  • Total costs: €3 924 475
  • EU contribution: €2 699 996
  • Duration: February 2009 - March 2013

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also

Futuris, the European research programme - on Euronews. The video on this page was prepared in collaboration with Euronews for the Futuris programme.

Project web site

Project information on CORDIS

Contacts
Unit A1 - External & internal communication,
Directorate-General for Research & Innovation,
European Commission
Tel : +32 2 298 45 40
  Top   Research Information Center